New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_C.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Annex_C.tex @ 994

Last change on this file since 994 was 994, checked in by gm, 16 years ago

trunk - add steven correction + several other things + rename BETA into TexFiles?

  • Property svn:executable set to *
File size: 50.1 KB
Line 
1% ================================================================
2% Chapter Ñ Appendix C : Discrete Invariants of the Equations
3% ================================================================
4\chapter{Discrete Invariants of the Equations}
5\label{Apdx_C}
6\minitoc
7
8%%%  Appendix put in gmcomment as it has not been updated for z* and s coordinate
9I'm writting this appendix. It will be available in a forthcoming release of the documentation
10
11%\gmcomment{
12
13% ================================================================
14% Conservation Properties on Ocean Dynamics
15% ================================================================
16\section{Conservation Properties on Ocean Dynamics}
17\label{Apdx_C.1}
18
19
20First, the boundary condition on the vertical velocity (no flux through the surface and the bottom) is established for the discrete set of momentum equations. Then, it is shown that the non linear terms of the momentum equation are written such that the potential enstrophy of a horizontally non divergent flow is preserved while all the other non-diffusive terms preserve the kinetic energy: the energy is also preserved in practice. In addition, an option is also offer for the vorticity term discretization which provides
21a total kinetic energy conserving discretization for that term.
22
23Nota Bene: these properties are established here in the rigid-lid case and for the 2nd order centered scheme. A forthcoming update will be their generalisation to the free surface case
24and higher order scheme.
25
26% -------------------------------------------------------------------------------------------------------------
27%       Bottom Boundary Condition on Vertical Velocity Field
28% -------------------------------------------------------------------------------------------------------------
29\subsection{Bottom Boundary Condition on Vertical Velocity Field}
30\label{Apdx_C.1.1}
31
32
33The discrete set of momentum equations used in rigid lid approximation
34automatically satisfies the surface and bottom boundary conditions
35(no flux through the surface and the bottom: $w_{surface} =w_{bottom} =~0$).
36Indeed, taking the discrete horizontal divergence of the vertical sum of the
37horizontal momentum equations (Eqs. (II.2.1) and (II.2.2)~) wheighted by the
38vertical scale factors, it becomes:
39\begin{flalign*}
40\frac{\partial } {\partial t}  \left( \sum\limits_k    \chi    \right)
41\equiv 
42\frac{\partial } {\partial t}  \left(  w_{surface} -w_{bottom}     \right)&&&\\
43\end{flalign*}
44\begin{flalign*}
45\equiv \frac{1} {e_{1T}\,e_{2T}\,e_{3T}} 
46   \biggl\{ \quad
47   \delta_i
48      &\left[
49      e_{2u}\,H_u
50         \left(
51         M_u - M_u - \frac{1} {H_u\,e_{2u}} \delta_j
52            \left[ \partial_t\, \psi \right] 
53         \right)
54      \right] &&
55   \biggr. \\
56   \biggl.
57   + \delta_j
58      &\left[
59      e_{1v}\,H_v
60         \left( M_v - M_v - \frac{1} {H_v\,e_{1v}} \delta_i
61            \left[ \partial_i\, \psi \right] 
62         \right)
63      \right]
64   \biggr\}&& \\
65\end{flalign*}
66\begin{flalign*}
67\equiv \frac{1} {e_{1T} \,e_{2T} \,e_{3T}} \;
68   \biggl\{ 
69   - \delta_i
70      \Bigl[
71      \delta_j
72         \left[ \partial_t \psi  \right] 
73      \Bigr]
74   + \delta_j
75      \Bigl[
76      \delta_i
77         \left[ \partial_t \psi  \right] 
78      \Bigr]\; 
79   \biggr\}\;
80   \equiv 0
81   &&&\\
82\end{flalign*}
83
84
85The surface boundary condition associated with the rigid lid approximation ($w_{surface} =0)$ is imposed in the computation of the vertical velocity (II.2.5). Therefore, it turns out to be:
86\begin{equation*}
87\frac{\partial } {\partial t}w_{bottom} \equiv 0
88\end{equation*}
89As the bottom velocity is initially set to zero, it remains zero all the time. Symmetrically, if $w_{bottom} =0$ is used in the computation of the vertical velocity (upward integral of the horizontal divergence), the same computation leads to $w_{surface} =0$ as soon as the surface vertical velocity is initially set to zero.
90
91% -------------------------------------------------------------------------------------------------------------
92%       Coriolis and advection terms: vector invariant form
93% -------------------------------------------------------------------------------------------------------------
94\subsection{Coriolis and advection terms: vector invariant form}
95\label{Apdx_C_vor_zad}
96
97% -------------------------------------------------------------------------------------------------------------
98%       Vorticity Term
99% -------------------------------------------------------------------------------------------------------------
100\subsubsection{Vorticity Term}
101\label{Apdx_C_vor} 
102
103Potential vorticity is located at $f$-points and defined as: $\zeta / e_{3f}$. The standard discrete formulation of the relative vorticity term obviously conserves potential vorticity (ENS scheme). It also conserves the potential enstrophy for a horizontally non-divergent flow (i.e. $\chi $=0) but not the total kinetic energy. Indeed, using the symmetry or skew symmetry properties of the operators (Eqs \eqref{DOM_mi_adj} and \eqref{DOM_di_adj}), it can be shown that:
104\begin{equation} \label{Apdx_C_1.1}
105\int_D {\zeta / e_3\,\;{\textbf{k}}\cdot \frac{1} {e_3} \nabla \times \left( {\zeta \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} \equiv 0
106\end{equation}
107where $dv=e_1\,e_2\,e_3 \; di\,dj\,dk$ is the volume element. Indeed, using
108\eqref{Eq_dynvor_ens}, the discrete form of the right hand side of \eqref{Apdx_C_1.1} 
109can be transformed as follow:
110\begin{flalign*} 
111&\int_D \zeta / e_3\,\; \textbf{k} \cdot \frac{1} {e_3 } \nabla \times 
112   \left(
113   \zeta \; \textbf{k} \times  \textbf{U}_
114   \right)\;
115   dv
116   &&& \displaybreak[0] \\
117%
118\equiv& \sum\limits_{i,j,k} 
119\frac{\zeta / e_{3f}} {e_{1f}\,e_{2f}\,e_{3f}} 
120   \biggl\{ \quad
121   \delta_{i+1/2} 
122      \left[
123         - \overline {\left( {\zeta / e_{3f}} \right)}^{\,i}\;
124            \overline{\overline {\left( e_{2u}\,e_{3u}\,u \right)}}^{\,i,j+1/ 2} 
125       \right
126   &&  \\ & \qquad \qquad \qquad \;\;
127   - \delta_{j+1/2} 
128      \left[   \;\;\;
129           \overline {\left( \zeta / e_{3f} \right)}^{\,j}\;
130           \overline{\overline {\left( e_{1v}\,e_{3v}\,v \right)}}^{\,i+1/2,j} 
131      \right]
132   \;\;\biggr\} \;  e_{1f}\,e_{2f}\,e_{3f}       && \displaybreak[0] \\ 
133%
134\equiv& \sum\limits_{i,j,k} 
