New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_A.tex in tags/nemo_v3_2/nemo_v3_2/DOC/TexFiles/Chapters – NEMO

source: tags/nemo_v3_2/nemo_v3_2/DOC/TexFiles/Chapters/Annex_A.tex @ 1878

Last change on this file since 1878 was 1878, checked in by flavoni, 14 years ago

initial test for nemogcm

File size: 14.6 KB
Line 
1
2% ================================================================
3% Chapter Ñ Appendix A : Curvilinear s-Coordinate Equations
4% ================================================================
5\chapter{Curvilinear $s$-Coordinate Equations}
6\label{Apdx_A}
7\minitoc
8
9
10In order to establish the set of Primitive Equation in curvilinear $s$-coordinates
11($i.e.$ an orthogonal curvilinear coordinate in the horizontal and $s$-coordinate
12in the vertical), we start from the set of equations established in \S\ref{PE_zco_Eq} 
13for the special case $k = z$ and thus $e_3 = 1$, and we introduce an arbitrary
14vertical coordinate $s = s(i,j,z,t)$. Let us define a new vertical scale factor by
15$e_3 = \partial z / \partial s$ (which now depends on $(i,j,z,t)$) and the horizontal
16slope of $s$-surfaces by :
17\begin{equation} \label{Apdx_A_s_slope}
18\sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s
19\quad \text{and} \quad 
20\sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s
21\end{equation}
22
23The chain rule to establish the model equations in the curvilinear $s$-coordinate
24system is:
25\begin{equation} \label{Apdx_A_s_chain_rule}
26\begin{aligned}
27&\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
28\left. {\frac{\partial \bullet }{\partial t}} \right|_s
29    -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial t} \\
30&\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
31  \left. {\frac{\partial \bullet }{\partial i}} \right|_s
32     -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial i}=
33     \left. {\frac{\partial \bullet }{\partial i}} \right|_s
34     -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial \bullet }{\partial s} \\
35&\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
36\left. {\frac{\partial \bullet }{\partial j}} \right|_s
37   - \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
38\left. {\frac{\partial \bullet }{\partial j}} \right|_s
39   - \frac{e_2 }{e_3 }\sigma _2 \frac{\partial \bullet }{\partial s} \\
40&\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} \\
41\end{aligned}
42\end{equation}
43
44In particular applying the time derivative chain rule to $z$ provides the
45expression for $w_s$,  the vertical velocity of the $s-$surfaces:
46\begin{equation} \label{Apdx_A_w_in_s}
47w_s   =  \left.   \frac{\partial z }{\partial t}   \right|_s
48            = \frac{\partial z}{\partial s} \; \frac{\partial s}{\partial t} 
49             = e_3 \, \frac{\partial s}{\partial t} 
50\end{equation}
51
52% ================================================================
53% continuity equation
54% ================================================================
55\section{Continuity Equation}
56\label{Apdx_B_continuity}
57
58Using (\ref{Apdx_A_s_chain_rule}) and the fact that the horizontal scale factors
59$e_1$ and $e_2$ do not depend on the vertical coordinate, the divergence of
60the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows:
61
62\begin{align*}
63\nabla \cdot {\rm {\bf U}} 
64&= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
65                  +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
66+ \frac{\partial w}{\partial z}     \\
67\\
68&     = \frac{1}{e_1 \,e_2 }  \left[
69        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
70        - \frac{e_1 }{e_3 } \sigma _1 \frac{\partial (e_2 \,u)}{\partial s}
71      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s       
72        - \frac{e_2 }{e_3 } \sigma _2 \frac{\partial (e_1 \,v)}{\partial s}   \right]
73   + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z}                        \\
74\\
75&     = \frac{1}{e_1 \,e_2 }   \left[
76        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
77      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s        \right]
78   + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
79                  -  \sigma _1 \frac{\partial u}{\partial s}
80                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]          \\
81\\
82&     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
83        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_
84        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s     
85      + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
86        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right]          \\
87& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
88   + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
89                  -  \sigma _1 \frac{\partial u}{\partial s}
90                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]      \\
91\\
92\end{align*}
93
94Noting that $\frac{1}{e_1 }\left. {\frac{\partial e_3 }{\partial i}}
95\right|_s =\frac{1}{e_1 }\left. {\frac{\partial ^2z}{\partial i\,\partial 
96s}} \right|_s =\frac{\partial }{\partial s}\left( {\frac{1}{e_1 }\left.
