New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Biblio.bib in trunk/DOC/BETA/Biblio – NEMO

source: trunk/DOC/BETA/Biblio/Biblio.bib @ 781

Last change on this file since 781 was 781, checked in by smasson, 16 years ago

doc update, see ticket:1

  • Property svn:executable set to *
File size: 74.7 KB
Line 
1This file was created with JabRef 2.2.
2Encoding: UTF8
3
4@STRING{AP = {Academic Press}}
5
6@STRING{AREPS = {Annual Review of Earth Planetary Science}}
7
8@STRING{ARFM = {Annual Review of Fluid Mechanics}}
9
10@STRING{ASL = {Atmospheric Science Letters}}
11
12@STRING{AW = {Addison-Wesley}}
13
14@STRING{CD = {Clim. Dyn.}}
15
16@STRING{CP = {Clarendon Press}}
17
18@STRING{CUP = {Cambridge University Press}}
19
20@STRING{D = {Dover Publications}}
21
22@STRING{DAO = {Dyn. Atmos. Ocean}}
23
24@STRING{DSR = {Deep-Sea Res.}}
25
26@STRING{E = {Eyrolles}}
27
28@STRING{GRL = {Geophys. Res. Let.}}
29
30@STRING{I = {Interscience}}
31
32@STRING{JAOT = {J. Atmos. Ocean Tech.}}
33
34@STRING{JAS = {J. Atmos. Sc.}}
35
36@STRING{JC = {J. Climate}}
37
38@STRING{JCP = {J. Comput. Phys.}}
39
40@STRING{JGR = {J. Geophys. Res}}
41
42@STRING{JHUP = {The Johns Hopkins University Press}}
43
44@STRING{JMR = {J. Mar. Res.}}
45
46@STRING{JMS = {J. Mar. Sys.}}
47
48@STRING{JMSJ = {J. Met. Soc. Japan}}
49
50@STRING{JPO = {J. Phys. Oceanogr.}}
51
52@STRING{JWS = {John Wiley and Sons}}
53
54@STRING{M = {Macmillan}}
55
56@STRING{MGH = {McGraw-Hill}}
57
58@STRING{MWR = {Mon. Wea. Rev.}}
59
60@STRING{Nature = {Nat.}}
61
62@STRING{NH = {North-Holland}}
63
64@STRING{Ocean = {Oceanology}}
65
66@STRING{OS = {Ocean Science}}
67
68@STRING{OUP = {Oxford University Press}}
69
70@STRING{PH = {Prentice-Hall}}
71
72@STRING{PO = {Prog. Oceangr.}}
73
74@STRING{PP = {Pergamon Press}}
75
76@STRING{PRSL = {Proceedings of the Royal Society of London}}
77
78@STRING{QJRMS = {Quart J Roy Meteor Soc}}
79
80@STRING{Recherche = {La Recherche}}
81
82@STRING{Science = {Science}}
83
84@STRING{SV = {Springer-Verlag}}
85
86@STRING{Tellus = {Tellus}}
87
88@ARTICLE{Arakawa1966,
89  author = {A. Arakawa},
90  title = {Computational design for long term numerical integration of the equations
91   of fluid motion, two-dimensional incompressible flow, Part. I.},
92  journal = JCP,
93  year = {1966},
94  volume = {I},
95  pages = {119-149},
96  owner = {gm},
97  timestamp = {2007.08.04}
98}
99
100@ARTICLE{Arakawa1990,
101  author = {A. Arakawa and Y.-J. G. Hsu},
102  title = {Energy Conserving and Potential-Enstrophy Dissipating Schemes for
103   the Shallow Water Equations},
104  journal = MWR,
105  year = {1990},
106  volume = {118},
107  pages = {1960--1969
108   
109   },
110  number = {10},
111  abstract = {To incorporate potential enstrophy dissipation into discrete shallow
112   water equations with no or arbitrarily small energy dissipation,
113   a family of finite-difference schemes have been derived with which
114   potential enstrophy is guaranteed to decrease while energy is conserved
115   (when the mass flux is nondivergent and time is continuous). Among
116   this family of schemes, there is a member that minimizes the spurious
117   impact of infinite potential vorticities associated with infinitesimal
118   fluid depth. The scheme is, therefore, useful for problems in which
119   the free surface may intersect with the lower boundary.},
120  date = {October 01, 1990},
121  owner = {gm},
122  timestamp = {2007.08.05}
123}
124
125@ARTICLE{Arakawa1981,
126  author = {Arakawa, Akio and Lamb, Vivian R.},
127  title = {A Potential Enstrophy and Energy Conserving Scheme for the Shallow
128   Water Equations},
129  journal = MWR,
130  year = {1981},
131  volume = {109},
132  pages = {18--36
133   
134   },
135  number = {1},
136  abstract = {To improve the simulation of nonlinear aspects of the flow over steep
137   topography, a potential enstrophy and energy conserving scheme for
138   the shallow water equations is derived. It is pointed out that a
139   family of schemes can conserve total energy for general flow and
140   potential enstrophy for flow with no mass flux divergence. The newly
141   derived scheme is a unique member of this family, that conserves
142   both potential enstrophy and energy for general flow. Comparison
143   by means of numerical experiment with a scheme that conserves (potential)
144   enstrophy for purely horizontal nondivergent flow demonstrated the
145   considerable superiority of the newly derived potential enstrophy
146   and energy conserving scheme, not only in suppressing a spurious
147   energy cascade but also in determining the overall flow regime. The
148   potential enstrophy and energy conserving scheme for a spherical
149   grid is also presented.},
150  date = {January 01, 1981},
151  owner = {gm},
152  timestamp = {2007.08.05}
153}
154
155@ARTICLE{Arhan2006,
156  author = {M. Arhan and A.M. Treguier and  B. Bourles and  S. Michel},
157  year = { 2006 },
158  title = {Diagnosing the annual cycle of the Equatorial Undercurrent in the Atlantic Ocean from a general circulation model},
159  journal =  JPO,
160  volume = { 36},
161  pages = {1502-1522}
162}
163
164
165@ARTICLE{ASSELIN1972,
166  author = {R. Asselin},
167  title = {Frequency Filter for Time Integrations},
168  journal = MWR,
169  year = {1972},
170  volume = {100},
171  pages = {487-490},
172  number = {6},
173  abstract = {A simple filter for controlling high-frequency computational and physical
174   modes arising in time integrations is proposed. A linear analysis
175   of the filter with leapfrog, implicit, and semi-implicit, differences
176   is made. The filter very quickly removes the computational mode and
177   is also very useful in damping high-frequency physical waves. The
178   stability of the leapfrog scheme is adversely affected when a large
179   filter parameter is used, but the analysis shows that the use of
180   centered differences with frequency filter is still more advantageous
181   than the use of the Euler-backward method. An example of the use
182   of the filter in an actual forecast with the meteorological equations
183   is shown.},
184  date = {June 01, 1972},
185  owner = {gm},
186  timestamp = {2007.08.03}
187}
188
189@ARTICLE{Beckmann1998,
190  author = {A. Beckmann},
191  title = {The representation of bottom boundary layer processes in numerical
192   ocean circulation models.},
193  journal = {Ocean modelling and parameterization, E. P. Chassignet and J. Verron
194   (eds.), NATO Science Series, Kluwer Academic Publishers},
195  year = {1998},
196  owner = {gm},
197  timestamp = {2007.08.04}
198}
199
200@ARTICLE{BeckDos1998,
201  author = {A. Beckmann and R. D\"{o}scher},
202  title = {A method for improved representation of dense water spreading over
203   topography in geopotential-coordinate models},
204  journal = JPO,
205  year = {1998},
206  volume = {27},
207  pages = {581-591},
208  owner = {gm},
209  timestamp = {2007.08.04}
210}
211
212@ARTICLE{Beckmann1993,
213  author = {A. Beckmann and D. B. Haidvogel},
214  title = {Numerical Simulation of Flow around a Tall Isolated Seamount. Part
215   I - Problem Formulation and Model Accuracy},
216  journal = {Journal of Physical Oceanography},
217  year = {1993},
218  volume = {23},
219  pages = {1736--1753
220   
221   },
222  number = {8},
223  abstract = {A sigma coordinate ocean circulation model is employed to study flow
224   trapped to a tall seamount in a periodic f-plane channel. In Part
225   I, errors arising from the pressure gradient formulation in the steep
226   topography/strong stratification limit are examined. To illustrate
227   the error properties, a linearized adiabatic version of the model
228   is considered, both with and without forcing, and starting from a
229   resting state with level isopycnals. The systematic discretization
230   errors from the horizontal pressure gradient terms are shown analytically
231   to increase with steeper topography (relative to a fixed horizontal
232   grid) and for stronger stratification (as measured by the Burger
233   number). For an initially quiescent unforced ocean, the pressure
234   gradient errors produce a spurious oscillating current that, at the
235   end of 10 days, is approximately 1 cm s−1 in amplitude. The
236   period of the spurious oscillation (about 0.5 days) is shown to be
237   a consequence of the particular form of the pressure gradient terms
238   in the sigma coordinate system. With the addition of an alongchannel
239   diurnal forcing, resonantly generated seamount-trapped waves are
240   observed to form. Error levels in these solutions are less than those
241   in the unforced cases; spurious time-mean currents are several orders
242   of magnitude less in amplitude than the resonant propagating waves.
243   However, numerical instability is encountered in a wider range of
244   parameter space. The properties of these resonantly generated waves
245   is explored in detail in Part II of this study. Several new formulations
246   of the pressure gradient terms are tested. Two of the formulations—constructed
247   to have additional conservation properties relative to the traditional
248   form of the pressure gradient terms (conservation of JEBAR and conservation
249   of energy)—are found to have error properties generally similar
250   to those of the traditional formulation. A corrected gradient algorithm,
251   based upon vertical interpolation of the pressure field, has a dramatically
252   reduced error level but a much more restrictive range of stable behavior.},
253  date = {August 01, 1993},
254  owner = {gm},
255  timestamp = {2007.08.03}
256}
257
258@ARTICLE{Blanke1993,
259  author = {B. Blanke and P. Delecluse},
260  title = {Low frequency variability of the tropical Atlantic ocean simulated
261   by a general circulation model with mixed layer physics},
262  journal = JPO,
263  year = {1993},
264  volume = {23},
265  pages = {1363-1388}
266}
267
268@ARTICLE{blanketal97,
269  author = {B. Blanke and J. D. Neelin and D. Gutzler},
270  title = {Estimating the effect of stochastic wind forcing on ENSO irregularity},
271  journal = JC,
272  year = {1997},
273  volume = {10},
274  pages = {1473-1486},
275  abstract = {One open question in El Nin˜o–Southern Oscillation (ENSO) simulation
276   and predictability is the role of random
277   
278   forcing by atmospheric variability with short correlation times, on
279   coupled variability with interannual timescales.
