MODULE trcldf_iso_zps !!====================================================================== !! *** MODULE trcldf_iso_zps *** !! Ocean passive tracers: horizontal component of the lateral tracer mixing trend !!====================================================================== !! History : ! 94-08 (G. Madec, M. Imbard) !! ! 97-05 (G. Madec) split into traldf and trazdf !! 8.5 ! 02-08 (G. Madec) Free form, F90 !! 9.0 ! 04-03 (C. Ethe) adapted for passive tracers !! ! 07-02 (C. Deltel) Diagnose ML trends for passive tracers !!---------------------------------------------------------------------- #if key_top && defined key_ldfslp !!---------------------------------------------------------------------- !! 'key_ldfslp' slope of the lateral diffusive direction !!---------------------------------------------------------------------- !! trc_ldf_iso_zps : update the tracer trend with the horizontal !! component of a iso-neutral laplacian operator !!---------------------------------------------------------------------- USE oce_trc ! ocean dynamics and active tracers variables USE trp_trc ! ocean passive tracers variables USE prtctl_trc ! Print control for debbuging USE trdmld_trc USE trdmld_trc_oce IMPLICIT NONE PRIVATE PUBLIC trc_ldf_iso_zps ! routine called by step.F90 !! * Substitutions # include "top_substitute.h90" !!---------------------------------------------------------------------- !! TOP 1.0 , LOCEAN-IPSL (2005) !! $Header: /home/opalod/NEMOCVSROOT/NEMO/TOP_SRC/TRP/trcldf_iso_zps.F90,v 1.10 2006/09/12 11:10:14 opalod Exp $ !! Software governed by the CeCILL licence (modipsl/doc/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE trc_ldf_iso_zps( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE trc_ldf_iso_zps *** !! !! ** Purpose : Compute the before horizontal tracer diffusive !! trend and add it to the general trend of tracer equation. !! !! ** Method : The horizontal component of the lateral diffusive trends !! is provided by a 2nd order operator rotated along neural or geopo- !! tential surfaces to which an eddy induced advection can be added !! It is computed using before fields (forward in time) and isopyc- !! nal or geopotential slopes computed in routine ldfslp. !! !! horizontal fluxes associated with the rotated lateral mixing: !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ] !! - aht e2u*uslp dk[ mi(mk(trb)) ] !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ] !! - aht e2u*vslp dk[ mj(mk(trb)) ] !! add horizontal Eddy Induced advective fluxes (lk_traldf_eiv=T): !! zftu = zftu - dk-1[ aht e2u mi(wslpi) ] mi( trb ) !! zftv = zftv - dk-1[ aht e1v mj(wslpj) ] mj( trb ) !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] } !! Add this trend to the general trend tra : !! tra = tra + difft !! !! 'key_trdtra' defined: the trend is saved for diagnostics. !! !! macro-tasked on horizontal slab (jk-loop). !! !! ** Action : !! Update tra arrays with the before along level biharmonic !! mixing trend. !! Save the trends if 'key_trdmld_trc' defined !!