New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_E.tex in tags/nemo_v3_2/nemo_v3_2/DOC/TexFiles/Chapters – NEMO

source: tags/nemo_v3_2/nemo_v3_2/DOC/TexFiles/Chapters/Annex_E.tex @ 1878

Last change on this file since 1878 was 1878, checked in by flavoni, 14 years ago

initial test for nemogcm

File size: 11.3 KB
Line 
1% ================================================================
2% Appendix E : UBS scheme
3% ================================================================
4\chapter{UBS scheme}
5\label{AN_E}
6\minitoc
7
8
9% -------------------------------------------------------------------------------------------------------------
10%        UBS scheme 
11% -------------------------------------------------------------------------------------------------------------
12\section{Upstream Biased Scheme (UBS) (\np{ln\_traadv\_ubs}=T)}
13\label{TRA_adv_ubs}
14
15The UBS advection scheme is an upstream biased third order scheme based on
16an upstream-biased parabolic interpolation. It is also known as Cell Averaged
17QUICK scheme (Quadratic Upstream Interpolation for Convective
18Kinematics). For example, in the $i$-direction :
19\begin{equation} \label{Eq_tra_adv_ubs2}
20\tau _u^{ubs} = \left\{  \begin{aligned}
21  & \tau _u^{cen4} + \frac{1}{12} \,\tau"_i     & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
22  & \tau _u^{cen4} - \frac{1}{12} \,\tau"_{i+1} & \quad \text{if }\ u_{i+1/2}       <       0
23                   \end{aligned}    \right.
24\end{equation}
25or equivalently, the advective flux is
26\begin{equation} \label{Eq_tra_adv_ubs2}
27U_{i+1/2} \ \tau _u^{ubs} 
28=U_{i+1/2} \ \overline{ T_i - \frac{1}{6}\,\tau"_i }^{\,i+1/2}
29- \frac{1}{2}\, |U|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
30\end{equation}
31where $U_{i+1/2} = e_{1u}\,e_{3u}\,u_{i+1/2}$ and
32$\tau "_i =\delta _i \left[ {\delta _{i+1/2} \left[ \tau \right]} \right]$.
33By choosing this expression for $\tau "$ we consider a fourth order approximation
34of $\partial_i^2$ with a constant i-grid spacing ($\Delta i=1$).
35
36Alternative choice: introduce the scale factors: 
37$\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} }\delta _{i+1/2}[\tau] \right]$.
38
39
40This results in a dissipatively dominant (i.e. hyper-diffusive) truncation
41error \citep{Sacha2005}. The overall performance of the
42advection scheme is similar to that reported in \cite{Farrow1995}.
43It is a relatively good compromise between accuracy and smoothness. It is
44not a \emph{positive} scheme meaning false extrema are permitted but the
45amplitude of such are significantly reduced over the centred second order
46method. Nevertheless it is not recommended to apply it to a passive tracer
47that requires positivity.
48
49The intrinsic diffusion of UBS makes its use risky in the vertical direction
50where the control of artificial diapycnal fluxes is of paramount importance.
51It has therefore been preferred to evaluate the vertical flux using the TVD
52scheme when \np{ln\_traadv\_ubs}=T.
53
54For stability reasons, in \eqref{Eq_tra_adv_ubs}, the first term which corresponds
55to a second order centred scheme is evaluated using the \textit{now} velocity
56(centred in time) while the second term which is the diffusive part of the scheme,
57is evaluated using the \textit{before} velocity (forward in time. This is discussed
58by \citet{Webb1998} in the context of the Quick advection scheme. UBS and QUICK
59schemes only differ by one coefficient. Substituting 1/6 with 1/8 in
60(\ref{Eq_tra_adv_ubs}) leads to the QUICK advection scheme \citep{Webb1998}.
61This option is not available through a namelist parameter, since the 1/6
62coefficient is hard coded. Nevertheless it is quite easy to make the
63substitution in \mdl{traadv\_ubs} module and obtain a QUICK scheme
64
65NB 1: When a high vertical resolution $O(1m)$ is used, the model stability can
66be controlled by vertical advection (not vertical diffusion which is usually
67solved using an implicit scheme). Computer time can be saved by using a
68time-splitting technique on vertical advection. This possibility have been
69implemented and validated in ORCA05-L301. It is not currently offered in the
70current reference version.