280   
281   The discussion of this question requires a quantitative assessment
282   of the stochastic component of the wind stress
283   
284   forcing. Self-consistent estimates of this noise (the stochastic forcing)
285   can be made quite naturally in an empirical
286   
287   atmospheric model that uses a statistical estimate of the relationship
288   between sea surface temperature (SST) and
289   
290   wind stress anomaly patterns as the deterministic feedback between
291   the ocean and the atmosphere. The authors
292   
293   use such an empirical model as the atmospheric component of a hybrid
294   coupled model, coupled to the GFDL
295   
296   ocean general circulation model. The authors define as residual the
297   fraction of the Florida State University wind
298   
299   stress not explained by the empirical atmosphere run from observed
300   SST, and a noise product is constructed by
301   
302   random picks among monthly maps of this residual.
303   
304   The impact of included or excluded noise is assessed with several
305   ensembles of simulations. The model is
306   
307   run in coupled regimes where, in the absence of noise, it is perfectly
308   periodic: in the presence of prescribed
309   
310   seasonal variability, the model is strongly frequency locked on a
311   2-yr period; in annual average conditions it
312   
313   has a somewhat longer inherent ENSO period (30 months). Addition of
314   noise brings an irregular behavior that
315   
316   is considerably richer in spatial patterns as well as in temporal
317   structures. The broadening of the model ENSO
318   
319   spectral peak is roughly comparable to observed. The tendency to frequency
320   lock to subharmonic resonances
321   
322   of the seasonal cycle tends to increase the broadening and to emphasize
323   lower frequencies. An inclination to
324   
325   phase lock to preferred seasons persists even in the presence of noise-induced
326   irregularity. Natural uncoupled
327   
328   atmospheric variability is thus a strong candidate for explaining
329   the observed aperiodicity in ENSO time series.
330   
331   Model–model hindcast experiments also suggest the importance of atmospheric
332   noise in setting limits to ENSO
333   
334   predictability.},
335  pdf = {Blanke_etal_JC97.pdf}
336}
337
338@ARTICLE{Bougeault1989,
339  author = {P. Bougeault and P. Lacarrere},
340  title = {Parameterization of Orography-Induced Turbulence in a Mesobeta--Scale
341   Model},
342  journal = MWR,
343  year = {1989},
344  volume = {117},
345  pages = {1872-1890},
346  number = {8},
347  abstract = {The possibility of extending existing techniques for turbulence parameterization
348   in the planetary boundary layer to attitude, orography-induced turbulence
349   events is examined. Starting from a well-tested scheme, we show that
350   it is possible to generalize the specification method of the length
351   scales, with no deterioration of the scheme performance in the boundary
352   layer. The new scheme is implemented in a two-dimensional version
353   of a limited-area, numerical model used for the simulation of mesobeta-scale
354   atmospheric flows. Three well-known cases of orographically induced
355   turbulence are studied. The comparison with observations and former
356   studies shows a satisfactory behavior of the new scheme.},
357  date = {August 01, 1989},
358  owner = {gm},
359  timestamp = {2007.08.06}
360}
361
362@ARTICLE{Brown1978,
363  author = {J. A. Brown and K. A. Campana},
364  title = {An Economical Time-Differencing System for Numerical Weather Prediction},
365  journal = MWR,
366  year = {1978},
367  volume = {106},
368  pages = {1125-1136},
369  number = {8},
370  month = aug,
371  abstract = {A simple method for integrating the primitive equations is presented
372   which allows for a timestep increment up to twice that of the conventional
373   leapfrog scheme. It consists of a time-averaging operator, which
374   incorporates three consecutive time levels, on the pressure gradient
375   terms in the equations of motion. An attractive feature of the method
376   is its case in programming, since the resulting finite-difference
377   equations can he solved explicitly.Presented here are linear analyses
378   of the method applied to the barotropic and two-layer baroclinic
379   gravity waves. Also presented is an analysis of the method with a
380   time-damping device incorporated, which is an alternative in controlling
381   linearly amplifying computational modes.},
382  owner = {gm},
383  timestamp = {2007.08.05}
384}
385
386@ARTICLE{Bryan1997,
387  author = {K. Bryan},
388  title = {A Numerical Method for the Study of the Circulation of the World
389   Ocean},
390  journal = JCP,
391  year = {1997},
392  volume = {135, 2},
393  owner = {gm},
394  timestamp = {2007.08.10}
395}
396
397@ARTICLE{Bryan1984,
398  author = {K. Bryan},
399  title = {Accelerating the convergence to equilibrium of ocean-climate models},
400  journal = JPO,
401  year = {1984},
402  volume = {14},
403  owner = {gm},
404  timestamp = {2007.08.10}
405}
406
407@ARTICLE{Bryden1973,
408  author = {H. L. Bryden},
409  title = {New polynomials for thermal expansion, adiabatic temperature gradient
410   
411   and potential temperature of sea water},
412  journal = DSR,
413  year = {1973},
414  volume = {20},
415  pages = {401-408},
416  owner = {gm},
417  timestamp = {2007.08.04}
418}
419
420@ARTICLE{Campin2004,
421  author = {J.-M. Campin and A. Adcroft and C. Hill and J. Marshall},
422  title = {Conservation of properties in a free-surface model},
423  journal = {Ocean Modelling},
424  year = {2004},
425  volume = {6, 3-4},
426  pages = {221-244},
427  owner = {gm},
428  timestamp = {2007.08.04}
429}
430
431@ARTICLE{Cox1987,
432  author = {M. Cox},
433  title = {Isopycnal diffusion in a z-coordinate ocean model},
434  journal = {Ocean Modelling},
435  year = {1987},
436  volume = {74},
437  pages = {1-5},
438  owner = {gm},
439  timestamp = {2007.08.03}
440}
441
442@ARTICLE{Dukowicz1994,
443  author = {J. K. Dukowicz and R. D. Smith},
444  title = {Implicit free-surface method for the Bryan-Cox-Semtner ocean model},
445  journal = JGR,
446  year = {1994},
447  volume = {99},
448  pages = {7991-8014},
449  owner = {gm},
450  timestamp = {2007.08.03}
451}
452
453@ARTICLE{Dutay.J.C2004,
454  author = {J. -C. Dutay and P. J. -Baptiste and J. -M. Campin and A. Ishida
455   and E. M. -Reimer and R. J. Matear and A. Mouchet and I. J. Totterdell
456   and Y. Yamanaka and K. Rodgers and G. Madec and J.C. Orr},
457  title = {Evaluation of OCMIP-2 ocean models’ deep circulation
458   
459   with mantle helium-3},
460  journal = {Journal of Marine Systems},
461  year = {2004},
462  pages = {1-22},
463  abstract = {We compare simulations of the injection of mantle helium-3 into the
464   deep ocean from six global coarse resolution models which participated
465   in the Ocean Carbon Model Intercomparison Project (OCMIP). We also
466   discuss the results of a study carried out with one of the models,
467   which examines the effect of the subgrid-scale mixing parameterization.
468   These sensitivity tests provide useful information to interpret the
469   differences among the OCMIP models and between model simulations
470   and the data.
471   
472   We find that the OCMIP models, which parameterize subgrid-scale mixing
473   using an eddy-induced velocity, tend to
474   
475   underestimate the ventilation of the deep ocean, based on diagnostics
476   with d3He. In these models, this parameterization is implemented
477   with a constant thickness diffusivity coefficient. In future simulations,
478   we recommend using such a parameterization with spatially and temporally
479   varying coefficients in order to moderate its effect on stratification.
480   
481   The performance of the models with regard to the formation of AABW
482   confirms the conclusion from a previous evaluation with CFC-11. Models
483   coupled with a sea-ice model produce a substantial bottom water formation
484   in the Southern Ocean that tends to overestimate AABW ventilation,
485   while models that are not coupled with a sea-ice model systematically
486   underestimate the formation of AABW.
487   
488   We also analyze specific features of the deep 3He distribution (3He
489   plumes) that are particularly well depicted in the data and which
490   put severe constraints on the deep circulation. We show that all
491   the models fail to reproduce a correct propagation of these plumes
492   in the deep ocean. The resolution of the models may be too coarse
493   to reproduce the strong and narrow currents in the deep ocean, and
494   the models do not incorporate the geothermal heating that may also
495   contribute to the generation of these currents. We also use the context
496   of OCMIP-2 to explore the potential of mantle helium-3 as a tool
497   to compare and evaluate modeled deep-ocean circulations. Although
498   the source function of mantle helium is known with a rather large
499   uncertainty, we find that the parameterization used for the injection
500   of mantle helium-3 is sufficient to generate realistic results, even
501   in the Atlantic Ocean where a previous pioneering study [J. Geophys.
502   Res. 100 (1995) 3829] claimed this parameterization generates
503   
504   inadequate results. These results are supported by a multi-tracer
505   evaluation performed by considering the simulated distributions of
506   both helium-3 and natural 14C, and comparing the simulated tracer
507   fields with available data.},
508  owner = {sandra},
509  pdf = {Dutay_etal_OCMIP_JMS04.pdf},
510  timestamp = {2006.10.17}
511}
512
513@ARTICLE{Eiseman1980,
514  author = {P. R. Eiseman and A. P. Stone},
515  title = {Conservation lows of fluid dynamics -- A survey},
516  journal = {SIAM Review},
517  year = {1980},
518  volume = {22},
519  pages = {12-27},
520  owner = {gm},
521  timestamp = {2007.08.03}
522}
523
524@PHDTHESIS{Farge1987,
525  author = {M. Farge},
526  title = {Dynamique non lineaire des ondes et des tourbillons dans les equations
527   de Saint Venant},
528  school = {Doctorat es Mathematiques, Paris VI University, 401 pp.},
529  year = {1987},
530  owner = {gm},
531  timestamp = {2007.08.03}
532}
533
534@ARTICLE{Farrow1995,
535  author = {D. E. Farrow and D. P. Stevens},
536  title = {A new tracer advection scheme for Bryan--Cox type ocean general circulation
537   models},
538  journal = JPO,
539  year = {1995},
540  volume = {25},
541  pages = {1731-1741.},
542  owner = {gm},
543  timestamp = {2007.08.04}
544}
545
546@ARTICLE{Fujio1991,
547  author = {S. Fujio and N. Imasato},
548  title = {Diagnostic calculation for circulation and water mass movement in
549   the deep Pacific},
550  journal = JGR,
551  year = {1991},
552  volume = {96},
553  pages = {759-774},
554  month = jan,
555  owner = {gm},
556  timestamp = {2007.08.04}
557}
558
559@ARTICLE{Gargett1984,
560  author = {A. E. Gargett},
561  title = {Vertical eddy diffusivity in the ocean interior},
562  journal = JMR,
563  year = {1984},
564  volume = {42},
565  owner = {gm},
566  timestamp = {2007.08.06}
567}
568
569@ARTICLE{Gaspar1990,
570  author = {P. Gaspar and Y. Gr{\'e}goris and J.-M. Lefevre},
571  title = {A simple eddy kinetic energy model for simulations of the oceanic
572   vertical mixing\: Tests at Station Papa and long-term upper ocean
573   study site},
574  journal = JGR,
575  year = {1990},
576  volume = {95(C9)},
577  owner = {gm},
578  timestamp = {2007.08.06}
579}
580
581@ARTICLE{Gent1990,
582  author = {P. R. Gent and J. C. Mcwilliams},
583  title = {Isopycnal Mixing in Ocean Circulation Models},
584  journal = JPO,
585  year = {1990},
586  volume = {20},
587  pages = {150-155},
588  number = {1},
589  abstract = {A subgrid-scale form for mesoscale eddy mixing on isopycnal surfaces
590   is proposed for use in non-eddy-resolving ocean circulation models.