---------------------------------------------------------------------- USE oce_trc , zftu => ua, & ! use ua as workspace & zftv => va ! use va as workspace !! INTEGER, INTENT( in ) :: kt ! ocean time-step index INTEGER :: ji, jj, jk,jn ! dummy loop indices INTEGER :: iku, ikv ! temporary integer REAL(wp) :: & zabe1, zabe2, zcof1, zcof2, & ! temporary scalars zmsku, zmskv, zbtr, ztra REAL(wp), DIMENSION(jpi,jpj) :: & zdkt , zdk1t ! temporary workspace REAL(wp), DIMENSION(jpi,jpj,jpk) :: & zgtbu, zgtbv ! temporary workspace #if defined key_trcldf_eiv REAL(wp), DIMENSION(jpi,jpj) :: & zftug, zftvg ! temporary workspace REAL(wp) :: & z_hdivn_x, z_hdivn_y, zcg1, zcg2, & zuwk, zvwk, zuwk1, zvwk1 #endif CHARACTER (len=22) :: charout REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrtrd REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrtrd_xei REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztrtrd_yei !!---------------------------------------------------------------------- IF( kt == nittrc000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'trc_ldf_iso_zps : iso neutral laplacian diffusion in ' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~~ z-coordinates with partial steps' #if defined key_trcldf_eiv && defined key_diaeiv u_trc_eiv(:,:,:) = 0.e0 v_trc_eiv(:,:,:) = 0.e0 #endif ENDIF IF( l_trdtrc ) THEN ALLOCATE( ztrtrd(jpi,jpj,jpk) ) # if defined key_trcldf_eiv ALLOCATE( ztrtrd_xei(jpi,jpj,jpk) ) ALLOCATE( ztrtrd_yei(jpi,jpj,jpk) ) # endif ENDIF ! ! =========== DO jn = 1, jptra ! tracer loop ! ! =========== IF( l_trdtrc ) ztrtrd(:,:,:) = tra(:,:,:,jn) ! save trends zgtbu(:,:,:) = 0. ; zgtbv(:,:,:) = 0. ! Horizontal passive tracer gradient DO jk = 1, jpk DO jj = 1, jpj-1 DO ji = 1, fs_jpim1 ! vector opt. zgtbu(ji,jj,jk) = tmask(ji,jj,jk) * ( trb(ji+1,jj ,jk,jn) - trb(ji,jj,jk,jn) ) zgtbv(ji,jj,jk) = tmask(ji,jj,jk) * ( trb(ji ,jj+1,jk,jn) - trb(ji,jj,jk,jn) ) END DO END DO END DO ! partial steps correction at the last level DO jj = 1, jpj-1 DO ji = 1, jpi-1 ! last level iku = MIN( mbathy(ji,jj), mbathy(ji+1,jj ) ) - 1 ikv = MIN( mbathy(ji,jj), mbathy(ji ,jj+1) ) - 1 zgtbu(ji,jj,iku) = gtru(ji,jj,jn) zgtbv(ji,jj,ikv) = gtrv(ji,jj,jn) END DO END DO ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== ! 1. Vertical tracer gradient at level jk and jk+1 ! ------------------------------------------------ ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) zdk1t(:,:) = ( trb(:,:,jk,jn) - trb(:,:,jk+1,jn) ) * tmask(:,:,jk+1) IF( jk == 1 ) THEN zdkt(:,:) = zdk1t(:,:) ELSE zdkt(:,:) = ( trb(:,:,jk-1,jn) - trb(:,:,jk,jn) ) * tmask(:,:,jk) ENDIF ! 