135   \biggl\{   \delta_i     \left[   \frac{\zeta} {e_{3f}}   \right] \;
136           \overline{  \left(   \frac{\zeta} {e_{3f}}   \right}^{\,i}\; 
137           \overline{  \overline{   \left( e_{1u}\,e_{3u}\,u \right}  }^{\,i,j+1/2} 
138         + \delta_j   \left[   \frac{\zeta} {e_{3f}}   \right] \;
139            \overline{   \left\frac{\zeta} {e_{3f}}    \right}^{\,j} \; 
140      \overline{\overline {\left( e_{2v}\,e_{3v}\,v \right)}}^{\,i+1/2,j}         \biggr\} 
141      &&&& \displaybreak[0] \\ 
142%
143\equiv& \frac{1} {2} \sum\limits_{i,j,k} 
144   \biggl\{ \delta_i    \Bigl[    \left(  \frac{\zeta} {e_{3f}} \right)^2   \Bigr]\;
145         \overline{\overline {\left( e_{2u}\,e_{3u}\,u \right)}}^{\,i,j+1/2} 
146            + \delta_\Bigl[    \left( \zeta / e_{3f} \right)^2     \Bigr]\; 
147         \overline{\overline {\left( e_{1v}\,e_{3v}\,v \right)}}^{\,i+1/2,j} 
148   \biggr\} 
149   && \displaybreak[0] \\ 
150%
151\equiv& - \frac{1} {2} \sum\limits_{i,j,k}   \left\frac{\zeta} {e_{3f}} \right)^2\;
152   \biggl\{    \delta_{i+1/2} 
153         \left[   \overline{\overline {\left( e_{2u}\,e_{3u}\,u \right)}}^{\,i,j+1/2}    \right] 
154               + \delta_{j+1/2}
155      \left[   \overline{\overline {\left( e_{1v}\,e_{3v}\,v \right)}}^{\,i+1/2,j}     \right] 
156   \biggr\}    && \\ 
157\end{flalign*}
158Since $\overline {\;\cdot \;} $ and $\delta $ operators commute: $\delta_{i+1/2}
159\left[ {\overline a^{\,i}} \right] = \overline {\delta_i \left[ a \right]}^{\,i+1/2}$,
160and introducing the horizontal divergence $\chi $, it becomes:
161\begin{align*}
162\equiv& \sum\limits_{i,j,k} - \frac{1} {2} \left\frac{\zeta} {e_{3f}} \right)^2 \; \overline{\overline{ e_{1T}\,e_{2T}\,e_{3T}\, \chi}}^{\,i+1/2,j+1/2} \;\;\equiv 0
163\qquad \qquad \qquad \qquad \qquad \qquad \qquad &&&&\\
164\end{align*}
165
166Note that the demonstration is done here for the relative potential
167vorticity but it still hold for the planetary ($f/e_3$) and the total
168potential vorticity $((\zeta +f) /e_3 )$. Another formulation of
169the two components of the vorticity term is optionally offered (ENE scheme) :
170\begin{equation*}
171   - \zeta \;{\textbf{k}}\times {\textbf {U}}_h
172\equiv 
173   \left( {{
174   \begin{array} {*{20}c}
175      + \frac{1} {e_{1u}} \; 
176      \overline {\left( \zeta / e_{3f}      \right)   
177      \overline {\left( e_{1v}\,e_{3v}\,v \right)}^{\,i+1/2}} ^{\,j} 
178      \hfill \\
179      - \frac{1} {e_{2v}} \; 
180      \overline {\left( \zeta / e_{3f}      \right)
181      \overline {\left( e_{2u}\,e_{3u}\,u \right)}^{\,j+1/2}} ^{\,i} 
182      \hfill \\
183   \end{array}} } 
184   \right)
185\end{equation*}
186
187This formulation does not conserve the enstrophy but the total kinetic
188energy. It is also possible to mix the two formulations in order to conserve
189enstrophy on the relative vorticity term and energy on the Coriolis term.
190\begin{flalign*}
191&\int\limits_D - \textbf{U}_h \cdot   \left\zeta \;\textbf{k} \times \textbf{U}_\right\;  dv &&  \\
192\equiv& \sum\limits_{i,j,k}   \biggl\{   
193      \overline {\left\frac{\zeta} {e_{3f}}      \right)
194        \overline {\left( e_{1v}e_{3v}v \right)}^{\,i+1/2}} ^{\,j} \, e_{2u}e_{3u}u
195   - \overline {\left\frac{\zeta} {e_{3f}}       \right)
196       \overline {\left( e_{2u}e_{3u}u \right)}^{\,j+1/2}} ^{\,i} \, e_{1v}e_{3v}v \;
197                                   \biggr\}     
198\\
199\equiv& \sum\limits_{i,j,k}  \frac{\zeta} {e_{3f}}
200   \biggl\{  \overline {\left( e_{1v}e_{3v} v \right)}^{\,i+1/2}\;
201             \overline {\left( e_{2u}e_{3u} u \right)}^{\,j+1/2}       
202        - \overline {\left( e_{2u}e_{3u} u \right)}^{\,j+1/2}\;
203               \overline {\left( e_{1v}e_{3v} v \right)}^{\,i+1/2}
204   \biggr\}
205   \equiv 0
206\end{flalign*}
207
208
209% -------------------------------------------------------------------------------------------------------------
210%       Gradient of Kinetic Energy / Vertical Advection
211% -------------------------------------------------------------------------------------------------------------
212\subsubsection{Gradient of Kinetic Energy / Vertical Advection}
213\label{Apdx_C_zad} 
214
215The change of Kinetic Energy (KE) due to the vertical advection is exactly
216balanced by the change of KE due to the horizontal gradient of KE~:
217\begin{equation*}
218      \int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv
219 = - \int_D \textbf{U}_h \cdot w \frac{\partial \textbf{U}_h} {\partial k}\;dv
220\end{equation*}
221Indeed, using successively \eqref{DOM_di_adj} ($i.e.$ the skew symmetry property of the $\delta$ operator) and the incompressibility, then again \eqref{DOM_di_adj}, then
222the commutativity of operators $\overline {\,\cdot \,}$ and $\delta$, and finally \eqref{DOM_mi_adj} ($i.e.$ the  symmetry property of the $\overline {\,\cdot \,}$ operator) applied in the horizontal and vertical direction, it becomes:
223\begin{flalign*}
224&\int_D \textbf{U}_h \cdot \nabla_h \left( \frac{1}{2}\;{\textbf{U}_h}^2 \right)\;dv   &&&\\
225\equiv& \frac{1}{2} \sum\limits_{i,j,k} 
226   \biggl\{ 
227   \frac{1} {e_{1u}}  \delta_{i+1/2} 
228   \left[   \overline {u^2}^{\,i} + \overline {v^2}^{\,j}    \right]  u\,e_{1u}e_{2u}e_{3u} 
229     + \frac{1} {e_{2v}}  \delta_{j+1/2} 
230   \left[   \overline {u^2}^{\,i} + \overline {v^2}^{\,j}   \right]  v\,e_{1v}e_{2v}e_{3v} 
231   \biggr\} 
232   &&& \displaybreak[0] \\ 
233%
234\equiv&  \frac{1}{2} \sum\limits_{i,j,k} 
235   \left(   \overline {u^2}^{\,i} + \overline {v^2}^{\,j}   \right)\;
236   \delta_k \left[  e_{1T}\,e_{2T} \,w   \right]
237%
238\;\; \equiv -\frac{1}{2} \sum\limits_{i,j,k}  \delta_{k+1/2} 
239   \left[
240      \overline{ u^2}^{\,i} 
241   + \overline{ v^2}^{\,j} 
242   \right] \;
243   e_{1v}\,e_{2v}\,w
244   &&& \displaybreak[0]\\
245%
246\equiv &\frac{1} {2} \sum\limits_{i,j,k} 
247   \left(    \overline {\delta_{k+1/2} \left[ u^2 \right]}^{\,i} 
248      + \overline {\delta_{k+1/2} \left[ v^2 \right]}^{\,j}    \right) \; e_{1T}\,e_{2T} \,w
249   && \displaybreak[0] \\
250
251\equiv &\frac{1} {2} \sum\limits_{i,j,k} 
252   \biggl\{  \overline {e_{1T}\,e_{2T} \,w}^{\,i+1/2}\;2   
253         \overline {u}^{\,k+1/2}\; \delta_{k+1/2}         \left[ u \right]     %&&&  \\
254    + \overline {e_{1T}\,e_{2T} \,w}^{\,j+1/2}\;\overline {v}^{\,k+1/2}\; \delta_{k+1/2}        \left[ v \right]  \;
255   \biggr\} 
256   &&\displaybreak[0] \\ 
257%
258\equiv& -\sum\limits_{i,j,k} 
259   \biggl\{
260   \quad \frac{1} {b_u } \;
261   \overline {\Bigl\{ \overline {e_{1T}\,e_{2T} \,w}^{\,i+1/2}\,\delta_{k+1/2}
262      \left[ u \right] 
263             \Bigr\} }^{\,k} \;u\;e_{1u}\,e_{2u}\,e_{3u} 
264   && \\
265   &\qquad \quad\; + \frac{1} {b_v } \;
266   \overline {\Bigl\{ \overline {e_{1T}\,e_{2T} \,w}^{\,j+1/2} \delta_{k+1/2}
267       \left[ v \right] 