591   The mixing is applied in isopycnal coordinates to isopycnal layer
592   thickness, or inverse density gradient, as well as to passive scalars,
593   temperature and salinity. The transformation of these mixing forms
594   to physical coordinates is also presented.},
595  date = {January 01, 1990},
596  owner = {gm},
597  timestamp = {2007.08.03}
598}
599
600@ARTICLE{Gerdes1993a,
601  author = {R. Gerdes},
602  title = {A primitive equation ocean circulation model using a general vertical
603   coordinate transformation 1. Description and testing of the model},
604  journal = JGR,
605  year = {1993},
606  volume = {98},
607  owner = {gm},
608  timestamp = {2007.08.03}
609}
610
611@ARTICLE{Gerdes1993b,
612  author = {R. Gerdes},
613  title = {A primitive equation ocean circulation model using a general vertical
614   coordinate transformation 2. Application to an overflow problem},
615  journal = JGR,
616  year = {1993},
617  volume = {98},
618  pages = {14703-14726},
619  owner = {gm},
620  timestamp = {2007.08.03}
621}
622
623@BOOK{Gill1982,
624  title = {Atmosphere-Ocean Dynamics},
625  publisher = {International Geophysics Series, Academic Press, New-York},
626  year = {1982},
627  author = {A. E. Gill}
628}
629
630@ARTICLE{Griffes2005,
631  author = {S. M. Griffes and A. Gnanadesikan and K. W. Dixon and J. P. Dunne
632   and R. Gerdes and M. J. Harrison and A. Rosati and J. L. Russell
633   and B. L. Samuels and M. J. Spelman and M. Winton and R. Zhang},
634  title = {Formulation of an ocean model for global climate simulations},
635  journal = OS,
636  year = {2005},
637  pages = {165–246},
638  abstract = {This paper summarizes the formulation of the ocean component to the
639   Geophysical
640   
641   Fluid Dynamics Laboratory’s (GFDL) coupled climate model used for
642   the 4th IPCC As- Assessment
643   
644   (AR4) of global climate change. In particular, it reviews elements
645   of ocean
646   
647   sessment climate models and how they are pieced together for use in
648   a state-of-the-art coupled 5
649   
650   model. Novel issues are also highlighted, with particular attention
651   given to sensitivity of
652   
653   the coupled simulation to physical parameterizations and numerical
654   methods. Features
655   
656   of the model described here include the following: (1) tripolar grid
657   to resolve the Arctic
658   
659   Ocean without polar filtering, (2) partial bottom step representation
660   of topography to
661   
662   better represent topographically influenced advective and wave processes,
663   (3) more 10
664   
665   accurate equation of state, (4) three-dimensional flux limited tracer
666   advection to reduce
667   
668   overshoots and undershoots, (5) incorporation of regional climatological
669   variability in
670   
671   shortwave penetration, (6) neutral physics parameterization for representation
672   of the
673   
674   pathways of tracer transport, (7) staggered time stepping for tracer
675   conservation and
676   
677   numerical eciency, (8) anisotropic horizontal viscosities for representation
678   of equato- 15
679   
680   rial currents, (9) parameterization of exchange with marginal seas,
681   (10) incorporation
682   
683   of a free surface that accomodates a dynamic ice model and wave propagation,
684   (11)
685   
686   transport of water across the ocean free surface to eliminate unphysical
687   “virtual tracer
688   
689   flux” methods, (12) parameterization of tidal mixing on continental
690   shelves.},
691  owner = {sandra},
692  pdf = {Griffies_al_OSD05.pdf},
693  timestamp = {2007.01.25}
694}
695
696@BOOK{Griffies2004,
697  title = {Fundamentals of ocean climate models},
698  publisher = {Princeton University Press, 434pp},
699  year = {2004},
700  author = {S. M. Griffies},
701  owner = {gm},
702  timestamp = {2007.08.05}
703}
704
705@ARTICLE{Griffies1998,
706  author = {S. M. Griffies and A. Gnanadesikan and R. C. Pacanowski and V. D.
707   Larichev and J. K. Dukowicz and R. D. Smith},
708  title = {Isoneutral Diffusion in a z-Coordinate Ocean Model},
709  journal = JPO,
710  year = {1998},
711  volume = {28},
712  pages = {805-830},
713  number = {5},
714  abstract = {This paper considers the requirements that must be satisfied in order
715   to provide a stable and physically based isoneutral tracer diffusion
716   scheme in a z-coordinate ocean model. Two properties are emphasized:
717   1) downgradient orientation of the diffusive fluxes along the neutral
718   directions and 2) zero isoneutral diffusive flux of locally referenced
719   potential density. It is shown that the Cox diffusion scheme does
720   not respect either of these properties, which provides an explanation
721   for the necessity to add a nontrivial background horizontal diffusion
722   to that scheme. A new isoneutral diffusion scheme is proposed that
723   aims to satisfy the stated properties and is found to require no
724   horizontal background diffusion.},
725  date = {May 01, 1998},
726  owner = {gm},
727  timestamp = {2007.08.05}
728}
729
730@ARTICLE{Griffies2001,
731  author = {S. M. Griffies and R. C. Pacanowski and M. Schmidt and V. Balaji},
732  title = {Tracer Conservation with an Explicit Free Surface Method for z-Coordinate
733   Ocean Models},
734  journal = MWR,
735  year = {2001},
736  volume = {129},
737  pages = {1081-1098},
738  number = {5},
739  abstract = {This paper details a free surface method using an explicit time stepping
740   scheme for use in z-coordinate ocean models. One key property that
741   makes the method especially suitable for climate simulations is its
742   very stable numerical time stepping scheme, which allows for the
743   use of a long density time step, as commonly employed with coarse-resolution
744   rigid-lid models. Additionally, the effects of the undulating free
745   surface height are directly incorporated into the baroclinic momentum
746   and tracer equations. The novel issues related to local and global
747   tracer conservation when allowing for the top cell to undulate are
748   the focus of this work. The method presented here is quasi-conservative
749   locally and globally of tracer when the baroclinic and tracer time
750   steps are equal. Important issues relevant for using this method
751   in regional as well as large-scale climate models are discussed and
752   illustrated, and examples of scaling achieved on parallel computers
753   provided.},
754  date = {May 01, 2001},
755  owner = {gm},
756  timestamp = {2007.08.04}
757}
758
759@ARTICLE{Guily2001,
760  author = {E. Guilyardi and G. Madec and L. Terray},
761  title = {The role of lateral ocean physics in the upper ocean thermal balance
762   of a coupled ocean-atmosphere GCM},
763  journal = CD,
764  year = {2001},
765  volume = {17},
766  pages = {589-599},
767  number = {8},
768  pdf = {/home/ericg/TeX/Papers/Published_pdfs/Guilyardi_al_CD01.pdf}
769}
770
771@BOOK{Haltiner1980,
772  title = {Numerical prediction and dynamic meteorology},
773  publisher = {John Wiley {\&} Sons Eds., second edition, 477pp},
774  year = {1980},
775  author = {G. J. Haltiner and R. T. Williams},
776  owner = {gm},
777  timestamp = {2007.08.03}
778}
779
780@ARTICLE{Haney1991,
781  author = {R. L. Haney},
782  title = {On the Pressure Gradient Force over Steep Topography in Sigma Coordinate
783   Ocean Models},
784  journal = JPO,
785  year = {1991},
786  volume = {21},
787  pages = {610--619
788   
789   },
790  number = {4},
791  abstract = {The error in computing the pressure gradient force near steep topography
792   using terms following (σ) coordinates is investigated in an
793   ocean model using the family of vertical differencing schemes proposed
794   by Arakawa and Suarez. The truncation error is estimated by substituting
795   known buoyancy profiles into the finite difference hydrostatic and
796   pressure gradient terms. The error due to “hydrostatic inconsistency,”
797   which is not simply a space truncation error, is also documented.
798   The results show that the pressure gradient error is spread throughout
799   the water column, and it is sensitive to the vertical resolution
800   and to the placement of the grid points relative to the vertical
801   structure of the buoyancy field being modeled. Removing a reference
802   state, as suggested for the atmosphere by Gary, reduces the truncation
803   error associated with the two lowest vertical modes by a factor of
804   2 to 3. As an example, the error in computing the pressure gradient
805   using a standard 10-level primitive equation model applied to buoyancy
806   profiles and topographic slopes typical of the California Current
807   region corresponds to a false geostrophic current of the order of
808   10–12 cm s−1. The analogous error in a hydrostatically
809   consistent 30-level model with the reference state removed is about
810   an order of magnitude smaller.},
811  date = {April 01, 1991},
812  owner = {gm},
813  timestamp = {2007.08.03}
814}
815
816@ARTICLE{Hsu1990,
817  author = {Hsu, Yueh-Jiuan G. and Arakawa, Akio},
818  title = {Numerical Modeling of the Atmosphere with an Isentropic Vertical
819   Coordinate},
820  journal = MWR,
821  year = {1990},
822  volume = {118},
823  pages = {1933--1959
824   
825   },
826  number = {10},
827  abstract = {In constructing a numerical model of the atmosphere, we must choose
828   an appropriate vertical coordinate. Among the various possibilities,
829   isentropic vertical coordinates such as the θ-coordinate seem
830   to have the greatest potential, in spite of the technical difficulties
831   in treating the intersections of coordinate surfaces with the lower
832   boundary. The purpose of this paper is to describe the θ-coordinate
833   model we have developed and to demonstrate its potential through
834   simulating the nonlinear evolution of a baroclinic wave.In the model
835   we have developed, vertical discretization maintains important integral
836   constraints, such as conservation of the angular momentum and total
837   energy. In treating the intersections of coordinate surfaces with
838   the lower boundary, we have followed the massless-layer approach
839   in which the intersecting coordinate surfaces are extended along
840   the boundary by introducing massless layers. Although this approach
841   formally eliminates the intersection problem, it raises other computational
842   problems. Horizontal discretization of the continuity and momentum
843   equations in the model has been carefully designed to overcome these
844   problems.Selected results from a 10-day integration with the 25-layer,
845   β-plane version of the model are presented. It seems that the
846   model can simulate the nonlinear evolution of a baroclinic wave and
847   associated dynamical processes without major computational difficulties.},
848  date = {October 01, 1990},
849  owner = {gm},
850  timestamp = {2007.08.05}
851}
852
853@ARTICLE{JackMcD1995,
854  author = {D. R. Jackett and T. J. McDougall},
855  title = {Minimal adjustment of hydrographic data to achieve static stability},
856  journal = JAOT,
857  year = {1995},
858  volume = {12},
859  pages = {381-389},
860  owner = {gm},
861  timestamp = {2007.08.04}
862}
863
864@BOOK{Jerlov1968,
865  title = {Optical Oceanography},
866  publisher = {194pp},
867  year = {1968},
868  author = {N. G. Jerlov},
869  owner = {gm},
870  timestamp = {2007.08.04}
871}
872
873@INPROCEEDINGS{Killworth1989,
874  author = {P. D. Killworth},
875  title = {On the parameterization of deep convection in ocean models},
876  booktitle = {Parameterization of small-scale processes},
877  year = {1989},
878  editor = {Hawaiian winter workshop},
879  month = {January 17-20},
880  organization = {University of Hawaii at Manoa},
881  owner = {gm},
882  timestamp = {2007.08.06}
883}
884
885@ARTICLE{Killworth1991,
886  author = {Killworth, P. D. and Stainforth, D. and Webb, D. J. and Paterson,
887   S. M.},
888  title = {The Development of a Free-Surface Bryan-Cox-Semtner Ocean Model},
889  journal = JPO,
890  year = {1991},
891  volume = {21},
892  pages = {1333--1348},
893  number = {9},
894  abstract = {A version of the Bryan–Cox–Semtner numerical ocean general
895   circulation model, adapted to include a free surface, is described.