2. Horizontal fluxes ! -------------------- DO jj = 1 , jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zabe1 = ( fsahtru(ji,jj,jk) + ahtrb0 ) * e2u(ji,jj) * fse3u(ji,jj,jk) / e1u(ji,jj) zabe2 = ( fsahtrv(ji,jj,jk) + ahtrb0 ) * e1v(ji,jj) * fse3v(ji,jj,jk) / e2v(ji,jj) zmsku = 1. / MAX( tmask(ji+1,jj,jk ) + tmask(ji,jj,jk+1) & & + tmask(ji+1,jj,jk+1) + tmask(ji,jj,jk ), 1. ) zmskv = 1. / MAX( tmask(ji,jj+1,jk ) + tmask(ji,jj,jk+1) & & + tmask(ji,jj+1,jk+1) + tmask(ji,jj,jk ), 1. ) zcof1 = -fsahtru(ji,jj,jk) * e2u(ji,jj) * uslp(ji,jj,jk) * zmsku zcof2 = -fsahtrv(ji,jj,jk) * e1v(ji,jj) * vslp(ji,jj,jk) * zmskv zftu(ji,jj,jk) = umask(ji,jj,jk) * ( zabe1 * zgtbu(ji,jj,jk) & & + zcof1 * ( zdkt (ji+1,jj) + zdk1t(ji,jj) & & + zdk1t(ji+1,jj) + zdkt (ji,jj) ) ) zftv(ji,jj,jk) = vmask(ji,jj,jk) * ( zabe2 * zgtbv(ji,jj,jk) & & + zcof2 * ( zdkt (ji,jj+1) + zdk1t(ji,jj) & & + zdk1t(ji,jj+1) + zdkt (ji,jj) ) ) END DO END DO # if defined key_trcldf_eiv ! ... Eddy induced horizontal advective fluxes DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zuwk = ( wslpi(ji,jj,jk ) + wslpi(ji+1,jj ,jk ) ) * fsaeitru(ji,jj,jk ) * umask(ji,jj,jk ) zuwk1= ( wslpi(ji,jj,jk+1) + wslpi(ji+1,jj ,jk+1) ) * fsaeitru(ji,jj,jk+1) * umask(ji,jj,jk+1) zvwk = ( wslpj(ji,jj,jk ) + wslpj(ji ,jj+1,jk ) ) * fsaeitrv(ji,jj,jk ) * vmask(ji,jj,jk ) zvwk1= ( wslpj(ji,jj,jk+1) + wslpj(ji ,jj+1,jk+1) ) * fsaeitrv(ji,jj,jk+1) * vmask(ji,jj,jk+1) zcg1= -0.25 * e2u(ji,jj) * umask(ji,jj,jk) * ( zuwk-zuwk1 ) zcg2= -0.25 * e1v(ji,jj) * vmask(ji,jj,jk) * ( zvwk-zvwk1 ) zftug(ji,jj) = zcg1 * ( trb(ji+1,jj,jk,jn) + trb(ji,jj,jk,jn) ) zftvg(ji,jj) = zcg2 * ( trb(ji,jj+1,jk,jn) + trb(ji,jj,jk,jn) ) zftu(ji,jj,jk) = zftu(ji,jj,jk) + zftug(ji,jj) zftv(ji,jj,jk) = zftv(ji,jj,jk) + zftvg(ji,jj) # if defined key_diaeiv u_trc_eiv(ji,jj,jk) = -2. * zcg1 / ( e2u(ji,jj) * fse3u(ji,jj,jk) ) v_trc_eiv(ji,jj,jk) = -2. * zcg2 / ( e1v(ji,jj) * fse3v(ji,jj,jk) ) # endif END DO END DO # endif ! 3. Second derivative (divergence) and add to the general trend ! -------------------------------------------------------------- DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr = 1. / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) ztra = zbtr * ( zftu(ji,jj,jk) - zftu(ji-1,jj,jk) + zftv(ji,jj,jk) - zftv(ji,jj-1,jk) ) tra(ji,jj,jk,jn) = tra (ji,jj,jk,jn) + ztra END DO END DO #if defined key_trc_diatrd DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr = 1. / ( e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) ) IF( luttrd(jn) ) THEN trtrd (ji,jj,jk,ikeep(jn),4) = zbtr * ( zftu(ji,jj,jk) - zftu(ji-1, jj,jk) ) trtrd (ji,jj,jk,ikeep(jn),5) = zbtr * ( zftv(ji,jj,jk) - zftv(ji ,jj-1,jk) ) ENDIF # if defined key_trcldf_eiv IF( luttrd(jn) ) THEN trtrd (ji,jj,jk,ikeep(jn),4) = trtrd(ji,jj,jk,ikeep(jn),4) & & - zbtr * ( zftug(ji,jj) - zftug(ji-1,jj ) ) trtrd (ji,jj,jk,ikeep(jn),5) = trtrd(ji,jj,jk,ikeep(jn),5) & & - zbtr * ( zftvg(ji,jj) - zftvg(ji ,jj-1) ) ENDIF # endif END DO END DO #endif ! ! =============== END DO ! End of slab ! ! =============== ! 4. Save the horizontal diffusive and advective (eiv) trends for diagnostics ! --------------------------------------------------------------------------- IF( l_trdtrc ) THEN ! 