268         \Bigr\} }^{\,k} \;v\;e_{1v}\,e_{2v}\,e_{3v}  \;
269   \biggr\} 
270   && \\ 
271\equiv& -\int\limits_D \textbf{U}_h \cdot w \frac{\partial \textbf{U}_h} {\partial k}\;dv &&&\\
272\end{flalign*}
273
274The main point here is that the satisfaction of this property links the choice of the discrete formulation of vertical advection and of horizontal gradient of KE. Choosing one imposes the other. For example KE can also be discretized as $1/2\,({\overline u^{\,i}}^2 + {\overline v^{\,j}}^2)$. This leads to the following expression for the vertical advection:
275\begin{equation*}
276\frac{1} {e_3 }\; w\; \frac{\partial \textbf{U}_h } {\partial k}
277\equiv \left( {{\begin{array} {*{20}c}
278\frac{1} {e_{1u}\,e_{2u}\,e_{3u}} \;
279\overline{\overline {e_{1T}\,e_{2T} \,w\;\delta_{k+1/2} 
280\left[ \overline u^{\,i+1/2} \right]}}^{\,i+1/2,k}  \hfill \\
281\frac{1} {e_{1v}\,e_{2v}\,e_{3v}} \;
282\overline{\overline {e_{1T}\,e_{2T} \,w\;\delta_{k+1/2}
283\left[ \overline v^{\,j+1/2} \right]}}^{\,j+1/2,k} \hfill \\
284\end{array}} } \right)
285\end{equation*}
286a formulation that requires a additional horizontal mean compare to the one used in NEMO. Nine velocity points have to be used instead of 3. This is the reason why it has not been choosen.
287
288% -------------------------------------------------------------------------------------------------------------
289%       Coriolis and advection terms: flux form
290% -------------------------------------------------------------------------------------------------------------
291\subsection{Coriolis and advection terms: flux form}
292\label{Apdx_C.1.3}
293
294% -------------------------------------------------------------------------------------------------------------
295%       Coriolis plus ``metric'' Term
296% -------------------------------------------------------------------------------------------------------------
297\subsubsection{Coriolis plus ``metric'' Term}
298\label{Apdx_C.1.3.1} 
299
300In flux from the vorticity term reduces to a Coriolis term in which the Coriolis parameter has been modified to account for the ``metric'' term. This altered Coriolis parameter is discretised at F-point. It is given by:
301\begin{equation*}
302f+\frac{1} {e_1 e_2 } 
303\left( v \frac{\partial e_2 } {\partial i} - u \frac{\partial e_1 } {\partial j}\right)\;
304\equiv \;
305f+\frac{1} {e_{1f}\,e_{2f}} 
306\left( \overline v^{\,i+1/2} \delta_{i+1/2} \left[ e_{2u} \right] 
307-\overline u^{\,j+1/2} \delta_{j+1/2} \left[ e_{1u}  \right] \right)
308\end{equation*}
309
310The ENE scheme is then applied to obtain the vorticity term in flux form. It therefore conserves the total KE. The demonstration is same as for the vorticity term in vector invariant form (\S\ref{Apdx_C_vor}).
311
312% -------------------------------------------------------------------------------------------------------------
313%       Flux form advection
314% -------------------------------------------------------------------------------------------------------------
315\subsubsection{Flux form advection}
316\label{Apdx_C.1.3.2} 
317
318The flux form operator of the momentum advection is evaluated using a centered second order finite difference scheme. Because of the flux form, the discrete operator does not contribute to the global budget of linear momentum. Because of the centered second order scheme, it conserves the horizontal kinetic energy, that is :
319
320\begin{equation} \label{Apdx_C_I.3.10}
321\int_D \textbf{U}_h \cdot 
322\left( {{\begin{array} {*{20}c}
323\nabla \cdot \left( \textbf{U}\,u \right) \hfill \\
324\nabla \cdot \left( \textbf{U}\,v \right) \hfill \\
325\end{array}} } \right)\;dv =\;0
326\end{equation}
327
328Let us demonstrate this property for the first term of the scalar product (i.e. considering just the the terms associated with the i-component of the advection):
329\begin{flalign*}
330&\int_D u \cdot \nabla \cdot \left(   \textbf{U}\,u   \right) \; dv    &&&\\
331%
332\equiv& \sum\limits_{i,j,k} 
333\biggl\{    \frac{1} {e_{1u}\, e_{2u}\,e_{3u}}    \biggl(   
334      \delta_{i+1/2}  \left[   \overline {e_{2u}\,e_{3u}\,u}^{\,i}      \;\overline u^{\,i}          \right]   
335   + \delta_j           \left[   \overline {e_{1u}\,e_{3u}\,v}^{\,i+1/2}\;\overline u^{\,j+1/2}   \right] 
336      &&& \\ & \qquad \qquad \qquad \qquad \qquad \qquad
337   + \delta_k          \left[   \overline {e_{1w}\,e_{2w}\,w}^{\,i+1/2}\;\overline u^{\,k+1/2} \right]
338         \biggr)   \;   \biggr\} \, e_{1u}\,e_{2u}\,e_{3u} \;u
339      &&& \displaybreak[0] \\ 
340%
341\equiv& \sum\limits_{i,j,k} 
342   \biggl\{ 
343      \delta_{i+1/2} \left[   \overline {e_{2u}\,e_{3u}\,u}^{\,i}\;  \overline u^{\,i}  \right]
344   + \delta_j          \left[   \overline {e_{1u}\,e_{3u}\,v}^{\,i+1/2}\;\overline u^{\,j+1/2}   \right]
345      &&& \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
346   + \delta_k         \left[   \overline {e_{1w}\,e_{2w}\,w}^{\,i+12}\;\overline u^{\,k+1/2}  \right]
347      \; \biggr\} \; u    &&& \displaybreak[0] \\
348%
349\equiv& - \sum\limits_{i,j,k}
350   \biggl\{ 
351      \overline {e_{2u}\,e_{3u}\,u}^{\,i}\;        \overline u^{\,i}       \delta_i
352      \left[ u \right] 
353        + \overline {e_{1u}\,e_{3u}\,v}^{\,i+1/2}\;   \overline u^{\,j+1/2}   \delta_{j+1/2} 
354      \left[ u \right] 
355      &&& \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
356       + \overline {e_{1w}\,e_{2w}\,w}^{\,i+1/2}\; \overline u^{\,k+1/2}   \delta_{k+1/2}    \left[ u \right]     \biggr\}     && \displaybreak[0] \\
357%
358\equiv& - \sum\limits_{i,j,k}
359   \biggl\{ 
360        \overline {e_{2u}\,e_{3u}\,u}^{\,i}        \delta_i       \left[ u^2 \right] 
361    + \overline {e_{1u}\,e_{3u}\,v}^{\,i+1/2}      \delta_{j+/2}  \left[ u^2 \right]
362    + \overline {e_{1w}\,e_{2w}\,w}^{\,i+1/2}   \delta_{k+1/2}    \left[ u^2 \right] 
363   \biggr\} 
364   && \displaybreak[0] \\
365%
366\equiv& \sum\limits_{i,j,k}
367   \bigg\{ 
368      e_{2u}\,e_{3u}\,u\;     \delta_{i+1/2}       \left[ \overline {u^2}^{\,i} \right]
369        + e_{1u}\,e_{3u}\,v\; \delta_{j+1/2}    \; \left[ \overline {u^2}^{\,i} \right]
370    + e_{1w}\,e_{2w}\,w\;  \delta_{k+1/2}       \left[ \overline {u^2}^{\,i} \right] 
371   \biggr\} 
372   && \displaybreak[0] \\
373%
374\equiv& \sum\limits_{i,j,k}
375\overline {u^2}^{\,i} 
376   \biggl\{ 
377      \delta_{i+1/2}    \left[ e_{2u}\,e_{3u}\,u  \right]
378   + \delta_{j+1/2}  \left[ e_{1u}\,e_{3u}\,v  \right]
379   + \delta_{k+1/2}  \left[ e_{1w}\,e_{2w}\,w \right] 
380   \biggr\}  \;\;  \equiv 0
381   &&& \\
382\end{flalign*}
383
384When the UBS scheme is used to evaluate the flux form momentum advection, the discrete operator does not contribute to the global budget of linear momentum (flux form). The horizontal kinetic energy is not conserved, but forced to decrease (the scheme is diffusive).