896   The model is designed for the following uses: tidal studies
897   (a tidal option is explicitly included); assimilation of altimetric
898   data (since the surface elevation is now a prognostic variable);
899   and in situations where accurate relaxation to obtain the streamfunction
900   in the original model is too time consuming. Comparison is made between
901   a 300-year run of the original model and the free-surface version,
902   using a very coarse North Atlantic calculation as the basis. The
903   results are very similar, differing only in the streamfunction over
904   topography; this is to be expected, since the treatment of topographic
905   torques on the barotropic flow differs because of the nature of the
906   modifications.},
907  date = {September 01, 1991},
908  owner = {gm},
909  timestamp = {2007.08.03}
910}
911
912@ARTICLE{Killworth1992,
913  author = {P. D. Killworth},
914   year = {1992},
915  title = {An equivalent-barotropic mode in the fine resolution Antarctic model},
916  journal = JPO,
917  volume = {22},
918  pages = {1379-1387}
919}.
920
921
922@ARTICLE{Kolmogorov1942,
923  author = {A. N. Kolmogorov},
924  title = {The equation of turbulent motion in an incompressible fluid},
925  journal = {Izv. Akad. Nauk SSSR, Ser. Fiz.},
926  year = {1942},
927  volume = {6},
928  pages = {56-58},
929  owner = {gm},
930  timestamp = {2007.08.06}
931}
932
933@PHDTHESIS{Levy1996,
934  author = {M. L\'{e}vy},
935  title = {Mod\'{e}lisation des processus biog\'{e}ochimiques en M\'{e}diterran\'{e}e
936   nord-occidentale. Cycle saisonnier et variabilit\'{e} m\'{e}so\'{e}chelle},
937  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 207pp},
938  year = {1996},
939  owner = {gm},
940  timestamp = {2007.08.04}
941}
942
943@ARTICLE{Levy2001,
944  author = {M. L\'{e}vy and A. Estubier and G Madec},
945  title = {Choice of an advection scheme for biogeochemical models},
946  journal = GRL,
947  year = {2001},
948  volume = {28},
949  owner = {gm},
950  timestamp = {2007.08.04}
951}
952
953@ARTICLE{Levy1998,
954  author = {M. L\'{e}vy and L. M\'{e}mery and G. Madec},
955  title = {The onset of a bloom after deep winter convection in the Northwestern
956   Mediterranean Sea: mesoscale
957   
958   process study with a primitive equation model},
959  journal = JMS,
960  year = {1998},
961  volume = {16/1-2},
962  owner = {gm},
963  timestamp = {2007.08.10}
964}
965
966@BOOK{LargeYeager2004,
967  title = {Diurnal to decadal global forcing for ocean and sea-ice models: the
968   data sets and flux climatologies},
969  publisher = {NCAR Technical Note, NCAR/TN-460+STR, CGD Division of the National
970   Center for Atmospheric Research},
971  year = {2004},
972  author = {W. Large and S. Yeager},
973  owner = {gm},
974  timestamp = {2007.08.06}
975}
976
977@ARTICLE{large1994,
978  author = {W. G. Large and J. C. McWilliams and S. C. Doney},
979  title = {Oceanic vertical mixing - a review and a model with a nonlocal boundary
980   layer parameterization},
981  journal = {Reviews of Geophysics},
982  year = {1994},
983  volume = {32},
984  pages = {363-404},
985  doi = {10.1029/94RG01872},
986  owner = {gm},
987  timestamp = {2007.08.03}
988}
989
990@PHDTHESIS{Lazar1997,
991  author = {A. Lazar},
992  title = {La branche froide de la circulation thermohaline - sensibilit\'{e}
993   \`{a} la diffusion turbulente dans un mod\`{e}le de circulation g\'{e}n\'{e}rale
994   id\'{e}alis\'{e}e},
995  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 200pp},
996  year = {1997},
997  owner = {gm},
998  timestamp = {2007.08.06}
999}
1000
1001@ARTICLE{Lazar1999,
1002  author = {A. Lazar and G. Madec and P. Delecluse},
1003  title = {The Deep Interior Downwelling, the Veronis Effect, and Mesoscale
1004   Tracer Transport Parameterizations in an OGCM},
1005  journal = JPO,
1006  year = {1999},
1007  volume = {29},
1008  pages = {2945-2961},
1009  number = {11},
1010  abstract = {Numerous numerical simulations of basin-scale ocean circulation display
1011   a vast interior downwelling and a companion intense western boundary
1012   layer upwelling at midlatitude below the thermocline. These features,
1013   related to the so-called Veronis effect, are poorly rationalized
1014   and depart strongly from the classical vision of the deep circulation
1015   where upwelling is considered to occur in the interior. Furthermore,
1016   they significantly alter results of ocean general circulation models
1017   (OGCMs) using horizontal Laplacian diffusion. Recently, some studies
1018   showed that the parameterization for mesoscale eddy effects formulated
1019   by Gent and McWilliams allows integral quantities like the streamfunction
1020   and meridional heat transport to be free of these undesired effects.
1021   In this paper, an idealized OGCM is used to validate an analytical
1022   rationalization of the processes at work and help understand the
1023   physics. The results show that the features associated with the Veronis
1024   effect can be related quantitatively to three different width scales
1025   that characterize the baroclinic structure of the deep western boundary
1026   current. In addition, since one of these scales may be smaller than
1027   the Munk barotropic layer, usually considered to determine the minimum
1028   resolution and horizontal viscosity for numerical models, the authors
1029   recommend that it be taken into account. Regarding the introduction
1030   of the new parameterization, diagnostics in terms of heat balances
1031   underline some interesting similarities between local heat fluxes
1032   by eddy-induced velocities and horizontal diffusion at low and midlatitudes
1033   when a common large diffusivity (here 2000 m2 s−1) is used.
1034   The near-quasigeostrophic character of the flow explains these results.
1035   As a consequence, the response of the Eulerian-mean circulation is
1036   locally similar for runs using either of the two parameterizations.