97{\frac{\partial z}{\partial i}} \right|_s } \right)=\frac{\partial \sigma _1 
98}{\partial s}$ and $\frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}}
99\right|_s =\frac{\partial \sigma _2 }{\partial s}$, it becomes:
100
101\begin{align*}
102\nabla \cdot {\rm {\bf U}} 
103& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
104        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
105      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]        \\ 
106& \qquad \qquad \qquad \qquad \qquad \quad
107 +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma _1 }{\partial s}-v\frac{\partial \sigma _2 }{\partial s}-\sigma _1 \frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} \right] \\ 
108\\
109& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
110        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
111      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
112   + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma _1  - v\;\sigma _2  \right]
113 \end{align*} 
114 
115Here, $w$ is the vertical velocity relative to the $z-$coordinate system.
116Introducing the dia-surface velocity component, $\omega $, defined as
117the velocity relative to the moving $s$-surfaces and normal to them:
118\begin{equation} \label{Apdx_A_w_s}
119\omega  = w - w_s - \sigma _1 \,u - \sigma _2 \,v    \\
120\end{equation}
121with $w_s$ given by \eqref{Apdx_A_w_in_s}, we obtain the expression for
122the divergence of the velocity in the curvilinear $s$-coordinate system:
123\begin{align*} \label{Apdx_A_A4}
124\nabla \cdot {\rm {\bf U}} 
125&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
126        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
127      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
128+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
129+ \frac{1}{e_3 } \frac{\partial w_s       }{\partial s}    \\
130\\
131&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
132        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
133      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
134+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
135+ \frac{1}{e_3 } \frac{\partial}{\partial s}  \left(  e_3 \; \frac{\partial s}{\partial t}   \right)   \\
136\\
137&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
138        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
139      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
140+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
141+ \frac{\partial}{\partial s} \frac{\partial s}{\partial t}
142+ \frac{1}{e_3 } \frac{\partial s}{\partial t} \frac{\partial e_3}{\partial s}     \\
143\\
144&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
145        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
146      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
147+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
148+ \frac{1}{e_3 } \frac{\partial e_3}{\partial t}     \\
149\end{align*}
150
151As a result, the continuity equation \eqref{Eq_PE_continuity} in the
152$s$-coordinates becomes:
153\begin{equation} \label{Apdx_A_A5}
154\frac{1}{e_3 } \frac{\partial e_3}{\partial t} 
155+ \frac{1}{e_1 \,e_2 \,e_3 }\left[
156         {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
157          +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
158 +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0   
159\end{equation}
160
161% ================================================================
162% momentum equation
163% ================================================================
164\section{Momentum Equation}
165\label{Apdx_B_momentum}
166
167Let us consider \eqref{Eq_PE_dyn_vect}, the first component of the momentum
168equation in the vector invariant form (similar manipulations can be performed
169on the second component). Its non-linear term can be transformed as follows:
170
171\begin{align*}
172&+\left. \zeta \right|_z v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_z
173- w \;\frac{\partial u}{\partial z} \\
174\\
175&\qquad=\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
176\right|_z -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_z } 
177\right]\;v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} 
178\right|_z -w\frac{\partial u}{\partial z}      \\
179\\
180&\qquad =\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
181\right|_s -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_s }     \right.