385
386% -------------------------------------------------------------------------------------------------------------
387%       Hydrostatic Pressure Gradient Term
388% -------------------------------------------------------------------------------------------------------------
389\subsection{Hydrostatic Pressure Gradient Term}
390\label{Apdx_C.1.4}
391
392
393A pressure gradient has no contribution to the evolution of the vorticity as the curl of a gradient is zero. In $z$-coordinate, this properties is satisfied locally on a C-grid with 2nd order finite differences (property \eqref{Eq_DOM_curl_grad}). When the equation of state is linear ($i.e.$ when an advective-diffusive equation for density can be derived from those of temperature and salinity) the change of KE due to the work of pressure forces is balanced by the change of potential energy due to buoyancy forces:
394\begin{equation*}
395\int_D - \frac{1} {\rho_o} \left. \nabla p^h \right|_z \cdot \textbf{U}_h \;dv
396= \int_D \nabla \cdot \left( \rho \,\textbf {U} \right)\;g\;z\;\;dv
397\end{equation*}
398
399This property can be satisfied in discrete sense for both $z$- and $s$-coordinates. Indeed, defining the depth of a $T$-point, $z_T$ defined as the sum of the vertical scale factors at $w$-points starting from the surface, the workof pressure forces can be written as:
400\begin{flalign*}
401&\int_D - \frac{1} {\rho_o} \left. \nabla p^h \right|_z \cdot \textbf{U}_h \;dv   &&& \\
402\equiv& \sum\limits_{i,j,k} \biggl\{ \;  - \frac{1} {\rho_o e_{1u}}   \Bigl(
403\delta_{i+1/2} \left[ p^h \right] - g\;\overline \rho^{\,i+1/2}\;\delta_{i+1/2} \left[ z_T \right] 
404               \Bigr\; u\;e_{1u}\,e_{2u}\,e_{3u} 
405   &&  \\ & \qquad \qquad
406                                 - \frac{1} {\rho_o e_{2v}}    \Bigl(
407\delta_{j+1/2} \left[ p^h \right] - g\;\overline \rho^{\,j+1/2}\delta_{j+1/2}  \left[ z_T \right] 
408               \Bigr\; v\;e_{1v}\,e_{2v}\,e_{3v} \;
409   \biggr\}   && \\ 
410\end{flalign*}
411
412Using  \eqref{DOM_di_adj}, $i.e.$ the skew symmetry property of the $\delta$ operator, \eqref{Eq_wzv}, the continuity equation), and \eqref{Eq_dynhpg_sco}, the hydrostatic
413equation in $s$-coordinate, it turns out to be:
414\begin{flalign*} 
415\equiv& \frac{1} {\rho_o} \sum\limits_{i,j,k}    \biggl\{ 
416      e_{2u}\,e_{3u} \;u\;g\; \overline \rho^{\,i+1/2}\;\delta_{i+1/2}[ z_T]   
417   +  e_{1v}\,e_{3v} \;v\;g\; \overline \rho^{\,j+1/2}\;\delta_{j+1/2}[ z_T]     
418&& \\  & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\,
419   +\Bigl\delta_i[ e_{2u}\,e_{3u}\,u] + \delta_j [ e_{1v}\,e_{3v}\,v]  \Bigr)\;p^h \biggr\}  &&\\
420%
421\equiv& \frac{1} {\rho_o } \sum\limits_{i,j,k}
422   \biggl\{ 
423       e_{2u}\,e_{3u} \;u\;g\;   \overline \rho^{\,i+1/2} \delta_{i+1/2} \left[ z_T \right]
424   +  e_{1v}\,e_{3v} \;v\;g\; \overline \rho^{\,j+1/2} \delta_{j+1/2} \left[ z_T \right] 
425   &&&\\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\,
426    - \delta_k \left[ e_{1w} e_{2w}\,w \right]\;p^h   \biggr\}   &&&\\ 
427%
428\equiv& \frac{1} {\rho_o } \sum\limits_{i,j,k}
429   \biggl\{ 
430      e_{2u}\,e_{3u} \;u\;g\; \overline \rho^{\,i+1/2}\;\delta_{i+1/2} \left[ z_T \right]
431   +  e_{1v}\,e_{3v} \;v\;g\; \overline \rho^{\,j+1/2} \;\delta_{j+1/2} \left[ z_T \right] 
432   &&& \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\,
433   +   e_{1w} e_{2w} \;w\;\delta_{k+1/2} \left[ p_h \right] 
434   \biggr\}  &&&\\ 
435%
436\equiv& \frac{g} {\rho_o}  \sum\limits_{i,j,k}
437   \biggl\{ 
438      e_{2u}\,e_{3u} \;u\; \overline \rho^{\,i+1/2}\;\delta_{i+1/2} \left[ z_T \right]
439   +  e_{1v}\,e_{3v} \;v\; \overline \rho^{\,j+1/2}\;\delta_{j+1/2} \left[ z_T \right]   
440   &&& \\ & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\,
441   -  e_{1w} e_{2w} \;w\;e_{3w} \overline \rho^{\,k+1/2} 
442   \biggr\}   &&&\\ 
443\end{flalign*}
444noting that by definition of $z_T$, $\delta_{k+1/2} \left[ z_T \right] \equiv - e_{3w} $, thus:
445\begin{multline*}
446\equiv \frac{g} {\rho_o}  \sum\limits_{i,j,k}
447   \biggl\{ 
448      e_{2u}\,e_{3u} \;u\; \overline \rho^{\,i+1/2}\;\delta_{i+1/2} \left[ z_T \right]
449   +  e_{1v}\,e_{3v} \;v\; \overline \rho^{\,j+1/2} \delta_{j+1/2} \left[ z_T \right]
450   \biggr. \\ 
451\shoveright{
452   \biggl.