71
72NB 2 : In a forthcoming release four options will be proposed for the
73vertical component used in the UBS scheme. $\tau _w^{ubs}$ will be
74evaluated using either \textit{(a)} a centred $2^{nd}$ order scheme ,
75or  \textit{(b)} a TVD scheme, or  \textit{(c)} an interpolation based on conservative
76parabolic splines following \citet{Sacha2005} implementation of UBS in ROMS,
77or  \textit{(d)} an UBS. The $3^{rd}$ case has dispersion properties similar to an
78eight-order accurate conventional scheme.
79
80NB 3 : It is straight forward to rewrite \eqref{Eq_tra_adv_ubs} as follows:
81\begin{equation} \label{Eq_tra_adv_ubs2}
82\tau _u^{ubs} = \left\{  \begin{aligned}
83   & \tau _u^{cen4} + \frac{1}{12} \tau"_i      & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
84   & \tau _u^{cen4} - \frac{1}{12} \tau"_{i+1}  & \quad \text{if }\ u_{i+1/2}       <       0
85                   \end{aligned}    \right.
86\end{equation}
87or equivalently
88\begin{equation} \label{Eq_tra_adv_ubs2}
89\begin{split}
90e_{2u} e_{3u}\,u_{i+1/2} \ \tau _u^{ubs} 
91&= e_{2u} e_{3u}\,u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\tau"_i }^{\,i+1/2} \\
92& - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
93\end{split}
94\end{equation}
95\eqref{Eq_tra_adv_ubs2} has several advantages. First it clearly evidence that
96the UBS scheme is based on the fourth order scheme to which is added an
97upstream biased diffusive term. Second, this emphasises that the $4^{th}$ order
98part have to be evaluated at \emph{now} time step, not only the $2^{th}$ order
99part as stated above using \eqref{Eq_tra_adv_ubs}. Third, the diffusive term is
100in fact a biharmonic operator with a eddy coefficient with is simply proportional
101to the velocity.
102
103laplacian diffusion:
104\begin{equation} \label{Eq_tra_ldf_lap}
105\begin{split}
106D_T^{lT} =\frac{1}{e_{1T} \; e_{2T}\;  e_{3T} } &\left[ {\quad \delta _i
107\left[ {A_u^{lT} \frac{e_{2u} e_{3u} }{e_{1u} }\;\delta _{i+1/2} 
108\left[ T \right]} \right]} \right.
109\\
110&\ \left. {+\; \delta _j \left[
111{A_v^{lT} \left( {\frac{e_{1v} e_{3v} }{e_{2v} }\;\delta _{j+1/2} \left[ T
112\right]} \right)} \right]\quad } \right]
113\end{split}
114\end{equation}
115
116bilaplacian:
117\begin{equation} \label{Eq_tra_ldf_lap}
118\begin{split}
119D_T^{lT} =&-\frac{1}{e_{1T} \; e_{2T}\;  e_{3T}} \\
120& \delta _i \left\sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 
121        \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}}
122    \delta _i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 
123           [T] \right] \right] \right]
124\end{split}
125\end{equation}
126with ${A_u^{lT}}^2 = \frac{1}{12} {e_{1u}}^3\ |u|$,
127$i.e.$ $A_u^{lT} = \frac{1}{\sqrt{12}} \,e_{1u}\ \sqrt{ e_{1u}\,|u|\,}$
128it comes :
129\begin{equation} \label{Eq_tra_ldf_lap}
130\begin{split}
131D_T^{lT} =&-\frac{1}{12}\,\frac{1}{e_{1T} \; e_{2T}\;  e_{3T}} \\
132& \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 
133       \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 
134    \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 
135         [T] \right] \right] \right]
136\end{split}
137\end{equation}
138if the velocity is uniform ($i.e.$ $|u|=cst$) then the diffusive flux is
139\begin{equation} \label{Eq_tra_ldf_lap}
140\begin{split}
141F_u^{lT} = - \frac{1}{12}
142 e_{2u}\,e_{3u}\,|u| \;\sqrt{ e_{1u}}\,\delta _{i+1/2} 
143       \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 
144    \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}}\:\delta _{i+1/2} 
145         [T] \right] \right]
146\end{split}
147\end{equation}
148beurk....  reverte the logic: starting from the diffusive part of the advective flux it comes:
149
150\begin{equation} \label{Eq_tra_adv_ubs2}
151\begin{split}
152F_u^{lT}
153&= - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
154\end{split}
155\end{equation}
156if the velocity is uniform ($i.e.$ $|u|=cst$) and choosing $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right]$
157
158sol 1 coefficient at T-point ( add $e_{1u}$ and $e_{1T}$ on both side of first $\delta$):