182 \left. {-\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (e_2 \,v)}{\partial s}+\frac{e_2 }{e_3 }\sigma _2 \frac{\partial (e_1 \,u)}{\partial s}} \right]\;v \\ 
183&\qquad \qquad \qquad \qquad \qquad
184{ -\frac{1}{2e_1 }\left( {\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (u^2+v^2)}{\partial s}} \right)
185-\frac{w}{e_3 }\frac{\partial u}{\partial s} }    \\
186\end{align*}
187\begin{align*}
188\qquad  &= \left. \zeta \right|_s \;v
189   - \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
190   - \frac{w}{e_3 }\frac{\partial u}{\partial s}
191   - \left[   {\frac{\sigma _1 }{e_3 }\frac{\partial v}{\partial s}
192              - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v      \\
193\qquad&\qquad \qquad \qquad \qquad \qquad \qquad
194\qquad  \qquad \qquad \qquad \quad
195   +\frac{\sigma _1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s}      \\
196%\\
197\qquad &= \left. \zeta \right|_s \;v
198      - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 
199\qquad&\qquad \qquad \qquad
200 -\frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
201   +\sigma _1 v\frac{\partial v}{\partial s} - \sigma _2 v\frac{\partial u}{\partial s}
202   -\sigma _1 u\frac{\partial u}{\partial s} - \sigma _1 v\frac{\partial v}{\partial s}} \right] \\
203\\
204\qquad &= \left. \zeta \right|_s \;v
205      - \frac{1}{2e_1 }\left. \frac{\partial (u^2+v^2)}{\partial i} \right|_s   
206        - \frac{1}{e_3} \left[  w - \sigma _2 v - \sigma _1 u  \right] 
207                \; \frac{\partial u}{\partial s}   \\
208\\
209\qquad &= \left. \zeta \right|_s \;v
210      - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s   
211        - \frac{1}{e_3 }\omega \frac{\partial u}{\partial s} 
212        - \frac{\partial s}{\partial t}  \frac{\partial u}{\partial s} 
213\end{align*}
214
215Therefore, the non-linear terms of the momentum equation have the same
216form in $z-$ and $s-$coordinates but with the addition of the time derivative
217of the velocity:
218\begin{multline}  \label{Apdx_A_momentum_NL}
219+\left. \zeta \right|_z v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_z
220- w \;\frac{\partial u}{\partial z}    \\
221= - \frac{\partial u}{\partial t} + \left. \zeta \right|_s \;v
222   - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s   
223   - \frac{1}{e_3 }\omega \frac{\partial u}{\partial s} 
224\end{multline}
225
226The pressure gradient term can be transformed as follows:
227\begin{equation} \label{Apdx_A_grad_p}
228\begin{split}
229 -\frac{1}{\rho _o e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z& =-\frac{1}{\rho _o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial p}{\partial s}} \right] \\
230& =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho _o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
231&=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho _o }\sigma _1
232\end{split}
233\end{equation}
234
235An additional term appears in (\ref{Apdx_A_grad_p}) which accounts for the
236tilt of model levels.
237
238Introducing \eqref{Apdx_A_momentum_NL} and \eqref{Apdx_A_grad_p} in \eqref{Eq_PE_dyn_vect} and regrouping the time derivative terms in the left
239hand side, and performing the same manipulation on the second component,
240we obtain the vector invariant form of the momentum equations in the
241$s-$coordinate :
242\begin{subequations} \label{Apdx_A_dyn_vect}
243\begin{multline} \label{Apdx_A_PE_dyn_vect_u}
244 \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t}=
245   +   \left( {\zeta +f} \right)\,v                                   
246   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
247   -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
248   -   \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho _o}    \right)   
249   +  g\frac{\rho }{\rho _o}\sigma _1
250   +   D_u^{\vect{U}}  +   F_u^{\vect{U}}
251\end{multline}
252\begin{multline} \label{Apdx_A_dyn_vect_v}
253 \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
254   -   \left( {\zeta +f} \right)\,u   
255   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)       
256   -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
257   -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho _o}  \right)
258    +  g\frac{\rho }{\rho _o }\sigma _2   
259   +  D_v^{\vect{U}}  +   F_v^{\vect{U}}
260\end{multline}
261\end{subequations}
262
263It has the same form as in the $z-$coordinate but for the vertical scale factor
264that has appeared inside the time derivative. The form of the vertical physics
265and forcing terms remains unchanged. The form of the lateral physics is
266discussed in appendix~\ref{Apdx_B}
267
268% ================================================================
269% Tracer equation
270% ================================================================
271\section{Tracer Equation}
272\label{Apdx_B_tracer}
273
274The tracer equation is obtained using the same calculation as for the continuity
275equation and then regrouping the time derivative terms in the left hand side :
276
277\begin{multline} \label{Apdx_A_tracer}
278 \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t} 
279   = -\frac{1}{e_1 \,e_2 \,e_3 } 
280      \left[ {\frac{\partial }{\partial i}} \left( {e_2 \,e_3 \;Tu} \right) \right .
281          +         \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)                \\
282          + \left. \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right) \right] +D^{T} +F^{T} \; \;
283\end{multline}
284
285
286The expression for the advection term is a straight consequence of (A.4), the
287expression of the 3D divergence in the $s$-coordinates established above.
288
Note: See TracBrowser for help on using the repository browser.