1037   However, it is shown that the advective nature of the eddy-induced
1038   heat fluxes results in a very different effective circulation, which
1039   is the one felt by tracers.},
1040  date = {November 01, 1999},
1041  owner = {gm},
1042  timestamp = {2007.08.06}
1043}
1044
1045@ARTICLE{Leonard1991,
1046  author = {B. P. Leonard},
1047  title = {The ULTIMATE conservative difference scheme applied to unsteady one--dimensional
1048   advection},
1049  journal = {Computer Methods in Applied Mechanics and Engineering},
1050  year = {1991},
1051  pages = {17-74},
1052  owner = {gm},
1053  timestamp = {2007.08.04}
1054}
1055
1056@TECHREPORT{Leonard1988,
1057  author = {B. P. Leonard},
1058  title = {Universal limiter for transient interpolation modelling of the advective
1059   transport equations},
1060  institution = {Technical Memorandum TM-100916 ICOMP-88-11, NASA},
1061  year = {1988},
1062  owner = {gm},
1063  timestamp = {2007.08.04}
1064}
1065
1066@ARTICLE{Leonard1979,
1067  author = {B. P. Leonard},
1068  title = {A stable and accurate convective modelling procedure based on quadratic
1069   upstream interpolation},
1070  journal = {Computer Methods in Applied Mechanics and Engineering},
1071  year = {1979},
1072  volume = {19},
1073  pages = {59-98},
1074  month = jun,
1075  owner = {gm},
1076  timestamp = {2007.08.04}
1077}
1078
1079@TECHREPORT{Levier2007,
1080  author = {B. Levier and A.-M. Tr\'{e}guier and G. Madec and V. Garnier},
1081  title = {Free surface and variable volume in the NEMO code},
1082  institution = {MERSEA MERSEA IP report WP09-CNRS-STR-03-1A, 47pp, available on the
1083   NEMO web site},
1084  year = {2007},
1085  owner = {gm},
1086  timestamp = {2007.08.03}
1087}
1088
1089@BOOK{levitus82,
1090  title = {Climatological Atlas of the world ocean},
1091  publisher = {NOAA professional paper No. 13, 174pp},
1092  year = {1982},
1093  author = {S Levitus },
1094  note = {173 p.}
1095}
1096
1097@TECHREPORT{Lott1989,
1098  author = {F. Lott and G. Madec},
1099  title = {Implementation of bottom topography in the Ocean General Circulation
1100   Model OPA of the LODYC: formalism and experiments.},
1101  institution = {LODYC, France, 36pp.},
1102  year = {1989},
1103  number = {3},
1104  owner = {gm},
1105  timestamp = {2007.08.03}
1106}
1107
1108@ARTICLE{Lott1990,
1109  author = {F. Lott and G. Madec and J. Verron},
1110  title = {Topographic experiments in an Ocean General Circulation Model},
1111  journal = {Ocean Modelling},
1112  year = {1990},
1113  volume = {88},
1114  pages = {1-4},
1115  owner = {gm},
1116  timestamp = {2007.08.03}
1117}
1118
1119@PHDTHESIS{Madec1990,
1120  author = {G. Madec},
1121  title = {La formation d'eau profonde et son impact sur la circulation r\'{e}gionale
1122   en M\'{e}diterran\'{e}e Occidentale - une approche num\'{e}rique},
1123  school = {Universit\'{e}Pierre et Marie Curie, Paris,  France, 194pp.},
1124  year = {1990},
1125  owner = {gm},
1126  timestamp = {2007.08.10}
1127}
1128
1129@ARTICLE{Madec1991a,
1130  author = {G. Madec and M. Chartier and M. Cr\'{e}pon},
1131  title = {Effect of thermohaline forcing variability on deep water formation
1132   in the Northwestern Mediterranean Sea - a high resulution three-dimensional
1133   study},
1134  journal = DAO,
1135  year = {1991},
1136  owner = {gm},
1137  timestamp = {2007.08.06}
1138}
1139
1140@ARTICLE{Madec1991b,
1141  author = {G. Madec and M. Chartier and P. Delecluse and M. Cr\'{e}pon},
1142  title = {A three-dimensional numerical study of deep water formation in the
1143   
1144   
1145   Northwestern Mediterranean Sea .},
1146  journal = JPO,
1147  year = {1991},
1148  volume = {21},
1149  owner = {gm},
1150  timestamp = {2007.08.06}
1151}
1152
1153@INBOOK{Madec1991c,
1154  chapter = {Thermohaline-driven deep water formation in the Northwestern Mediterranean
1155   Sea},
1156  title = {Deep convection and deep water formation in the oceans},
1157  publisher = {Elsevier Oceanographic Series},
1158  year = {1991},
1159  author = {G. Madec and M. Cr\'{e}pon},
1160  owner = {gm},
1161  timestamp = {2007.08.06}
1162}
1163
1164@ARTICLE{Madec1997,
1165  author = {G. Madec and P. Delecluse},
1166  title = {The OPA/ARPEGE and OPA/LMD Global Ocean-Atmosphere Coupled Model},
1167  journal = {Int. WOCE Newsletter},
1168  year = {1997},
1169  volume = {26},
1170  pages = {12-15},
1171  owner = {gm},
1172  timestamp = {2007.08.06}
1173}
1174
1175@TECHREPORT{Madec1998,
1176  author = {G. Madec and P. Delecluse and M. Imbard and C. Levy},
1177  title = {OPA 8 Ocean General Circulation Model - Reference Manual},
1178  institution = {LODYC/IPSL Note 11},
1179  year = {1998}
1180}
1181
1182@ARTICLE{MadecImb1996,
1183  author = {G Madec and M Imbard},
1184  title = {A global ocean mesh to overcome the north pole singularity},
1185  journal = CD,
1186  year = {1996},
1187  volume = {12},
1188  pages = {381-388}
1189}
1190
1191@ARTICLE{Madec1996,
1192  author = {G. Madec and F. Lott and P. Delecluse and M. Cr\'{e}pon},
1193  title = {Large-Scale Preconditioning of Deep-Water Formation in the Northwestern
1194   Mediterranean Sea},
1195  journal = JPO,
1196  year = {1996},
1197  volume = {26},
1198  pages = {1393-1408},
1199  number = {8},
1200  month = aug,
1201  abstract = {The large-scale processes preconditioning the winter deep-water formation
1202   in the northwestern Mediterranean Sea are investigated with a primitive
1203   equation numerical model where convection is parameterized by a non-penetrative
1204   convective adjustment algorithm. The ocean is forced by momentum
1205   and buoyancy fluxes that have the gross features of mean winter forcing
1206   found in the MEDOC area. The wind-driven barotropic circulation appears
1207   to be a major ingredient of the preconditioning phase of deep-water
1208   formation. After three months, the ocean response is dominated by
1209   a strong barotropic cyclonic vortex located under the forcing area,
1210   which fits the Sverdrup balance away from the northern coast. In
1211   the vortex center, the whole water column remains trapped under the
1212   forcing area all winter. This trapping enables the thermohaline forcing
1213   to drive deep-water formation efficiently. Sensitivity studies show
1214   that, β effect and bottom topography play a paramount role and
1215   confirm that deep convection occurs only in areas that combine a
1216   strong surface thermohaline forcing and a weak barotropic advection
1217   so that water masses are submitted to the negative buoyancy fluxes
1218   for a much longer time. In particular, the impact of the Rhône
1219   Deep Sea Fan on the barotropic circulation dominates the β effect:
1220   the barotropic flow is constrained to follow the bathymetric contours
1221   and the cyclonic vortex is shifted southward so that the fluid above
1222   the fan remains quiescent. Hence, buoyancy fluxes trigger deep convection
1223   above the fan in agreement with observations. The selection of the
1224   area of deep-water formation through the defection of the barotropic
1225   circulation by the topography seems a more efficient mechanism than
1226   those associated with the wind- driven barotropic vortex. This is
1227   due to its permanency, while the latter may be too sensitive to time
1228   and space variations of the forcing.},
1229  owner = {gm},
1230  timestamp = {2007.08.03}
1231}
1232
1233@ARTICLE{Madec1988,
1234  author = {G. Madec and C. Rahier and M. Chartier},
1235  title = {A comparison of two-dimensional elliptic solvers for the barotropic
1236   streamfunction in a multilevel OGCM},
1237  journal = {Ocean Modelling},
1238  year = {1988},
1239  volume = {78},
1240  owner = {gm},
1241  timestamp = {2007.08.10}
1242}
1243
1244@ARTICLE{Maltrud1998,
1245  author = {M. E. Maltrud and R. D. Smith and A. J. Semtner and R. C. Malone},
1246  title = {Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric
1247   winds},
1248  journal = JGR,
1249  year = {1998},
1250  volume = {103(C13)},
1251  pages = {30,825-30,854},
1252  owner = {gm},
1253  timestamp = {2007.08.05}
1254}
1255
1256@PHDTHESIS{MartiTh1992,
1257  author = {O. Marti},
1258  title = {Etude de l'oc\'{e}an mondial : mod\'{e}lisation de la circulation
1259   et du transport de traceurs anthropog\'{e}niques},
1260  school = {Universit\'{e} Pierre et Marie Curie, Paris, France, 201pp},
1261  year = {1992},
1262  owner = {gm},
1263  timestamp = {2007.08.04}
1264}
1265
1266@ARTICLE{Marti1992,
1267  author = {O. Marti and G. Madec and P. Delecluse},
1268  title = {Comment on "Net diffusivity in ocean general circulation models with
1269   nonuniform grids" by F. L. Yin and I. Y. Fung},
1270  journal = JGR,
1271  year = {1992},
1272  volume = {97},
1273  pages = {12763-12766},
1274  month = aug,
1275  owner = {gm},
1276  timestamp = {2007.08.03}
1277}
1278
1279@ARTICLE{McDougall1987,
1280  author = {T. J. McDougall},
1281  title = {Neutral Surfaces},
1282  journal = {Journal of Physical Oceanography},
1283  year = {1987},
1284  volume = {17},
1285  pages = {1950-1964},
1286  number = {11},
1287  abstract = {Scalar properties in the ocean are stirred (and subsequently mixed)
1288   rather efficiently by mesoscale eddies and two-dimensional turbulence
1289   along “neutral surfaces”, defined such that when water
1290   parcels are moved small distances in the neutral surface, they experience
1291   no buoyant restoring forces. By contrast, work would have to be done
1292   on a moving fluid parcel in order to keep it on a potential density
1293   surface. The differences between neutral surfaces and potential density
1294   surfaces are due to the variation of α/β with pressure
1295   (where α is the thermal expansion coefficient and β is
1296   the saline contraction coefficient). By regarding the equation of
1297   state of seawater as a function of salinity, potential temperature,
1298   and pressure, rather than in terms of salinity, temperature, and
1299   pressure, it is possible to quantify the differences between neutral
1300   surfaces and potential density surfaces. In particular, the spatial
1301   gradients of scalar properties (e.g., S, θ, tritium or potential
1302   vorticity) on a neutral surface can be quite different to the corresponding
1303   gradients in a potential density surface. For example, at a potential
1304   temperature of 4°C and a pressure of 1000 db, the lateral gradient
1305   of potential temperature in a potential density surface (referenced
1306   to sea level) is too large by between 50% and 350% (depending
1307   on the stability ratio Rp of the water column) compared with the
1308   physically relevant gradient of potential temperature on the neutral
1309   surface. Three-examples of neutral surfaces are presented, based
1310   on the Levitus atlas of the North Atlantic.},
1311  date = {November 01, 1987},
1312  owner = {gm},
1313  timestamp = {2007.08.04}
1314}
1315
1316@ARTICLE{Merryfield1999,
1317  author = {W. J. Merryfield and G. Holloway and A. E. Gargett},
1318  title = {A Global Ocean Model with Double-Diffusive Mixing},
1319  journal = JPO,
1320  year = {1999},
1321  volume = {29},
1322  pages = {1124-1142},
1323  number = {6},
1324  abstract = {A global ocean model is described in which parameterizations of diapycnal
1325   mixing by double-diffusive fingering and layering are added to a
1326   stability-dependent background turbulent diffusivity. Model runs
1327   with and without double-diffusive mixing are compared for annual-mean
1328   and seasonally varying surface forcing. Sensitivity to different
1329   double-diffusive mixing parameterizations is considered. In all cases,
1330   the locales and extent of salt fingering (as diagnosed from buoyancy
1331   ratio Rρ) are grossly comparable to climatology, although fingering
1332   in the models tends to be less intense than observed. Double-diffusive
1333   mixing leads to relatively minor changes in circulation but exerts
1334   significant regional influences on temperature and salinity.},
1335  date = {June 01, 1999},
1336  owner = {gm},
1337  timestamp = {2007.08.06}
1338}
1339
1340@ARTICLE{Murray1996,
1341  author = {R. J. Murray},
1342  title = {Explicit Generation of Orthogonal Grids for Ocean Models},
1343  journal = JCP,
1344  year = {1996},
1345  volume = {126},
1346  pages = {251-273},
1347  number = {2},
1348  month = {July},
1349  owner = {gm},
1350  timestamp = {2007.08.03}
1351}
1352
1353@PHDTHESIS{OlivierPh2001,
1354  author = {F. Olivier},
1355  title = {Etude de l'activit\'{e} biologique et de la circulation oc\'{e}anique
1356   dans un jet g\'{e}ostrophique: le front Alm\'{e}ria-Oran},
1357  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1358  year = {2001},
1359  owner = {gm},
1360  timestamp = {2007.08.14}
1361}
1362
1363@ARTICLE{PacPhil1981,
1364  author = {R.C. Pacanowski and S.G.H. Philander},
1365  title = {Parameterization of Vertical Mixing in Numerical Models of Tropical
1366   Oceans},
1367  journal = JPO,
1368  year = {1981},
1369  volume = {11},
1370  pages = {1443-1451},
1371  number = {11},
1372  abstract = {Measurements indicate that mixing processes are intense in the surface
1373   layers of the ocean but weak below the thermocline, except for the
1374   region below the core of the Equatorial Undercurrent where vertical
1375   temperature gradients are small and the shear is large. Parameterization
1376   of these mixing processes by means of coefficients of eddy mixing
1377   that are Richardson-number dependent, leads to realistic simulations
1378   of the response of the equatorial oceans to different windstress
1379   patterns. In the case of eastward winds results agree well with measurements
1380   in the Indian Ocean. In the case of westward winds it is of paramount
1381   importance that the nonzero heat flux into the ocean be taken into
1382   account. This beat flux stabilizes the upper layers and reduces the
1383   intensity of the mixing, especially in the cast. With an appropriate
1384   surface boundary condition, the results are relatively insensitive
1385   to values assigned to constants in the parameterization formula.},
1386  date = {November 01, 1981},
1387  owner = {gm},
1388  timestamp = {2007.08.03}
1389}
1390
1391@ARTICLE{Paulson1977,
1392  author = {C. A. Paulson and J. J. Simpson},
1393  title = {Irradiance Measurements in the Upper Ocean},
1394  journal = JPO,
1395  year = {1977},
1396  volume = {7},
1397  pages = {952-956},
1398  number = {6},
1399  abstract = {Observations were made of downward solar radiation as a function of
1400   depth during an experiment in the North Pacific (35°N, 155°W).