453   +  e_{1w} e_{2w} \;w\;  \overline \rho^{\,k+1/2}\;\delta_{k+1/2} \left[ z_T \right] 
454   \biggr\} } \\ 
455\end{multline*}
456Using \eqref{DOM_di_adj}, it becomes:
457\begin{flalign*}
458\equiv& - \frac{g} {\rho_o} \sum\limits_{i,j,k} z_T
459   \biggl\{ 
460      \delta_i    \left[ e_{2u}\,e_{3u}\,u\; \overline \rho^{\,i+1/2}   \right]
461   +  \delta_j    \left[ e_{1v}\,e_{3v}\,v\; \overline \rho^{\,j+1/2}   \right]
462   +  \delta_k    \left[ e_{1w} e_{2w}\,w\;  \overline \rho^{\,k+1/2}   \right] 
463   \biggr\} 
464   &&& \\
465%
466\equiv& -\int_D \nabla \cdot \left( \rho \, \textbf{U} \right)\;g\;z\;\;dv    &&& \\
467\end{flalign*}
468
469Note that this property strongly constraints the discrete expression of both
470the depth of $T-$points and of the term added to the pressure gradient in
471$s$-coordinate. Nevertheless, it is almost never satisfied as a linear equation of state
472is rarely used.
473
474% -------------------------------------------------------------------------------------------------------------
475%       Surface Pressure Gradient Term
476% -------------------------------------------------------------------------------------------------------------
477\subsection{Surface Pressure Gradient Term}
478\label{Apdx_C.1.5}
479
480
481The surface pressure gradient has no contribution to the evolution of the vorticity. This property is trivially satisfied locally as the equation verified by $\psi $ has been derived from the discrete formulation of the momentum equation and of the curl. But it has to be noticed that since the elliptic equation verified by $\psi $ is solved numerically by an iterative solver (preconditioned conjugate gradient or successive over relaxation), the
482property is only satisfied at the precision required on the solver used.
483
484With the rigid-lid approximation, the change of KE due to the work of surface pressure forces is exactly zero. This is satisfied in discrete form, at the precision required on the elliptic solver used to solve this equation. This can be demonstrated as follows:
485\begin{flalign*}
486\int\limits_D  - \frac{1} {\rho_o} \nabla_h \left( p_s \right) \cdot \textbf{U}_h \;dv%   &&& \\
487%
488&\equiv \sum\limits_{i,j,k}   \biggl\{    \;
489    \left(  - M_u - \frac{1} {H_u \,e_{2u}}  \delta_j    \left[ \partial_t \psi  \right]   \right)\;
490    u\;e_{1u}\,e_{2u}\,e_{3u} 
491&&&\\&  \qquad \;\;\,
492      + \left(  - M_v + \frac{1} {H_v \,e_{1v}}  \delta_i \left[ \partial_t \psi \right]     \right)\;
493     v\;e_{1v}\,e_{2v}\,e_{3v}   \; \biggr\}     
494&&&\\
495\\
496%
497&\equiv \sum\limits_{i,j}  \Biggl\{   \;
498   \biggl( - M_u - \frac{1} {H_u \,e_{2u}}  \delta_j \left[ \partial_t \psi  \right]   \biggr)
499   \biggl( \sum\limits_k  u\;e_{3u}   \biggr)\;  e_{1u}\,e_{2u} 
500&&&\\&  \qquad \;\;\,
501   + \biggl( - M_v + \frac{1} {H_v \,e_{1v}}  \delta_i \left[ \partial_t \psi  \right]   \biggr)
502      \biggl(   \sum\limits_k   v\;e_{3v}   \biggr)\;   e_{1v}\,e_{2v} \;   \Biggr\} 
503   && \\ 
504%
505\intertext{using the relation between \textit{$\psi $} and the vertically sum of the velocity, it becomes:}
506%
507&\equiv \sum\limits_{i,j} 
508   \biggl\{  \;   
509      \left( \;\;\,
510      M_u + \frac{1} {H_u \,e_{2u}}  \delta_j \left[ \partial_t \psi \right] 
511      \right)\;
512      e_{1u} \,\delta_j
513         \left[ \partial_t \psi  \right] 
514   && \\ &  \qquad \;\;\,
515      + \left(
516      - M_v + \frac{1} {H_v \,e_{1v}}  \delta_i \left[ \partial_t \psi \right] 
517      \right)\;
518      e_{2v} \,\delta_i \left[ \partial_t \psi \right]   \;
519   \biggr\} 
520   && \\ 
521%
522\intertext{applying the adjoint of the $\delta$ operator, it is now:}
523%
524&\equiv \sum\limits_{i,j}  - \partial_t \psi \;
525   \biggl\{    \;
526     \delta_{j+1/2} \left[ e_{1u} M_u \right] 
527     - \delta_{i+1/2} \left[ e_{1v} M_v \right] 
528   && \\ &  \qquad \;\;\,
529   + \delta_{i+1/2} 
530      \left[ \frac{e_{2v}} {H_v \,e_{2v}}  \delta_i \left[ \partial_t \psi \right] 
531      \right]
532   + \delta_{j+1/2} 
533       \left[ \frac{e_{1u}} {H_u \,e_{2u}}  \delta_j \left[ \partial_t \psi \right] 
534       \right
535   \biggr\}   &&&\\
536   &\equiv 0                   && \\ 
537\end{flalign*}
538
539The last equality is obtained using \eqref{Eq_dynspg_rl}, the discrete barotropic streamfunction time evolution equation. By the way, this shows that \eqref{Eq_dynspg_rl} is the only way do compute the streamfunction, otherwise the surface pressure forces will work. Nevertheless, since the elliptic equation verified by $\psi $ is solved numerically by an iterative solver, the property is only satisfied at the precision required on the solver.
540
541% ================================================================
542% Conservation Properties on Tracers
543% ================================================================
544\section{Conservation Properties on Tracers}
545\label{Apdx_C.2}
546
547
548All the numerical schemes used in NEMO are written such that the tracer content is conserved by the internal dynamics and physics (equations in flux form). For advection, only the CEN2 scheme ($i.e.$ 2nd order finite different scheme) conserves the global variance of tracer. Nevertheless the other schemes ensure that the global variance decreases ($i.e.$ they are at least slightly diffusive). For diffusion, all the schemes ensure the decrease of the total tracer variance, but the iso-neutral operator. There is generally no strict conservation of mass, as the equation of state is non linear with respect to $T$ and $S$. In practice, the mass is conserved with a very good accuracy.