159\begin{equation} \label{Eq_tra_adv_ubs2}
160\begin{split}
161F_u^{lT}
162&= - \frac{1}{12} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{e_{1T}^3\,|u|}{e_{1T}e_{2T}\,e_{3T}}\,\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right] \right]
163\end{split}
164\end{equation}
165which leads to ${A_T^{lT}}^2 = \frac{1}{12} {e_{1T}}^3\ \overline{|u|}^{\,i+1/2}$
166
167sol 2 coefficient at u-point: split $|u|$ into $\sqrt{|u|}$ and $e_{1T}$ into $\sqrt{e_{1u}}$
168\begin{equation} \label{Eq_tra_adv_ubs2}
169\begin{split}
170F_u^{lT}
171&= - \frac{1}{12} {e_{1u}}^1 \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{2T}\,e_{3T}}\,\delta _i \left[ \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right] \right] \\
172&= - \frac{1}{12} e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{1T}\,e_{2T}\,e_{3T}}\,\delta _i \left[ e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u} }{e_{1u}} \delta _{i+1/2}[\tau] \right] \right]
173\end{split}
174\end{equation}
175which leads to ${A_u^{lT}} = \frac{1}{12} {e_{1u}}^3\ |u|$
176
177
178% -------------------------------------------------------------------------------------------------------------
179%        Leap-Frog energetic 
180% -------------------------------------------------------------------------------------------------------------
181\section{Leap-Frog energetic }
182\label{LF}
183
184We adopt the following semi-discrete notation for time derivative. Given the values of a variable $q$ at successive time step, the time derivation and averaging operators at the mid time step are:
185\begin{subequations} \label{dt_mt}
186\begin{align}
187 \delta _{t+\Delta t/2} [q]     &\  \ \,   q^{t+\Delta t}  - q^{t}      \\
188 \overline q^{\,t+\Delta t/2} &= \left\{ q^{t+\Delta t} + q^{t} \right\} \; / \; 2
189\end{align}
190\end{subequations}
191As for space operator, the adjoint of the derivation and averaging time operators are
192$\delta_t^*=\delta_{t+\Delta t/2}$ and $\overline{\cdot}^{\,t\,*}= \overline{\cdot}^{\,t+\Delta/2}$
193, respectively.
194
195The Leap-frog time stepping given by \eqref{Eq_DOM_nxt} can be defined as:
196\begin{equation} \label{LF}
197   \frac{\partial q}{\partial t} 
198         \equiv \frac{1}{\Delta t} \overline{ \delta _{t+\Delta t/2}[q]}^{\,t} 
199      =         \frac{q^{t+\Delta t}-q^{t-\Delta t}}{2\Delta t}
200\end{equation} 
201Note that \eqref{LF} shows that the leapfrog time step is $\Delta t$, not $2\Delta t$ 
202as it can be found sometime in literature.
203The leap-Frog time stepping is a second order centered scheme. As such it respects
204the quadratic invariant in integral forms, $i.e.$ the following continuous property,
205\begin{equation} \label{Energy}
206\int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 
207   =\int_{t_0}^{t_1} {\frac{1}{2}\, \frac{\partial q^2}{\partial t} \;dt} 
208   =  \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) ,
209\end{equation}
210is satisfied in discrete form. Indeed,
211\begin{equation} \begin{split}
212\int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 
213   &\equiv \sum\limits_{0}^{N} 
214         {\frac{1}{\Delta t} q^t \ \overline{ \delta _{t+\Delta t/2}[q]}^{\,t} \ \Delta t} 
215      \equiv \sum\limits_{0}^{N}  { q^t \ \overline{ \delta _{t+\Delta t/2}[q]}^{\,t} } \\
216   &\equiv \sum\limits_{0}^{N}  { \overline{q}^{\,t+\Delta/2}{ \delta _{t+\Delta t/2}[q]}}
217      \equiv \sum\limits_{0}^{N}  { \frac{1}{2} \delta _{t+\Delta t/2}[q^2] }\\
218   &\equiv \sum\limits_{0}^{N}  { \frac{1}{2} \delta _{t+\Delta t/2}[q^2] }
219      \equiv \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right)
220\end{split} \end{equation}
221NB here pb of boundary condition when applying the adjoin! In space, setting to 0
222the quantity in land area is sufficient to get rid of the boundary condition
223(equivalently of the boundary value of the integration by part). In time this boundary
224condition is not physical and \textbf{add something here!!!}
225
226
227
Note: See TracBrowser for help on using the repository browser.