New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_A.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Annex_A.tex @ 996

Last change on this file since 996 was 996, checked in by gm, 16 years ago

trunk - DOC update to correct error in previous update

  • Property svn:executable set to *
File size: 14.6 KB
Line 
1
2% ================================================================
3% Chapter Ñ Appendix A : Curvilinear s-Coordinate Equations
4% ================================================================
5\chapter{Curvilinear $s$-Coordinate Equations}
6\label{Apdx_A}
7\minitoc
8
9
10In order to establish the set of Primitive Equation in curvilinear $s$-coordinates ($i.e.$ 
11orthogonal curvilinear coordinate in the horizontal and $s$-coordinate in the vertical), we
12start from the set of equation established in \S\ref{PE_zco_Eq} for the special case
13$k = z$ and thus $e_3 = 1$, and we introduce an arbitrary vertical coordinate
14$s = s(i,j,z,t)$. Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ 
15(which now depends on $(i,j,z,t)$) and the horizontal slope of $s$-surfaces by :
16\begin{equation} \label{Apdx_A_s_slope}
17\sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s
18\quad \text{and} \quad 
19\sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s
20\end{equation}
21
22The chain rule to establish the model equations in the curvilinear $s$-coordinate system
23is:
24\begin{equation} \label{Apdx_A_s_chain_rule}
25\begin{aligned}
26&\left. {\frac{\partial \bullet }{\partial t}} \right|_z  =
27\left. {\frac{\partial \bullet }{\partial t}} \right|_s
28    -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial t} \\
29&\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =
30  \left. {\frac{\partial \bullet }{\partial i}} \right|_s
31     -\frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial i}=
32     \left. {\frac{\partial \bullet }{\partial i}} \right|_s
33     -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial \bullet }{\partial s} \\
34&\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =
35\left. {\frac{\partial \bullet }{\partial j}} \right|_s
36   - \frac{\partial \bullet }{\partial s}\;\frac{\partial s}{\partial j}=
37\left. {\frac{\partial \bullet }{\partial j}} \right|_s
38   - \frac{e_2 }{e_3 }\sigma _2 \frac{\partial \bullet }{\partial s} \\
39&\;\frac{\partial \bullet }{\partial z}  \;\; = \frac{1}{e_3 }\frac{\partial \bullet }{\partial s} \\
40\end{aligned}
41\end{equation}
42
43In particular applying the time derivative chain rule to $z$ provide the expression of $w_s$,  the vertical velocity of the $s-$surfaces:
44\begin{equation} \label{Apdx_A_w_in_s}
45w_s   =  \left.   \frac{\partial z }{\partial t}   \right|_s
46            = \frac{\partial z}{\partial s} \; \frac{\partial s}{\partial t} 
47             = e_3 \, \frac{\partial s}{\partial t} 
48\end{equation}
49
50% ================================================================
51% continuity equation
52% ================================================================
53\section{Continuity Equation}
54\label{Apdx_B_continuity}
55
56Using (\ref{Apdx_A_s_chain_rule}) and the fact that the horizontal scale factors $e_1$ and $e_2$ do not depend on the vertical coordinate, the divergence of the velocity relative to the ($i$,$j$,$z$) coordinate system is transformed as follows:
57
58\begin{align*}
59\nabla \cdot {\rm {\bf U}} 
60&= \frac{1}{e_1 \,e_2 }  \left[ \left. {\frac{\partial (e_2 \,u)}{\partial i}} \right|_z
61                  +\left. {\frac{\partial(e_1 \,v)}{\partial j}} \right|_\right]
62+ \frac{\partial w}{\partial z}     \\
63\\
64&     = \frac{1}{e_1 \,e_2 }  \left[
65        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
66        - \frac{e_1 }{e_3 } \sigma _1 \frac{\partial (e_2 \,u)}{\partial s}
67      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s       
68        - \frac{e_2 }{e_3 } \sigma _2 \frac{\partial (e_1 \,v)}{\partial s}   \right]
69   + \frac{\partial w}{\partial s} \; \frac{\partial s}{\partial z}                        \\
70\\
71&     = \frac{1}{e_1 \,e_2 }   \left[
72        \left.   \frac{\partial (e_2 \,u)}{\partial i}    \right|_s       
73      + \left.   \frac{\partial (e_1 \,v)}{\partial j}    \right|_s        \right]
74   + \frac{1}{e_3 }\left[        \frac{\partial w}{\partial s}
75                  -  \sigma _1 \frac{\partial u}{\partial s}
76                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]          \\
77\\
78&     = \frac{1}{e_1 \,e_2 \,e_3 }   \left[
79        \left.   \frac{\partial (e_2 \,e_3 \,u)}{\partial i}    \right|_
80        -\left.    e_2 \,u    \frac{\partial e_3 }{\partial i}     \right|_s     
81      + \left\frac{\partial (e_1 \,e_3 \,v)}{\partial j}    \right|_s
82        - \left.    e_1 v      \frac{\partial e_3 }{\partial j}    \right|_s   \right]          \\
83& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
84   + \frac{1}{e_3 } \left[        \frac{\partial w}{\partial s}
85                  -  \sigma _1 \frac{\partial u}{\partial s}
86                  -  \sigma _2 \frac{\partial v}{\partial s}      \right]      \\
87\\
88\end{align*}
89
90Noting that $\frac{1}{e_1 }\left. {\frac{\partial e_3 }{\partial i}}
91\right|_s =\frac{1}{e_1 }\left. {\frac{\partial ^2z}{\partial i\,\partial 
92s}} \right|_s =\frac{\partial }{\partial s}\left( {\frac{1}{e_1 }\left.