1401   The irradiance meter employed was sensitive to solar radiation of
1402   wavelength 400–1000 nm arriving from above at a horizontal
1403   surface. Because of selective absorption of the short and long wavelengths,
1404   the irradiance decreases much faster than exponential in the upper
1405   few meters, falling to one-third of the incident value between 2
1406   and 3 m depth. Below 10 m the decrease was exponential at a rate
1407   characteristic of moderately clear water of Type IA. Neglecting one
1408   case having low sun altitude, the observations are well represented
1409   by the expression I/I0=Rez/ζ1+(1−R)ezζ2,
1410   where I is the irradiance at depth −z, I0 is the irradiance
1411   at the surface less reflected solar radiation, R=0.62, ζ1
1412   and ζ2 are attenuation lengths equal to 1.5 and 20 m, respectively,
1413   and z is the vertical space coordinate, positive upward with the
1414   origin at mean sea level. The depth at which the irradiance falls
1415   to 10% of its surface value is nearly the same as observations
1416   of Secchi depth when cases with high wind speed or low solar altitude
1417   are neglected. Parameters R, ζ1, and ζ2 are computed for
1418   the entire range of oceanic water types.},
1419  date = {November 01, 1977},
1420  owner = {gm},
1421  timestamp = {2007.08.04}
1422}
1423
1424@ARTICLE{Phillips1959,
1425  author = {R. S.  Phillips},
1426  title = {Dissipative Operators and Hyperbolic Systems of Partial Differential
1427   Equations},
1428  journal = {Transactions of the American Mathematical Society},
1429  year = {1959},
1430  volume = {90(2)},
1431  pages = {193-254},
1432  doi = {doi:10.2307/1993202},
1433  owner = {gm},
1434  timestamp = {2007.08.10}
1435}
1436
1437@ARTICLE{Reverdin1991,
1438  author = {G. Reverdin and P. Delecluse and C. L\'{e}vy and P. Andrich and A.
1439   Morli\`{e}re and J. M. Verstraete},
1440  title = {The near surface tropical Atlantic in 1982-1984 : results from a
1441   numerical simulation and a data analysis},
1442  journal = PO,
1443  year = {1991},
1444  volume = {27},
1445  pages = {273-340},
1446  owner = {gm},
1447  timestamp = {2007.08.04}
1448}
1449
1450@BOOK{Richtmyer1967,
1451  title = {Difference methods for initial-value problems},
1452  publisher = {Interscience Publisher, Second Edition, 405pp},
1453  year = {1967},
1454  author = {R. D. Richtmyer and K. W. Morton},
1455  owner = {gm},
1456  timestamp = {2007.08.04}
1457}
1458
1459@ARTICLE{Robert1966,
1460  author = {A. J. Robert},
1461  title = {The integration of a Low order spectral form of the primitive meteorological
1462   equations},
1463  journal = {J. Meteo. Soc. Japan},
1464  year = {1966},
1465  volume = {44, 2},
1466  owner = {gm},
1467  timestamp = {2007.08.04}
1468}
1469
1470@ARTICLE{Roullet2000,
1471  author = {G. Roullet and G. Madec},
1472  title = {salt conservation, free surface, and varying levels: a new formulation
1473   for ocean general circulation models},
1474  journal = JGR,
1475  year = {2000},
1476  volume = {105},
1477  pages = {23,927-23,942},
1478  owner = {sandra},
1479  pdf = {Roullet_Madec_JGR00.pdf},
1480  timestamp = {2007.03.22}
1481}
1482
1483@ARTICLE{Sadourny1975,
1484  author = {R. Sadourny},
1485  title = {The Dynamics of Finite-Difference Models of the Shallow-Water Equations},
1486  journal = JAS,
1487  year = {1975},
1488  volume = {32},
1489  pages = {680-689},
1490  number = {4},
1491  abstract = {Two simple numerical models of the shallow-water equations identical
1492   in all respects but for their con-servation properties have been
1493   tested regarding their internal mixing processes. The experiments
1494   show that violation of enstrophy conservation results in a spurious
1495   accumulation of rotational energy in the smaller scales, reflected
1496   by an unrealistic increase of enstrophy, which ultimately produces
1497   a finite rate of energy dissipation in the zero viscosity limit,
1498   thus violating the well-known dynamics of two-dimensional flow. Further,
1499   the experiments show a tendency to equipartition of the kinetic energy
1500   of the divergent part of the flow in the inviscid limit, suggesting
1501   the possibility of a divergent energy cascade in the physical system,
1502   as well as a possible influence of the energy mixing on the process
1503   of adjustment toward balanced flow.},
1504  date = {April 01, 1975},
1505  owner = {gm},
1506  timestamp = {2007.08.05}
1507}
1508
1509@ARTICLE{Sarmiento1982,
1510  author = {J. L. Sarmiento and K. Bryan},
1511  title = {Ocean transport model for the North Atlantic},
1512  journal = JGR,
1513  year = {1982},
1514  volume = {87},
1515  pages = {394-409},
1516  owner = {gm},
1517  timestamp = {2007.08.04}
1518}
1519
1520@ARTICLE{Sacha2005,
1521  author = {A. F. Shchepetkin and J. C. McWilliams},
1522  title = {The regional oceanic modeling system (ROMS) - a split-explicit, free-surface,
1523   topography-following-coordinate oceanic modelr},
1524  journal = {Ocean Modelling},
1525  year = {2005},
1526  volume = {9, 4},
1527  pages = {347-404},
1528  owner = {gm},
1529  timestamp = {2007.08.04}
1530}
1531
1532@ARTICLE{Sacha2003,
1533  author = {A. F. Shchepetkin and J. C. McWilliams},
1534  title = {A method for computing horizontal pressure-gradient force in an oceanic
1535   model with a nonaligned
1536   
1537   vertical coordinate},
1538  journal = JGR,
1539  year = {2003},
1540  volume = {108(C3)},
1541  pages = {3090, doi:10.1029/2001JC001047},
1542  owner = {gm},
1543  timestamp = {2007.08.05}
1544}
1545
1546@ARTICLE{Shchepetkin1996,
1547  author = {A. F. Shchepetkin and J. J. O'Brien},
1548  title = {A Physically Consistent Formulation of Lateral Friction in Shallow-Water
1549   Equation Ocean Models},
1550  journal = MWR,
1551  year = {1996},
1552  volume = {124},
1553  pages = {1285-1300},
1554  number = {6},
1555  abstract = {Dissipation in numerical ocean models has two purposes: to simulate
1556   processes in which the friction is physically relevant and to prevent
1557   numerical instability by suppressing accumulation of energy in the
1558   smallest resolved scales. This study shows that even for the latter
1559   case the form of the friction term should be chosen in a physically
1560   consistent way. Violation of fundamental physical principles reduces
1561   the fidelity of the numerical solution, even if the friction is small.
1562   Several forms of the lateral friction, commonly used in numerical
1563   ocean models, are discussed in the context of shallow-water equations
1564   with nonuniform layer thickness. It is shown that in a numerical
1565   model tuned for the minimal dissipation, the improper form of the
1566   friction term creates finite artificial vorticity sources that do
1567   not vanish with increased resolution, even if the viscous coefficient
1568   is reduced consistently with resolution. An alternative numerical
1569   implementation of the no-slip boundary conditions for an arbitrary
1570   coast line is considered. It was found that the quality of the numerical
1571   solution may be considerably improved by discretization of the viscous
1572   stress tensor in such a way that the numerical boundary scheme approximates
1573   not only the stress tensor to a certain order of accuracy but also
1574   simulates the truncation error of the numerical scheme used in the
1575   interior of the domain. This ensures error cancellation during subsequent
1576   use of the elements of the tensor in the discrete version of the
1577   momentum equations, allowing for approximation of them without decrease
1578   in the order of accuracy near the boundary.},
1579  date = {June 01, 1996},
1580  owner = {gm},
1581  timestamp = {2007.08.14}
1582}
1583
1584@ARTICLE{Simmons2003,
1585  author = {H. L. Simmons and S. R. Jayne and L. C. St. Laurent and A. J. Weaver},
1586  title = {Tidally driven mixing in a numerical model of the
1587   
1588   ocean general circulation},
1589  journal = OM,
1590  year = {2003},
1591  pages = {1-19},
1592  abstract = {Astronomical data reveals that approximately 3.5 terawatts (TW) of
1593   tidal energy is dissipated in the
1594   
1595   ocean. Tidal models and satellite altimetry suggest that 1 TW of this
1596   energy is converted from the barotropic
1597   
1598   to internal tides in the deep ocean, predominantly around regions
1599   of rough topography such as midocean
1600   
1601   ridges. Aglobal tidal model is used to compute turbulent energy levels
1602   associated with the dissipation
1603   
1604   of internal tides, and the diapycnal mixing supported by this energy
1605   ?ux is computed using a simple parameterization.
1606   
1607   The mixing parameterization has been incorporated into a coarse resolution
1608   numerical model of the
1609   
1610   global ocean. This parameterization o?ers an energetically consistent
1611   and practical means of improving the
1612   
1613   representation of ocean mixing processes in climate models. Novel
1614   features of this implementation are that
1615   
1616   the model explicitly accounts for the tidal energy source for mixing,
1617   and that the mixing evolves both
1618   
1619   spatially and temporally with the model state. At equilibrium, the
1620   globally averaged di?usivity pro?le
1621   
1622   ranges from 0.3 cm2 s1 at thermocline depths to 7.7 cm2 s1 in the
1623   abyss with a depth average of 0.9
1624   
1625   cm2 s1, in close agreement with inferences from global balances.
