New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_B.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Annex_B.tex @ 994

Last change on this file since 994 was 994, checked in by gm, 16 years ago

trunk - add steven correction + several other things + rename BETA into TexFiles?

  • Property svn:executable set to *
File size: 18.0 KB
Line 
1% ================================================================
2% Chapter Ñ Appendix B : Diffusive Operators
3% ================================================================
4\chapter{Appendix B : Diffusive Operators}
5\label{Apdx_B}
6\minitoc
7
8% ================================================================
9% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
10% ================================================================
11\section{Horizontal/Vertical 2nd Order Tracer Diffusive Operators}
12\label{Apdx_B_1}
13
14
15In $z$-coordinate, the horizontal/vertical second order tracer diffusive operator is given by:
16\begin{multline} \label{Apdx_B1}
17 D^T = \frac{1}{e_1 \, e_2}      \left[
18  \left. \frac{\partial}{\partial i} \left\frac{e_2}{e_1}A^{lT} \;\left. \frac{\partial T}{\partial i} \right|_z   \right)   \right|_z      \right.          \\
19                       \left.
20+ \left. \frac{\partial}{\partial j} \left\frac{e_1}{e_2}A^{lT} \;\left. \frac{\partial T}{\partial j} \right|_z   \right)   \right|_z      \right]         
21+ \frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial z}} \right)
22\end{multline}
23
24In $s$-coordinate, we defined the slopes of $s$-surfaces, $\sigma_1$ and $\sigma_2$ by (A.1) and the vertical/horizontal ratio of diffusive coefficient by $\epsilon = A^{vT} / A^{lT}$. The diffusive operator is given by:
25
26\begin{equation} \label{Apdx_B2}
27D^T = \left. \nabla \right|_s \cdot 
28           \left[ A^{lT} \;\Re \cdot \left. \nabla \right|_s T  \right] \\
29\;\;\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
30 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
31 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
32 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
33^2+\sigma _2 ^2} \hfill \\
34\end{array} }} \right)
35\end{equation}
36or in expended form:
37\begin{multline} \label{Apdx_B3}
38D^T=\frac{1}{e_1\,e_2\,e_3 }\;\left[ {\quad \; \; e_2\,e_3\,A^{lT} \;\left.
39{\frac{\partial }{\partial i}\left( {\frac{1}{e_1 }\;\left. {\frac{\partial 
40T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial 
41T}{\partial s}} \right)} \right|_s } \right\\
42+e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
43 \;\;+e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. \; \\
44\shoveright{\;\;\left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;\,} \right]} 
45\end{multline}
46
47
48Equation \eqref{Apdx_B2} (or equivalently \eqref{Apdx_B3}) is obtained from \eqref{Apdx_B1} without any additional assumption. Indeed, for the special case $k=z$ and thus $e_3 =1$, we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in Appendix~\ref{Apdx_A} and use \eqref{Apdx_A_s_slope} and \eqref{Apdx_A_s_chain_rule}. Since no cross horizontal derivate $\partial _i \partial _j $ appears in \eqref{Apdx_B1}, the ($i$,$z$) and ($j$,$z$) planes are independent. The demonstration can then be done for the ($i$,$z$)~$\to$~($j$,$s$) transformation without any loss of generality:
49
50\begin{equation*}
51D^T=\frac{1}{e_1\,e_2 }\left. {\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)        \qquad  \qquad  \qquad  \qquad \qquad  \qquad \qquad     \\
52\end{equation*}
53\begin{multline*}
54 =\frac{1}{e_1\,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2}{e_1}A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ 
55 \left. { -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right]   
56\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \\ 
57\end{multline*}
58\begin{multline*}
59 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1
60}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ 
61 \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left(
62{\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
63 \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;} \right] }\\ 
64\end{multline*}
65
66Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:
67
68\begin{multline*}
69 =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left.
70-\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
71\qquad -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
72\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 
73\end{multline*}
74\begin{multline*}
75 =\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial 
76i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
77 \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 
78-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 
79\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
80\end{multline*}
81using the same remark as just above, it becomes:
82\begin{multline*}
83= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 
84+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 
85-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
86\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\ 
87\end{multline*}
88
89Since the horizontal scale factor do not depend on the vertical coordinate, the last term of the first line and the first term of the last line cancel, while the second line reduces to a single vertical derivative, so it becomes:
90
91\begin{multline*}
92 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
93 \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
94\end{multline*}
95
96in other words, the horizontal Laplacian operator in the ($i$,$s$)plane takes the following expression :
97
98\begin{equation*}
99D^T = {\frac{1}{e_1\,e_2\,e_3}}
100\left( {{\begin{array}{*{30}c}
101{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
102{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
103\end{array}}}\right)
104\cdot \left[ {A^{lT}
105\left( {{\begin{array}{*{30}c}
106 {1} \hfill & {-\sigma_1 } \hfill \\
107 {-\sigma_1} \hfill & {\varepsilon_1^2} \hfill \\
108\end{array} }} \right)
109\cdot 
110\left( {{\begin{array}{*{30}c}
111{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
112{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
113\end{array}}}
114\right) \left( T \right)} \right]
115\end{equation*}
116 
117
118% ================================================================
119% Isopycnal/Vertical 2nd Order Tracer Diffusive Operators
120% ================================================================
121\section{Iso/diapycnal 2nd Order Tracer Diffusive Operators}
122\label{Apdx_B_2}
123
124
125The iso/diapycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in the  ($i$,$j$,$k$) curvilinear coordinate system in which the equations of the ocean circulation model are formulated, takes the following expression \citep{Redi_JPO82}:
126
127\begin{equation*}
128\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
129\left[ {{\begin{array}{*{20}c}
130 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
131 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
132 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
133\end{array} }} \right]
134\end{equation*}
135where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions:
136\begin{equation*}
137a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
138\qquad , \qquad
139a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 
140\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
141\end{equation*}
142
143In practice, the isopycnal slopes are generally less than $10^{-2}$ in the ocean, so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{Cox1987}:
144\begin{equation*}
145{\textbf{A}_{\textbf{I}}} \approx A^{lT}
146\left[ {{\begin{array}{*{20}c}
147 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
148 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
149 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
150\end{array} }} \right]
151\end{equation*}
152
153The resulting isopycnal operator conserves the quantity and dissipates its square. The demonstration of the first property is trivial as \eqref{Apdx_B2} is the divergence of fluxes. Let us demonstrate the second one:
154\begin{equation*}
155\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
156\end{equation*}
157since
158\begin{align*}
159 \nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T} 
160\right)&=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
161\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
162{\frac{\partial T}{\partial j}} \right)^2} \right. \\ 
163&\qquad \qquad \qquad \quad
164{ \left. -\,{2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial 
165k}+\left( {a_1 ^2+a_2 ^2} \right)\left( {\frac{\partial T}{\partial k}} 
166\right)^2} \right]} \\
167&=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial j}-a_2 \frac{\partial T}{\partial k}} \right)^2} \right]\quad \geq 0
168\end{align*}
169the property becomes obvious.
170
171The resulting diffusive operator in $z$-coordinates has the following
172expression :
173\begin{multline*} \label{Apdx_B_ldfiso}
174 D^T=\frac{1}{e_1 e_2 }\left\{ {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2 }{e_1 }\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right.\;\; \\ 
175 \;\left. {\;\;\;+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1 }{e_2 }\frac{\partial T}{\partial j}-a_2 \frac{e_1 }{e_3 }\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
176\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]} \\ 
177\end{multline*}
178
179It has to be emphasised that the simplification introduced leads to a decoupling between ($i$,$z$) and ($j$,$z$) planes. The operator has therefore the same expression as \eqref{Apdx_B3}, the diffusive operator obtained for geopotential diffusion in $s$-coordinate.
180
181% ================================================================
182% Lateral/Vertical Momentum Diffusive Operators
183% ================================================================
184\section{Lateral/Vertical Momentum Diffusive Operators}
185\label{Apdx_B_3}
186
187The second order momentum diffusive operator (Laplacian) in $z$-coordinate is found by applying \eqref{Eq_PE_lap_vector}, the expression of the Laplacian of a vector,  to the horizontal velocity vector :
188\begin{align*}
189\Delta {\textbf{U}}_h
190&=\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
191\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)    \\
192\\
193&=\left( {{\begin{array}{*{20}c}
194 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
195 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
196 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
197\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
198 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
199}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial 
200u}{\partial k}} \right)} \hfill \\
201 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
202}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta 
203}{\partial i}} \hfill \\
204 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
205}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial 
206j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} 
207\hfill \\
208\end{array} }} \right)
209\\
210\\
211&=\left( {{\begin{array}{*{20}c}
212{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
213{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
2140 \\
215\end{array} }} \right)
216+\frac{1}{e_3 }
217\left( {{\begin{array}{*{20}c}
218{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
219{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
220{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
221\end{array} }} \right)
222\end{align*}
223Using \eqref{Eq_PE_div}, the definition of the horizontal divergence, the third componant of the second vector is obviously zero and thus :
224\begin{equation*}
225\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
226\end{equation*}
227
228Note that this operator ensures a full separation between the vorticity and horizontal divergence fields (see Appendix~\ref{Apdx_C}). It is only equal to a Laplacian applied on each component in Cartesian coordinate, not on the sphere.
229
230The horizontal/vertical second order (Laplacian type) operator used to diffuse
231horizontal momentum in $z$-coordinate takes therefore the following expression :
232\begin{equation} \label{Apdx_B_Lap_U}
233 {\textbf{D}}^{\textbf{U}} =
234     \nabla _h \left( {A^{lm}\;\chi } \right)
235   - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)
236   + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }
237            \frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\ 
238\end{equation}
239that is in expanded form:
240\begin{align*}
241D^{\textbf{U}}_u
242& = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i}
243     -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}
244     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\
245D^{\textbf{U}}_v   
246& = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j}
247     +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}
248     +\frac{1}{e_3} \frac{\partial v}{\partial k}
249\end{align*}
250
251Note Bene: introducing a rotation in \eqref{Apdx_B_Lap_U} does not lead to any useful expression for the iso/diapycnal Laplacian operator in $z$-coordinate. Similarly, we did not found an expression of practical use for the geopotential horizontal/vertical Laplacian operator in $s$-coordinate. Generally, \eqref{Apdx_B_Lap_U} is used in both $z$- and $s$-coordinate system, that is a Laplacian diffusion is applied on momentum along the coordinate directions.
Note: See TracBrowser for help on using the repository browser.