4.1) Compute the eiv ZONAL & MERIDIONAL advective trends # if defined key_trcldf_eiv ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zuwk = ( wslpi(ji,jj,jk ) + wslpi(ji+1,jj ,jk ) ) * fsaeitru(ji,jj,jk ) * umask(ji,jj,jk ) zuwk1= ( wslpi(ji,jj,jk+1) + wslpi(ji+1,jj ,jk+1) ) * fsaeitru(ji,jj,jk+1) * umask(ji,jj,jk+1) zvwk = ( wslpj(ji,jj,jk ) + wslpj(ji ,jj+1,jk ) ) * fsaeitrv(ji,jj,jk ) * vmask(ji,jj,jk ) zvwk1= ( wslpj(ji,jj,jk+1) + wslpj(ji ,jj+1,jk+1) ) * fsaeitrv(ji,jj,jk+1) * vmask(ji,jj,jk+1) zcg1= -0.25 * e2u(ji,jj) * umask(ji,jj,jk) * ( zuwk-zuwk1 ) zcg2= -0.25 * e1v(ji,jj) * vmask(ji,jj,jk) * ( zvwk-zvwk1 ) zftug(ji,jj) = zcg1 * ( trb(ji+1,jj,jk,jn) + trb(ji,jj,jk,jn) ) zftvg(ji,jj) = zcg2 * ( trb(ji,jj+1,jk,jn) + trb(ji,jj,jk,jn) ) END DO END DO DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr = 1. / ( e1t(ji,jj)*e2t(ji,jj)*fse3t(ji,jj,jk) ) !-- Compute zonal & meridional divergences of the eiv field : ! d_x[u_trc_eiv] = 1/(e1t*e2t*e3t) ( di[e2u*e3u u_trc_eiv] ) ! d_y[v_trc_eiv] = 1/(e1t*e2t*e3t) ( dj[e1v*e3v v_trc_eiv] ) ! N.B. This is only possible if key_diaeiv is switched on. # if defined key_diaeiv z_hdivn_x = ( e2u(ji ,jj) * fse3u(ji ,jj,jk) * u_trc_eiv(ji ,jj ,jk) & & - e2u(ji-1,jj) * fse3u(ji-1,jj,jk) * u_trc_eiv(ji-1,jj ,jk) ) * zbtr z_hdivn_y = ( e1v(ji, jj) * fse3v(ji,jj ,jk) * v_trc_eiv(ji, jj ,jk) & & - e1v(ji,jj-1) * fse3v(ji,jj-1,jk) * v_trc_eiv(ji ,jj-1,jk) ) * zbtr # else z_hdivn_x = 0.e0 ; z_hdivn_y = 0.e0 # endif !-- Compute the zonal advective trends associated with eiv ztrtrd_xei(ji,jj,jk) = zbtr * ( zftug(ji,jj) - zftug(ji-1,jj ) ) & & - trn(ji,jj,jk,jn) * z_hdivn_x !-- Compute the merid. advective trends associated with eiv ztrtrd_yei(ji,jj,jk) = zbtr * ( zftvg(ji,jj) - zftvg(ji ,jj-1) ) & & - trn(ji,jj,jk,jn) * z_hdivn_y END DO END DO ! ! =============== END DO ! End of slab ! ! =============== # else ztrtrd_xei(:,:,:) = 0.e0 ztrtrd_yei(:,:,:) = 0.e0 # endif ! 4.2) Substract the eddy induced velocity ztrtrd(:,:,:) = tra(:,:,:,jn) - ztrtrd(:,:,:) - ztrtrd_xei(:,:,:) - ztrtrd_yei(:,:,:) IF (luttrd(jn)) CALL trd_mod_trc( ztrtrd , jn, jptrc_trd_ldf, kt ) # if defined key_trcldf_eiv IF (luttrd(jn)) CALL trd_mod_trc( ztrtrd_xei, jn, jptrc_trd_xei, kt ) IF (luttrd(jn)) CALL trd_mod_trc( ztrtrd_yei, jn, jptrc_trd_yei, kt ) # endif ENDIF ! ! =========== END DO ! tracer loop ! ! =========== IF( l_trdtrc ) THEN DEALLOCATE( ztrtrd ) # if defined key_trcldf_eiv DEALLOCATE( ztrtrd_xei ) DEALLOCATE( ztrtrd_yei ) # endif ENDIF IF( ln_ctl ) THEN ! print mean trends (used for debugging) WRITE(charout, FMT="('ldf - iso/zps')") CALL prt_ctl_trc_info( charout ) CALL prt_ctl_trc( tab4d=tra, mask=tmask, clinfo=ctrcnm,clinfo2='trd' ) ENDIF END SUBROUTINE trc_ldf_iso_zps #else !!---------------------------------------------------------------------- !! default option : Dummy code NO rotation of the diffusive tensor !!---------------------------------------------------------------------- CONTAINS SUBROUTINE trc_ldf_iso_zps( kt ) ! Empty routine INTEGER, INTENT(in) :: kt WRITE(*,*) 'trc_ldf_iso_zps: You should not have seen this print! error?', kt END SUBROUTINE trc_ldf_iso_zps #endif !!============================================================================== END MODULE trcldf_iso_zps