1626   Water properties are strongly in?uenced
1627   
1628   by the combination of weak mixing in the main thermocline and enhanced
1629   mixing in the deep ocean.
1630   
1631   Climatological comparisons show that the parameterized mixing scheme
1632   results in a substantial reduction},
1633  owner = {sandra},
1634  pdf = {Simmons_mixing_OM2003.pdf},
1635  timestamp = {2007.03.22}
1636}
1637
1638@ARTICLE{Song1994,
1639  author = {Y. Song and D. Haidvogel},
1640  title = {A Semi-implicit Ocean Circulation Model Using a Generalized Topography-Following
1641   Coordinate System
1642   
1643   Authors:},
1644  journal = JCP,
1645  year = {1994},
1646  volume = {115, 1},
1647  owner = {gm},
1648  timestamp = {2007.08.04}
1649}
1650
1651@ARTICLE{Song1998,
1652  author = {Y. T. Song},
1653  title = {A General Pressure Gradient Formulation for Ocean Models. Part I:
1654   Scheme Design and Diagnostic Analysis},
1655  journal = MWR,
1656  year = {1998},
1657  volume = {126},
1658  pages = {3213-3230},
1659  number = {12},
1660  abstract = {A Jacobian formulation of the pressure gradient force for use in models
1661   with topography-following coordinates is proposed. It can be used
1662   in conjunction with any vertical coordinate system and is easily
1663   implemented. Vertical variations in the pressure gradient are expressed
1664   in terms of a vertical integral of the Jacobian of density and depth
1665   with respect to the vertical computational coordinate. Finite difference
1666   approximations are made on the density field, consistent with piecewise
1667   linear and continuous fields, and accurate pressure gradients are
1668   obtained by vertically integrating the discrete Jacobian from sea
1669   surface.Two discrete schemes are derived and examined in detail:
1670   the first using standard centered differencing in the generalized
1671   vertical coordinate and the second using a vertical weighting such
1672   that the finite differences are centered with respect to the Cartesian
1673   z coordinate. Both schemes achieve second-order accuracy for any
1674   vertical coordinate system and are significantly more accurate than
1675   conventional schemes based on estimating the pressure gradients by
1676   finite differencing a previously determined pressure field.The standard
1677   Jacobian formulation is constructed to give exact pressure gradient
1678   results, independent of the bottom topography, if the buoyancy field
1679   varies bilinearly with horizontal position, x, and the generalized
1680   vertical coordinate, s, over each grid cell. Similarly, the weighted
1681   Jacobian scheme is designed to achieve exact results, when the buoyancy
1682   field varies linearly with z and arbitrarily with x, that is, b(x,z)
1683   = b0(x) + b1(x)z.When horizontal resolution cannot be made
1684   fine enough to avoid hydrostatic inconsistency, errors can be substantially
1685   reduced by the choice of an appropriate vertical coordinate. Tests
1686   with horizontally uniform, vertically varying, and with horizontally
1687   and vertically varying buoyancy fields show that the standard Jacobian
1688   formulation achieves superior results when the condition for hydrostatic
1689   consistency is satisfied, but when coarse horizontal resolution causes
1690   this condition to be strongly violated, the weighted Jacobian may
1691   give superior results.},
1692  date = {December 01, 1998},
1693  owner = {gm},
1694  timestamp = {2007.08.05}
1695}
1696
1697@ARTICLE{SongWright1998,
1698  author = {Y. T. Song and D. G. Wright},
1699  title = {A General Pressure Gradient Formulation for Ocean Models. Part II
1700   - Energy, Momentum, and Bottom Torque Consistency},
1701  journal = MWR,
1702  year = {1998},
1703  volume = {126},
1704  pages = {3231-3247},
1705  number = {12},
1706  abstract = {A new formulation of the pressure gradient force for use in models
1707   with topography-following coordinates is proposed and diagnostically
1708   analyzed in Part I. Here, it is shown that important properties of
1709   the continuous equations are retained by the resulting numerical
1710   schemes, and their performance in prognostic simulations is examined.
1711   Numerical consistency is investigated with respect to global energy
1712   conservation, depth-integrated momentum changes, and the representation
1713   of the bottom pressure torque. The performances of the numerical
1714   schemes are tested in prognostic integrations of an ocean model to
1715   demonstrate numerical accuracy and long-term integral stability.
1716   Two typical geometries, an isolated tall seamount and an unforced
1717   basin with sloping boundaries, are considered for the special case
1718   of no external forcing and horizontal isopycnals to test numerical
1719   accuracy. These test problems confirm that the proposed schemes yield
1720   accurate approximations to the pressure gradient force. Integral
1721   consistency conditions are verified and the energetics of the “advective
1722   elimination” of the pressure gradient error (Mellor et al)
1723   is considered.A large-scale wind-driven basin with and without topography
1724   is used to test the model’s long-term integral performance
1725   and the effects of bottom pressure torque on the transport in western
1726   boundary currents. Integrations are carried out for 10 years in each
1727   case and results show that the schemes are stable, and the steep
1728   topography causes no obvious numerical problems. A realistic meandering
1729   western boundary current is well developed with detached cold cyclonic
1730   and warm anticyclonic eddies as it extends across the basin. In addition,
1731   the results with topography show earlier separation and enhanced
1732   transport in the western boundary currents due to the bottom pressure
1733   torque.},
1734  date = {December 01, 1998},
1735  owner = {gm},
1736  timestamp = {2007.08.05}
1737}
1738
1739@PHDTHESIS{Speich1992,
1740  author = {S. Speich},
1741  title = {Etude du for\c{c}age de la circulation g\'{e}n\'{e}rale oc\'{e}anique
1742   par les d\'{e}troits - cas de la mer d'Alboran},
1743  school = {Universit\'{e} Pierre et Marie Curie, Paris, France},
1744  year = {1992},
1745  owner = {gm},
1746  timestamp = {2007.08.06}
1747}
1748
1749@ARTICLE{Speich1996,
1750  author = {S. Speich and G. Madec and M. Cr\'{e}pon},
1751  title = {The circulation in the Alboran Sea - a sensitivity study},
1752  journal = JPO,
1753  year = {1996},
1754  volume = {26},
1755  owner = {gm},
1756  timestamp = {2007.08.06}
1757}
1758
1759@ARTICLE{Steele2001,
1760  author = {M. Steele and R. Morley and W. Ermold},
1761  title = {PHC- A Global Ocean Hydrography with a High-Quality Arctic Ocean},
1762  journal = {Journal of Climate},
1763  year = {2001},
1764  volume = {14},
1765  pages = {2079--2087
1766   
1767   },
1768  number = {9},
1769  abstract = {A new gridded ocean climatology, the Polar Science Center Hydrographic
1770   Climatology (PHC), has been created that merges the 1998 version
1771   of the World Ocean Atlas with the new regional Arctic Ocean Atlas.
1772   The result is a global climatology for temperature and salinity that
1773   contains a good description of the Arctic Ocean and its environs.
1774   Monthly, seasonal, and annual average products have been generated.
1775   How the original datasets were prepared for merging, how the optimal
1776   interpolation procedure was performed, and characteristics of the
1777   resulting dataset are discussed, followed by a summary and discussion
1778   of future plans.},
1779  date = {May 01, 2001},
1780  owner = {gm},
1781  timestamp = {2007.08.06}
1782}
1783
1784@ARTICLE{Stein1992,
1785  author = {C. A. Stein and S. Stein},
1786  title = {A model for the global variation in oceanic depth and heat flow with
1787   lithospheric age},
1788  journal = {Nature},
1789  year = {1992},
1790  volume = {359},
1791  pages = {123-129},
1792  owner = {gm},
1793  timestamp = {2007.08.04}
1794}
1795
1796@ARTICLE{Thiem2006,
1797  author = {O. Thiem and J. Berntsen},
1798  title = {Internal pressure errors in sigma-coordinate ocean models due to
1799   anisotropy},
1800  journal = {Ocean Modelling},
1801  year = {2006},
1802  volume = {12, 1-2},
1803  owner = {gm},
1804  timestamp = {2007.08.05}
1805}
1806 
1807@ARTICLE{Treguier1992,
1808  author = {A.M. Treguier},
1809  year = { 1992},
1810  title = {Kinetic energy analysis of an eddy resolving, primitive equation North Atlantic model},
1811  journal = JGR,
1812  volume = {97},
1813  pages = {687-701}
1814}
1815
1816@ARTICLE{Treguier1996,
1817  author = {A.-M. Tr\'{e}guier and J. Dukowicz and K. Bryan},
1818  title = {Properties of nonuniform grids used in ocean general circulation
1819   models},
1820  journal = JGR,
1821  year = {1996},
1822  volume = {101},
1823  pages = {20877-20881},
1824  owner = {gm},
1825  timestamp = {2007.08.03}
1826}
1827
1828@ARTICLE{Treguier1997,
1829  author = {A. M. Tr\'{e}guier and I. M. Held and V. D. Larichev},
1830  title = {Parameterization of Quasigeostrophic Eddies in Primitive Equation
1831   Ocean Models},
1832  journal = JPO,
1833  year = {1997},
1834  volume = {27},
1835  pages = {567-580},
1836  number = {4},
1837  abstract = {A parameterization of mesoscale eddy fluxes in the ocean should be
1838   consistent with the fact that the ocean interior is nearly adiabatic.