93{\frac{\partial z}{\partial i}} \right|_s } \right)=\frac{\partial \sigma _1 
94}{\partial s}$ and $\frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}}
95\right|_s =\frac{\partial \sigma _2 }{\partial s}$, it becomes:
96
97\begin{align*}
98\nabla \cdot {\rm {\bf U}} 
99& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
100        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
101      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]        \\ 
102& \qquad \qquad \qquad \qquad \qquad \quad
103 +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma _1 }{\partial s}-v\frac{\partial \sigma _2 }{\partial s}-\sigma _1 \frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} \right] \\ 
104\\
105& = \frac{1}{e_1 \,e_2 \,e_3 }  \left[   
106        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
107      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
108   + \frac{1}{e_3 } \; \frac{\partial}{\partial s}   \left[  w -  u\;\sigma _1  - v\;\sigma _2  \right]
109 \end{align*} 
110 
111Here, $w$ is the vertical velocity relative to the $z-$coordinate system. Introducing the dia-surface velocity component, $\omega $, defined as the velocity relative to the moving $s$-surfaces and normal to them:
112\begin{equation} \label{Apdx_A_w_s}
113\omega  = w - w_s - \sigma _1 \,u - \sigma _2 \,v    \\
114\end{equation}
115with $w_s$ given by \eqref{Apdx_A_w_in_s}, we obtain the expression of the divergence of the velocity in the curvilinear $s$-coordinate system:
116\begin{align*} \label{Apdx_A_A4}
117\nabla \cdot {\rm {\bf U}} 
118&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
119        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
120      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
121+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
122+ \frac{1}{e_3 } \frac{\partial w_s       }{\partial s}    \\
123\\
124&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
125        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
126      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
127+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
128+ \frac{1}{e_3 } \frac{\partial}{\partial s}  \left(  e_3 \; \frac{\partial s}{\partial t}   \right)   \\
129\\
130&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
131        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
132      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
133+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
134+ \frac{\partial}{\partial s} \frac{\partial s}{\partial t}
135+ \frac{1}{e_3 } \frac{\partial s}{\partial t} \frac{\partial e_3}{\partial s}     \\
136\\
137&= \frac{1}{e_1 \,e_2 \,e_3 }    \left[
138        \left\frac{\partial (e_2 \,e_3 \,u)}{\partial i} \right|_s
139      +\left\frac{\partial (e_1 \,e_3 \,v)}{\partial j} \right|_s        \right]     
140+ \frac{1}{e_3 } \frac{\partial \omega }{\partial s} 
141+ \frac{1}{e_3 } \frac{\partial e_3}{\partial t}     \\
142\end{align*}
143
144As a result, the continuity equation \eqref{Eq_PE_continuity} in $s$-coordinates becomes:
145\begin{equation} \label{Apdx_A_A5}
146\frac{1}{e_3 } \frac{\partial e_3}{\partial t} 
147+ \frac{1}{e_1 \,e_2 \,e_3 }\left[
148         {\left. {\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s
149          +  \left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } \right]
150 +\frac{1}{e_3 }\frac{\partial \omega }{\partial s} = 0   
151\end{equation}
152
153% ================================================================
154% momentum equation
155% ================================================================
156\section{Momentum Equation}
157\label{Apdx_B_momentum}
158
159Let us consider \eqref{Eq_PE_dyn_vect}, the first component of the
160momentum equation in the vector invariant form (similar manipulations can be performed on the second one). Its non linear term can be transformed
161as follows:
162
163\begin{align*}
164&+\left. \zeta \right|_z v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_z
165- w \;\frac{\partial u}{\partial z} \\
166\\
167&\qquad=\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
168\right|_z -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_z } 
169\right]\;v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} 
170\right|_z -w\frac{\partial u}{\partial z}      \\
171\\
172&\qquad =\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
173\right|_s -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_s }     \right.