549% -------------------------------------------------------------------------------------------------------------
550%       Advection Term
551% -------------------------------------------------------------------------------------------------------------
552\subsection{Advection Term}
553\label{Apdx_C.2.1}
554
555Whatever the advection scheme considered it conserves of the tracer content as all the scheme are written in flux form. Let $\tau$ be the tracer interpolated at velocity point (whatever the interpolation is). The conservation of the tracer content is obtained as follows:
556\begin{flalign*}
557&\int_D \nabla \cdot \left( T \textbf{U} \right)\;dv    &&&\\
558&\equiv  \sum\limits_{i,j,k}    \biggl\{
559    \frac{1} {e_{1T}\,e_{2T}\,e_{3T}} 
560    \left\delta_i    \left[   e_{2u}\,e_{3u}\; u \;\tau_u   \right]
561           + \delta_j    \left[   e_{1v}\,e_{3v}\; v  \;\tau_v   \right] \right)
562&&&\\& \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad
563   + \frac{1} {e_{3T}} \delta_k \left[ w\;\tau \right]    \biggl\}  e_{1T}\,e_{2T}\,e_{3T} &&&\\
564%
565&\equiv  \sum\limits_{i,j,k}     \left\{
566      \delta_\left[ e_{2u}\,e_{3u}  \,\overline T^{\,i+1/2}\,u \right]
567         + \delta_\left[ e_{1v}\,e_{3v}  \,\overline T^{\,j+1/2}\,v \right] 
568   + \delta_k \left[ e_{1T}\,e_{2T} \,\overline T^{\,k+1/2}\,w \right] \right\} 
569    && \\
570&\equiv 0 &&&
571\end{flalign*}
572
573The conservation of the variance of tracer can be achieved only with the CEN2 scheme. It can be demonstarted as follows:
574\begin{flalign*}
575&\int\limits_D T\;\nabla \cdot \left( T\; \textbf{U} \right)\;dv &&&\\
576\equiv& \sum\limits_{i,j,k} T\;
577   \left\{
578      \delta_\left[ e_{2u}\,e_{3u} \overline T^{\,i+1/2}\,u \right]
579   + \delta_\left[ e_{1v}\,e_{3v} \overline T^{\,j+1/2}\,v \right]
580   + \delta_k \left[ e_{1T}\,e_{2T} \overline T^{\,k+1/2}w \right]
581   \right\} 
582   && \\
583\equiv& \sum\limits_{i,j,k} 
584   \left\{
585   -           e_{2u}\,e_{3u} \overline T^{\,i+1/2}\,u\,\delta_{i+1/2}  \left[ T \right] \right.
586   -           e_{1v}\,e_{3v}  \overline T^{\,j+1/2}\,v\;\delta_{j+1/2}  \left[ T \right]
587&&&\\& \qquad \qquad \qquad \qquad \qquad \qquad \quad \;
588   - \left. e_{1T}\,e_{2T} \overline T^{\,k+1/2}w\;\delta_{k+1/2} \left[ T \right]
589   \right\} 
590   &&\\
591\equiv&  -\frac{1} {2}  \sum\limits_{i,j,k}
592   \Bigl\{
593      e_{2u}\,e_{3u} \;  u\;\delta_{i+1/2} \left[ T^2 \right]
594   + e_{1v}\,e_{3v} \;  v\;\delta_{j+1/2}  \left[ T^2 \right]
595   + e_{1T}\,e_{2T} \;w\;\delta_{k+1/2} \left[ T^2 \right]
596   \Bigr\} 
597   && \\ 
598\equiv& \frac{1} {2}  \sum\limits_{i,j,k} T^2
599   \Bigl\{
600      \delta_\left[ e_{2u}\,e_{3u}\,u \right]
601   + \delta_\left[ e_{1v}\,e_{3v}\,v \right]
602   + \delta_k \left[ e_{1T}\,e_{2T}\,w \right]
603   \Bigr\} 
604\quad \equiv 0 &&&
605\end{flalign*}
606
607
608% ================================================================
609% Conservation Properties on Lateral Momentum Physics
610% ================================================================
611\section{Conservation Properties on Lateral Momentum Physics}
612\label{Apdx_C.3}
613
614
615The discrete formulation of the horizontal diffusion of momentum ensures the
616conservation of potential vorticity and horizontal divergence and the
617dissipation of the square of these quantities (i.e. enstrophy and the
618variance of the horizontal divergence) as well as the dissipation of the
619horizontal kinetic energy. In particular, when the eddy coefficients are
620horizontally uniform, it ensures a complete separation of vorticity and
621horizontal divergence fields, so that diffusion (dissipation) of vorticity
622(enstrophy) does not generate horizontal divergence (variance of the
623horizontal divergence) and \textit{vice versa}.
624
625These properties of the horizontal diffusive operator are a direct
626consequence of properties \eqref{Eq_DOM_curl_grad} and \eqref{Eq_DOM_div_curl}. When the vertical curl of the horizontal diffusion of momentum (discrete sense) is taken, the term associated to the horizontal gradient of the divergence is zero locally.
627
628% -------------------------------------------------------------------------------------------------------------
629%       Conservation of Potential Vorticity
630% -------------------------------------------------------------------------------------------------------------
631\subsection{Conservation of Potential Vorticity}
632\label{Apdx_C.3.1}
633
634The lateral momentum diffusion term conserves the potential vorticity :
635\begin{flalign*}
636&\int \limits_D \frac{1} {e_3 } \textbf{k} \cdot \nabla \times 
637   \Bigl[ \nabla_h
638      \left( A^{\,lm}\;\chi  \right)
639   - \nabla_h \times
640      \left( A^{\,lm}\;\zeta \; \textbf{k} \right)
641   \Bigr]\;dv  = 0
642\end{flalign*}
643%%%%%%%%%%  recheck here....  (gm)
644\begin{flalign*}
645= \int \limits_D  -\frac{1} {e_3 } \textbf{k} \cdot \nabla \times 
646   \Bigl[ \nabla_h \times 
647      \left( A^{\,lm}\;\zeta \; \textbf{k} \right)
648   \Bigr]\;dv &&& \\ 
649\end{flalign*}
650\begin{flalign*}
651\equiv& \sum\limits_{i,j}
652   \left\{
653   \delta_{i+1/2} 
654   \left[
655   \frac {e_{2v}} {e_{1v}\,e_{3v}}  \delta_i
656      \left[ A_f^{\,lm} e_{3f} \zeta  \right]
657    \right]
658   + \delta_{j+1/2} 
659   \left[
660   \frac {e_{1u}} {e_{2u}\,e_{3u}} \delta_j
661      \left[ A_f^{\,lm} e_{3f} \zeta  \right]
662   \right]
663   \right\} 
664   && \\ 
665%
666\intertext{Using \eqref{DOM_di_adj}, it follows:}
667%
668\equiv& \sum\limits_{i,j,k} 
669   -\,\left\{
670      \frac{e_{2v}} {e_{1v}\,e_{3v}}  \delta_i
671      \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_i \left[ 1\right]
672   + \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j
673      \left[ A_f^{\,lm} e_{3f} \zeta  \right]\;\delta_j \left[ 1\right]
674   \right\} \quad \equiv 0
675   && \\ 
676\end{flalign*}
677
678% -------------------------------------------------------------------------------------------------------------
679%       Dissipation of Horizontal Kinetic Energy
680% -------------------------------------------------------------------------------------------------------------
681\subsection{Dissipation of Horizontal Kinetic Energy}
682\label{Apdx_C.3.2}
683
684
685The lateral momentum diffusion term dissipates the horizontal kinetic energy:
686%\begin{flalign*}
687\begin{equation*}