1839   Gent and McWilliams have described a framework in which this can
1840   be approximated in z-coordinate primitive equation models by incorporating
1841   the effects of eddies on the buoyancy field through an eddy-induced
1842   velocity. It is also natural to base a parameterization on the simple
1843   picture of the mixing of potential vorticity in the interior and
1844   the mixing of buoyancy at the surface. The authors discuss the various
1845   constraints imposed by these two requirements and attempt to clarify
1846   the appropriate boundary conditions on the eddy-induced velocities
1847   at the surface. Quasigeostrophic theory is used as a guide to the
1848   simplest way of satisfying these constraints.},
1849  date = {April 01, 1997},
1850  owner = {gm},
1851  timestamp = {2007.08.03}
1852}
1853
1854@BOOK{UNESCO1983,
1855  title = {Algorithms for computation of fundamental property of sea water},
1856  publisher = {Techn. Paper in Mar. Sci, 44, UNESCO},
1857  year = {1983},
1858  author = {UNESCO},
1859  owner = {gm},
1860  timestamp = {2007.08.04}
1861}
1862
1863@TECHREPORT{OASIS2006,
1864  author = {S. Valcke},
1865  title = {OASIS3 User Guide (prism\_2-5)},
1866  institution = {PRISM Support Initiative Report No 3, CERFACS, Toulouse, France,
1867   64 pp},
1868  year = {2006},
1869  owner = {gm},
1870  timestamp = {2007.08.05}
1871}
1872
1873@TECHREPORT{valal00,
1874  author = {S. Valcke and L. Terray and A. Piacentini },
1875  title = {The OASIS Coupled User Guide Version 2.4},
1876  institution = {CERFACS},
1877  year = {2000},
1878  number = {TR/CMGC/00-10}
1879}
1880
1881@ARTICLE{Weatherly1984,
1882  author = {G. L. Weatherly},
1883  title = {An estimate of bottom frictional dissipation by Gulf Stream fluctuations},
1884  journal = JMR,
1885  year = {1984},
1886  volume = {42, 2},
1887  pages = {289-301},
1888  owner = {gm},
1889  timestamp = {2007.08.06}
1890}
1891
1892@ARTICLE{Weaver1997,
1893  author = {A. J. Weaver and M. Eby},
1894  title = {On the numerical implementation of advection schemes for use in conjuction
1895   with various mixing
1896   
1897   parameterizations in the GFDL ocean model},
1898  journal = JPO,
1899  year = {1997},
1900  volume = {27},
1901  owner = {gm},
1902  timestamp = {2007.08.06}
1903}
1904
1905@ARTICLE{Webb1998,
1906  author = {D. J. Webb and B. A. de Cuevas and C. S. Richmond},
1907  title = {Improved Advection Schemes for Ocean Models},
1908  journal = JAOT,
1909  year = {1998},
1910  volume = {15},
1911  pages = {1171-1187},
1912  number = {5},
1913  abstract = {Leonard’s widely used QUICK advection scheme is, like the Bryan–Cox–Semtner
1914   ocean model, based on a control volume form of the advection equation.
1915   Unfortunately, in its normal form it cannot be used with the leapfrog–Euler
1916   forward time-stepping schemes used by the ocean model. Farrow and
1917   Stevens overcame the problem by implementing a predictor–corrector
1918   time-stepping scheme, but this is computationally expensive to run.
1919   The present paper shows that the problem can be overcome by splitting
1920   the QUICK operator into an O(δx2) advective term and a velocity
1921   dependent biharmonic diffusion term. These can then be time-stepped
1922   using the combined leapfrog and Euler forward schemes of the Bryan–Cox–Semtner
1923   ocean model, leading to a significant increase in model efficiency.
1924   A small change in the advection operator coefficients may also be
1925   made leading to O(δx4) accuracy. Tests of the improved schemes
1926   are carried out making use of a global eddy-permitting ocean model.
1927   Results are presented from cases where the schemes were applied to
1928   only the tracer fields and also from cases where they were applied
1929   to both the tracer and velocity fields. It is found that the new
1930   schemes have the most effect in the western boundary current regions,
1931   where, for example, the warm core of the Agulhas Current is no longer
1932   broken up by numerical noise.},
1933  date = {October 01, 1998},
1934  owner = {gm},
1935  timestamp = {2007.08.04}
1936}
1937
1938@ARTICLE{Willebrand2001,
1939  author = {J. Willebrand and B. Barnier and C. Boning and C. Dieterich and P.
1940   D. Killworth and C. Le Provost and Y. Jia and J.-M. Molines and A.
1941   L. New},
1942  title = {Circulation characteristics in three eddy-permitting models of the
1943   North Atlantic},
1944  journal = {Progress in Oceanography},
1945  year = {2001},
1946  volume = {48, 2},
1947  pages = {123-161},
1948  owner = {gm},
1949  timestamp = {2007.08.04}
1950}
1951
1952@ARTICLE{Zalesak1979,
1953  author = {S. T. Zalesak},
1954  title = {Fully multidimensional flux corrected transport algorithms for fluids},
1955  journal = JCP,
1956  year = {1979},
1957  volume = {31},
1958  owner = {gm},
1959  timestamp = {2007.08.04}
1960}
1961
1962@ARTICLE{Zhang1992,
1963  author = {Zhang, R.-H. and Endoh, M.},
1964  title = {A free surface general circulation model for the tropical Pacific
1965   Ocean},
1966  journal = JGR,
1967  year = {1992},
1968  volume = {97},
1969  pages = {11237-11255},
1970  month = jul,
1971  owner = {gm}
1972}
1973
1974@ARTICLE{Marchesiello2001,
1975  author = { P. Marchesiello  and J. Mc Williams  and A. Shchepetkin },
1976  title = {Open boundary conditions for long-term integrations of Regional Oceanic Models},
1977  journal = {Ocean Modelling},
1978  year = {2001},
1979  volume = {3},
1980  pages = {1-20}
1981}
1982
1983@INCOLLECTION{Durran2001,
1984  author = {D.R.  Durran },
1985  title = {Open boundary conditions: fact and fiction},
1986  booktitle = {Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics},
1987  year = {2001},
1988  editor = {P.F. Hodnett},
1989  publisher = {Kluwer Academic Publishers}
1990}
1991
1992@ARTICLE{Treguier2001,
1993  author = {A.M Treguier and  B. Barnier and A.P. de Miranda and J.M. Molines and N. Grima and M. Imbard and G. Madec and C. Messager and  T. Reynaud and S. Michel},
1994  title = {An Eddy Permitting model of the Atlantic circulation: evaluating open boundary conditions},
1995  journal = JGR,
1996  year = {2001},
1997  volume = {106},
1998  pages = {22115-22129}
1999}
2000
2001@ARTICLE{Blayo2005,
2002  author = {E. Blayo and L. Debreu},
2003  title = {Revisiting open boundary conditions from the point of view of characteristic variables},
2004  journal = {Ocean Modelling},
2005  year = {2005},
2006  volume = {9},
2007  pages = {231-252}
2008}
2009
2010@ARTICLE{Barnier1998,
2011   author = {B. Barnier  and P. Marchesiello and A. P. de Miranda and  J.M. Molines and M. Coulibaly},
2012   title = {A sigma-coordinate primitive equation model for studying the circulation in the South Atlantic I, Model configuration with error estimates},
2013   journal = {Deep Sea Res.},
2014   volume = {45},
2015   pages = {543-572},
2016   year =  {1998}
2017}
2018
2019@ARTICLE{Penduff2000,
2020   author = {T. Penduff and B. Barnier  and A. Colin de Verdi\`{e}re},
2021   title = { Self-adapting open boundaries for a regional model of the eastern North Atlantic},
2022   journal = JGR,
2023   volume = {105},
2024   pages = {11,279-11,297},
2025   year =  {2000}
2026}
2027
2028@ARTICLE{Penduff2007,
2029   author = {T. Penduff and J. Le Sommer and B. Barnier and A.M. Treguier and J. Molines and G. Madec},
2030   title = {Influence of numerical schemes on current-topography interactions in 1/4$^{\circ}$ global ocean simulations}, 
2031   journal = {Ocean Science},
2032   volume = {?},
2033   pages = {in revision},
2034   year =  {2007}
2035}
2036
2037 
2038@INCOLLECTION{Barnier1996,
2039  author = { B. Barnier  and P. Marchesiello  and  A.P. de Miranda },
2040  title = {Modeling the ocean circulation in the South Atlantic : A strategy for dealing with open boundaries},
2041  booktitle = {The South Atlantic : Present and Past Circulation},
2042  editor = {G.Wefer and  W.H. Berger and G Siedler and D. Webb},
2043  publisher ={Springer-Verlag, Berlin},
2044  pages = {289-304},
2045   year =  {1996}
2046}
2047
2048@INCOLLECTION{Roed1986,
2049  author = {L.P. Roed  and  C.K. Cooper},
2050  year =  {1986},
2051  title = {Open boundary conditions in numerical ocean models},
2052  booktitle = {Advanced Physical Oceanography Numerical Modelling},
2053  editor = {J.J. O'Brien},
2054  publisher = { NATO ASI Series, vol. 186.}
2055}
2056
2057
2058@INCOLLECTION{Delecluse2000,
2059  author = {P. Delecluse},
2060  title = {Ocean modelling and the role of the ocean in the climate system},
2061  pages = {237-313},
2062  booktitle = {Modeling the Earth's Climate and its Variability, Les Houches, 1997},
2063  year = {2000},
2064  editor = {W. R. Holland and  S. Joussaume and F. David},
2065  owner = {gm},
2066  timestamp = {2007.08.17}
2067}
2068
2069@comment{jabref-meta: groupsversion:3;}
2070
2071@comment{jabref-meta: groupstree:
20720 AllEntriesGroup:;
20731 ExplicitGroup:El Nino\;2\;blanketal97\;;
20742 ExplicitGroup:97/98 event\;0\;;
20752 ExplicitGroup:Forecast\;0\;;
20762 ExplicitGroup:GHG change\;0\;;
20772 ExplicitGroup:in GCMs\;0\;;
20782 ExplicitGroup:in MIPs\;0\;;
20792 ExplicitGroup:momentum balance\;0\;;
20802 ExplicitGroup:Obs analysis\;0\;;
20812 ExplicitGroup:Paleo\;0\;;
20822 ExplicitGroup:Previous events\;0\;;
20832 ExplicitGroup:Reviews\;0\;;
20842 ExplicitGroup:Simple models\;0\;Zhang1992\;;
20852 ExplicitGroup:SPL, SC, mean\;0\;;
20862 ExplicitGroup:Teleconnections\;0\;;
20872 ExplicitGroup:Low freq\;0\;;
20882 ExplicitGroup:Theory\;0\;;
20892 ExplicitGroup:Energetics\;0\;;
20901 ExplicitGroup:Diurnal in tropics\;0\;;
20911 ExplicitGroup:Indian\;0\;;
20921 ExplicitGroup:Atlantic\;0\;;
20931 ExplicitGroup:MJO, IO, TIW\;2\;;
20942 ExplicitGroup:Obs\;0\;;
20952 ExplicitGroup:GCM\;0\;;
20962 ExplicitGroup:Mechanims\;0\;;
20972 ExplicitGroup:TIW\;0\;;
20981 ExplicitGroup:Observations\;2\;;
20992 ExplicitGroup:ERBE\;0\;;
21002 ExplicitGroup:Tropical\;0\;;
21012 ExplicitGroup:Global\;0\;;
21022 ExplicitGroup:Clouds\;0\;;
21032 ExplicitGroup:Scale interactions\;0\;;
21041 ExplicitGroup:Mechanisms\;2\;;
21052 ExplicitGroup:CRF\;0\;;
21062 ExplicitGroup:Water vapor\;0\;;
21072 ExplicitGroup:Atmos mechanisms\;0\;;
21081 ExplicitGroup:GCMs\;2\;;
21092 ExplicitGroup:Uncertainty\;0\;;
21102 ExplicitGroup:Momentum balance\;0\;;
21111 ExplicitGroup:Climate change\;0\;;
21122 ExplicitGroup:IPCC AR4\;0\;;
21131 ExplicitGroup:Analysis tools\;0\;;
21141 KeywordGroup:EG publis\;0\;author\;guilyardi\;0\;0\;;
2115}
2116
Note: See TracBrowser for help on using the repository browser.