174 \left. {-\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (e_2 \,v)}{\partial s}+\frac{e_2 }{e_3 }\sigma _2 \frac{\partial (e_1 \,u)}{\partial s}} \right]\;v \\ 
175&\qquad \qquad \qquad \qquad \qquad
176{ -\frac{1}{2e_1 }\left( {\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (u^2+v^2)}{\partial s}} \right)
177-\frac{w}{e_3 }\frac{\partial u}{\partial s} }    \\
178\end{align*}
179\begin{align*}
180\qquad  &= \left. \zeta \right|_s \;v
181   - \frac{1}{2\,e_1}\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s
182   - \frac{w}{e_3 }\frac{\partial u}{\partial s}
183   - \left[   {\frac{\sigma _1 }{e_3 }\frac{\partial v}{\partial s}
184              - \frac{\sigma_2 }{e_3 }\frac{\partial u}{\partial s}}   \right]\;v      \\
185\qquad&\qquad \qquad \qquad \qquad \qquad \qquad
186\qquad  \qquad \qquad \qquad \quad
187   +\frac{\sigma _1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s}      \\
188%\\
189\qquad &= \left. \zeta \right|_s \;v
190      - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 
191\qquad&\qquad \qquad \qquad
192 -\frac{1}{e_3} \left[    {w\frac{\partial u}{\partial s}
193   +\sigma _1 v\frac{\partial v}{\partial s} - \sigma _2 v\frac{\partial u}{\partial s}
194   -\sigma _1 u\frac{\partial u}{\partial s} - \sigma _1 v\frac{\partial v}{\partial s}} \right] \\
195\\
196\qquad &= \left. \zeta \right|_s \;v
197      - \frac{1}{2e_1 }\left. \frac{\partial (u^2+v^2)}{\partial i} \right|_s   
198        - \frac{1}{e_3} \left[  w - \sigma _2 v - \sigma _1 u  \right] 
199                \; \frac{\partial u}{\partial s}   \\
200\\
201\qquad &= \left. \zeta \right|_s \;v
202      - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s   
203        - \frac{1}{e_3 }\omega \frac{\partial u}{\partial s} 
204        - \frac{\partial s}{\partial t}  \frac{\partial u}{\partial s} 
205\end{align*}
206
207Therefore, the non-linear terms of the momentum equation have the same form
208in $z-$ and $s-$coordinates but with the addition of the time derivative of the velocity:
209\begin{multline}  \label{Apdx_A_momentum_NL}
210+\left. \zeta \right|_z v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_z
211- w \;\frac{\partial u}{\partial z}    \\
212= - \frac{\partial u}{\partial t} + \left. \zeta \right|_s \;v
213   - \frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s   
214   - \frac{1}{e_3 }\omega \frac{\partial u}{\partial s} 
215\end{multline}
216
217The pressure gradient term can be transformed as follows:
218\begin{equation} \label{Apdx_A_grad_p}
219\begin{split}
220 -\frac{1}{\rho _o e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z& =-\frac{1}{\rho _o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial p}{\partial s}} \right] \\
221& =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho _o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
222&=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho _o }\sigma _1
223\end{split}
224\end{equation}
225
226An additional term appears in (\ref{Apdx_A_grad_p}) which accounts for the tilt of model
227levels.
228
229Introducing \eqref{Apdx_A_momentum_NL} and \eqref{Apdx_A_grad_p} in \eqref{Eq_PE_dyn_vect} and regrouping the time derivative terms in the left hand side, and performing the same manipulation on the second component, we obtain the vector invariant form of momentum equation in $s-$coordinate :
230\begin{subequations} \label{Apdx_A_dyn_vect}
231\begin{multline} \label{Apdx_A_PE_dyn_vect_u}
232 \frac{1}{e_3} \frac{\partial \left(  e_3\,\right) }{\partial t}=
233   +   \left( {\zeta +f} \right)\,v                                   
234   -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)
235   -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\
236   -   \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho _o}    \right)   
237   +  g\frac{\rho }{\rho _o}\sigma _1
238   +   D_u^{\vect{U}}  +   F_u^{\vect{U}}
239\end{multline}
240\begin{multline} \label{Apdx_A_dyn_vect_v}
241 \frac{1}{e_3}\frac{\partial \left(  e_3\,\right) }{\partial t}=
242   -   \left( {\zeta +f} \right)\,u   
243   -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^\right)       
244   -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\
245   -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho _o}  \right)
246    +  g\frac{\rho }{\rho _o }\sigma _2   
247   +  D_v^{\vect{U}}  +   F_v^{\vect{U}}
248\end{multline}
249\end{subequations}
250
251It has the same form as in $z-$coordinate but the vertical scale factor that has appeared inside the time derivative. The form of the vertical physics and forcing terms remain unchanged. The form of the lateral physics is discussed in appendix~\ref{Apdx_B}
252
253% ================================================================
254% Tracer equation
255% ================================================================
256\section{Tracer Equation}
257\label{Apdx_B_tracer}
258
259The tracer equation is obtained using the same calculation as for the
260continuity equation and then regrouping the time derivative terms in the left hand side :
261
262\begin{multline} \label{Apdx_A_tracer}
263 \frac{1}{e_3} \frac{\partial \left(  e_3 T  \right)}{\partial t} 
264   = -\frac{1}{e_1 \,e_2 \,e_3 } 
265      \left[ {\frac{\partial }{\partial i}} \left( {e_2 \,e_3 \;Tu} \right) \right .
266          +         \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right)                \\
267          + \left. \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right) \right] +D^{T} +F^{T} \; \;
268\end{multline}
269
270
271The expression of the advection term is a straight consequence of (A.4), the
272expression of the 3D divergence in $s$-coordinates established above.
273
Note: See TracBrowser for help on using the repository browser.