688\begin{split}
689\int_D \textbf{U}_h \cdot 
690   \left[ \nabla_h      \right.   &     \left.       \left( A^{\,lm}\;\chi \right)     
691   - \nabla_h \times  \left( A^{\,lm}\;\zeta \;\textbf{k} \right)     \right] \; dv    \\
692\\  %%%
693\equiv& \sum\limits_{i,j,k} 
694   \left\{
695     \frac{1} {e_{1u}}               \delta_{i+1/2} \left[  A_T^{\,lm}          \chi     \right]
696   - \frac{1} {e_{2u}\,e_{3u}}  \delta_j           \left[ A_f^{\,lm} e_{3f} \zeta   \right]
697   \right\} \; e_{1u}\,e_{2u}\,e_{3u} \;u     \\
698&\;\; +  \left\{
699      \frac{1} {e_{2u}}             \delta_{j+1/2} \left[ A_T^{\,lm}          \chi    \right] 
700   + \frac{1} {e_{1v}\,e_{3v}} \delta_i            \left[ A_f^{\,lm} e_{3f} \zeta  \right] 
701   \right\} \; e_{1v}\,e_{2u}\,e_{3v} \;v     \qquad \\ 
702\\  %%%
703\equiv& \sum\limits_{i,j,k} 
704   \Bigl\{
705     e_{2u}\,e_{3u} \;u\;  \delta_{i+1/2} \left[ A_T^{\,lm}           \chi    \right]
706   - e_{1u}             \;u\;  \delta_j           \left[ A_f^{\,lm} e_{3f} \zeta  \right]
707    \Bigl\} 
708    \\ 
709&\;\; + \Bigl\{
710      e_{1v}\,e_{3v} \;v\;  \delta_{j+1/2}  \left[ A_T^{\,lm}           \chi    \right]
711   + e_{2v}             \;v\;  \delta_i            \left[ A_f^{\,lm} e_{3f} \zeta  \right]
712   \Bigl\}      \\ 
713\\  %%%
714\equiv& \sum\limits_{i,j,k} 
715   - \Bigl(
716     \delta_i   \left[  e_{2u}\,e_{3u} \;u  \right]
717   + \delta_\left[  e_{1v}\,e_{3v}  \;v  \right] 
718        \Bigr) \;  A_T^{\,lm} \chi   \\ 
719&\;\; - \Bigl(
720     \delta_{i+1/2}  \left[  e_{2v}  \;v  \right]
721   - \delta_{j+1/2}  \left[  e_{1u} \;u  \right] 
722        \Bigr)\;  A_f^{\,lm} e_{3f} \zeta      \\ 
723\\  %%%
724\equiv& \sum\limits_{i,j,k} 
725   - A_T^{\,lm}  \,\chi^2   \;e_{1T}\,e_{2T}\,e_{3T}
726   - A_f ^{\,lm}  \,\zeta^2 \;e_{1f }\,e_{2f }\,e_{3f} 
727\quad \leq 0       \\
728\end{split}
729\end{equation*}
730
731% -------------------------------------------------------------------------------------------------------------
732%       Dissipation of Enstrophy
733% -------------------------------------------------------------------------------------------------------------
734\subsection{Dissipation of Enstrophy}
735\label{Apdx_C.3.3}
736
737
738The lateral momentum diffusion term dissipates the enstrophy when the eddy
739coefficients are horizontally uniform:
740\begin{flalign*}
741&\int\limits_\zeta \; \textbf{k} \cdot \nabla \times 
742   \left[
743     \nabla_h
744      \left( A^{\,lm}\;\chi  \right)
745   -\nabla_h \times 
746      \left( A^{\,lm}\;\zeta \; \textbf{k} \right)
747   \right]\;dv &&&\\
748&= A^{\,lm} \int \limits_D \zeta \textbf{k} \cdot \nabla \times 
749   \left[
750   \nabla_h \times 
751      \left( \zeta \; \textbf{k} \right)
752   \right]\;dv &&&\displaybreak[0]\\
753&\equiv A^{\,lm} \sum\limits_{i,j,k}  \zeta \;e_{3f} 
754   \left\{
755     \delta_{i+1/2} 
756   \left[
757   \frac{e_{2v}} {e_{1v}\,e_{3v}} \delta_i
758      \left[ e_{3f} \zeta  \right]
759   \right]
760   + \delta_{j+1/2} 
761   \left[
762   \frac{e_{1u}} {e_{2u}\,e_{3u}} \delta_j
763      \left[ e_{3f} \zeta  \right]
764   \right]
765   \right\} 
766   &&&\\ 
767%
768\intertext{Using \eqref{DOM_di_adj}, it follows:}
769%
770&\equiv  - A^{\,lm} \sum\limits_{i,j,k} 
771   \left\{
772     \left(
773     \frac{1} {e_{1v}\,e_{3v}}  \delta_i
774      \left[ e_{3f} \zeta  \right] 
775     \right)^2   e_{1v}\,e_{2v}\,e_{3v}
776   + \left(
777     \frac{1} {e_{2u}\,e_{3u}}  \delta_j
778      \left[ e_{3f} \zeta  \right]
779     \right)^2   e_{1u}\,e_{2u}\,e_{3u}
780     \right\}      &&&\\
781& \leq \;0       &&&\\ 
782\end{flalign*}
783
784% -------------------------------------------------------------------------------------------------------------
785%       Conservation of Horizontal Divergence
786% -------------------------------------------------------------------------------------------------------------
787\subsection{Conservation of Horizontal Divergence}
788\label{Apdx_C.3.4}
789
790When the horizontal divergence of the horizontal diffusion of momentum
791(discrete sense) is taken, the term associated to the vertical curl of the
792vorticity is zero locally, due to (II.1.8). The resulting term conserves the
793$\chi$ and dissipates $\chi^2$ when the eddy coefficients are
794horizontally uniform.
795\begin{flalign*}
796& \int\limits_\nabla_h \cdot 
797   \Bigl[
798     \nabla_h
799      \left( A^{\,lm}\;\chi \right)
800   - \nabla_h \times 
801      \left( A^{\,lm}\;\zeta \;\textbf{k} \right)
802   \Bigr]
803   dv
804= \int\limits_\nabla_h \cdot \nabla_h
805   \left( A^{\,lm}\;\chi  \right)
806   dv
807&&&\\
808&\equiv \sum\limits_{i,j,k} 
809   \left\{ 
810     \delta_i
811      \left[
812      A_u^{\,lm} \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} 
813         \left[ \chi \right] 
814      \right]
815   + \delta_j
816      \left[
817      A_v^{\,lm} \frac{e_{1v}\,e_{3v}} {e_{2v}}  \delta_{j+1/2} 
818         \left[ \chi \right] 
819      \right]
820   \right\}
821   &&&\\ 
822%
823\intertext{Using \eqref{DOM_di_adj}, it follows:}
824%
825&\equiv \sum\limits_{i,j,k} 
826   - \left\{
827   \frac{e_{2u}\,e_{3u}} {e_{1u}}  A_u^{\,lm} \delta_{i+1/2} 
828      \left[ \chi \right]
829   \delta_{i+1/2} 
830      \left[ 1 \right] 
831   + \frac{e_{1v}\,e_{3v}} {e_{2v}}  A_v^{\,lm} \delta_{j+1/2} 
832      \left[ \chi \right]
833   \delta_{j+1/2} 
834      \left[ 1 \right]
835   \right\} \;
836   \equiv 0
837   &&& \\ 
838\end{flalign*}
839
840% -------------------------------------------------------------------------------------------------------------
841%       Dissipation of Horizontal Divergence Variance
842% -------------------------------------------------------------------------------------------------------------
843\subsection{Dissipation of Horizontal Divergence Variance}
844\label{Apdx_C.3.5}
845
846\begin{flalign*}
847&\int\limits_D \chi \;\nabla_h \cdot 
848   \left[    \nabla_h              \left( A^{\,lm}\;\chi                    \right)
849           - \nabla_h   \times  \left( A^{\,lm}\;\zeta \;\textbf{k} \right)    \right]\;  dv
850 = A^{\,lm}   \int\limits_D \chi \;\nabla_h \cdot \nabla_h \left( \chi \right)\;  dv    &&&\\ 
851%
852&\equiv A^{\,lm}  \sum\limits_{i,j,k}  \frac{1} {e_{1T}\,e_{2T}\,e_{3T}}  \chi 
853   \left\{
854      \delta_\left[   \frac{e_{2u}\,e_{3u}} {e_{1u}}  \delta_{i+1/2} \left[ \chi \right]   \right]
855   + \delta_\left[   \frac{e_{1v}\,e_{3v}} {e_{2v}}   \delta_{j+1/2} \left[ \chi \right]   \right]
856   \right\} \;   e_{1T}\,e_{2T}\,e_{3T}    &&&\\ 
857%
858\intertext{Using \eqref{DOM_di_adj}, it turns out to be:}
859%
860&\equiv - A^{\,lm} \sum\limits_{i,j,k}
861   \left\{ 
862   \left\frac{1} {e_{1u}}  \delta_{i+1/2}  \left[ \chi \right]  \right)^2  e_{1u}\,e_{2u}\,e_{3u}
863+ \left\frac{1} {e_{2v}}  \delta_{j+1/2}  \left[ \chi \right]  \right)^2  e_{1v}\,e_{2v}\,e_{3v}
864   \right\} \;    &&&\\
865&\leq 0              &&&\\
866\end{flalign*}
867
868% ================================================================
869% Conservation Properties on Vertical Momentum Physics
870% ================================================================
871\section{Conservation Properties on Vertical Momentum Physics}
872\label{Apdx_C_4}
873
874
875As for the lateral momentum physics, the continuous form of the vertical diffusion of momentum satisfies the several integral constraints. The first two are associated to the conservation of momentum and the dissipation of horizontal kinetic energy:
876\begin{align*}
877 \int\limits_
878    \frac{1} {e_3 }\; \frac{\partial } {\partial k}
879   \left(
880   \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}
881   \right)\;
882   dv \qquad \quad &= \vec{\textbf{0}}
883   \\
884%
885\intertext{and}
886%
887\int\limits_D
888   \textbf{U}_h \cdot 
889   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
890   \left(
891   \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k}
892   \right)\;
893   dv \quad &\leq 0
894   \\
895\end{align*}
896The first property is obvious. The second results from:
897
898\begin{flalign*}
899\int\limits_D
900   \textbf{U}_h \cdot 
901   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
902   \left(
903   \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} 
904   \right)\;dv
905   &&&\\
906\end{flalign*}
907\begin{flalign*}
908&\equiv \sum\limits_{i,j,k} 
909   \left(
910     u\; \delta_k
911      \left[
912      \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} 
913         \left[ u \right] 
914      \right]\;
915      e_{1u}\,e_{2u} 
916   + v\;\delta_k
917      \left[
918      \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} 
919         \left[ v \right] 
920      \right]\;
921      e_{1v}\,e_{2v} 
922   \right)
923   &&&\\ 
924%
925\intertext{as the horizontal scale factor do not depend on $k$, it follows:}
926%
927&\equiv - \sum\limits_{i,j,k} 
928   \left(
929      \frac{A_u^{\,vm}} {e_{3uw}}
930      \left(
931      \delta_{k+1/2} 
932         \left[ u \right] 
933      \right)^2\;
934      e_{1u}\,e_{2u} 
935   + \frac{A_v^{\,vm}} {e_{3vw}} 
936      \left( \delta_{k+1/2} 
937         \left[ v \right] 
938      \right)^2\;
939      e_{1v}\,e_{2v}
940   \right)
941    \quad \leq 0
942    &&&\\
943\end{flalign*}
944
945The vorticity is also conserved. Indeed:
946\begin{flalign*}
947\int \limits_D
948   \frac{1} {e_3 } \textbf{k} \cdot \nabla \times 
949      \left(
950      \frac{1} {e_3 }\; \frac{\partial } {\partial k}
951         \left(
952         \frac{A^{\,vm}} {e_3}\; \frac{\partial \textbf{U}_h } {\partial k} 
953         \right)
954      \right)\;
955      dv
956      &&&\\ 
957\end{flalign*}
958\begin{flalign*}
959\equiv \sum\limits_{i,j,k}  \frac{1} {e_{3f}}\; \frac{1} {e_{1f}\,e_{2f}}
960   \bigg\{    \biggr.   \quad
961   \delta_{i+1/2} 
962      &\left(
963      \frac{e_{2v}} {e_{3v}} \delta_k
964         \left[
965         \frac{1} {e_{3vw}} \delta_{k+1/2} 
966            \left[ v \right] 
967         \right]
968      \right)
969    &&\\
970   \biggl.
971   - \delta_{j+1/2} 
972      &\left(
973      \frac{e_{1u}} {e_{3u}} \delta_k
974         \left[
975         \frac{1} {e_{3uw}}\delta_{k+1/2} 
976            \left[ u \right]
977         \right]
978      \right)
979   \biggr\} \;
980   e_{1f}\,e_{2f}\,e_{3f} \; \equiv 0
981   && \\
982\end{flalign*}
983If the vertical diffusion coefficient is uniform over the whole domain, the
984enstrophy is dissipated, i.e.
985\begin{flalign*}
986\int\limits_D \zeta \, \textbf{k} \cdot \nabla \times 
987   \left(
988   \frac{1} {e_3}\; \frac{\partial } {\partial k}
989      \left(
990      \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} 
991      \right)
992   \right)\;
993   dv = 0
994   &&&\\
995\end{flalign*}
996This property is only satisfied in $z$-coordinates:
997
998\begin{flalign*}
999\int\limits_D \zeta \, \textbf{k} \cdot \nabla \times 
1000   \left(
1001   \frac{1} {e_3}\; \frac{\partial } {\partial k}
1002      \left(
1003      \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} 
1004      \right)
1005   \right)\;
1006   dv
1007   &&& \\ 
1008\end{flalign*}
1009\begin{flalign*}
1010\equiv \sum\limits_{i,j,k} \zeta \;e_{3f} \;
1011   \biggl\{    \biggr\quad
1012   \delta_{i+1/2} 
1013      &\left(
1014         \frac{e_{2v}} {e_{3v}} \delta_k
1015         \left[
1016         \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} 
1017            \left[ v \right] 
1018         \right]
1019         \right)
1020         &&\\
1021   - \delta_{j+1/2} 
1022      &\biggl.
1023      \left(   
1024         \frac{e_{1u}} {e_{3u}} \delta_k
1025         \left[
1026         \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} 
1027            \left[ u \right]
1028          \right]
1029         \right)
1030   \biggr\} 
1031   &&\\ 
1032\end{flalign*}
1033\begin{flalign*}
1034\equiv \sum\limits_{i,j,k} \zeta \;e_{3f} 
1035   \biggl\{    \biggr\quad
1036   \frac{1} {e_{3v}} \delta_k
1037      &\left[
1038      \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} 
1039         \left[ \delta_{i+1/2} 
1040            \left[ e_{2v}\,v \right]
1041          \right]
1042      \right]
1043      &&\\ 
1044    \biggl.
1045   - \frac{1} {e_{3u}} \delta_k
1046      &\left[
1047      \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} 
1048         \left[ \delta_{j+1/2} 
1049            \left[ e_{1u}\,u \right]
1050          \right]
1051      \right]
1052   \biggr\} 
1053   &&\\ 
1054\end{flalign*}
1055Using the fact that the vertical diffusive coefficients are uniform and that in $z$-coordinates, the vertical scale factors do not depends on $i$ and $j$ so that: $e_{3f} =e_{3u} =e_{3v} =e_{3T} $ and $e_{3w} =e_{3uw} =e_{3vw} $, it follows:
1056\begin{flalign*}
1057\equiv A^{\,vm} \sum\limits_{i,j,k} \zeta \;\delta_k
1058   \left[
1059   \frac{1} {e_{3w}} \delta_{k+1/2} 
1060      \Bigl[
1061      \delta_{i+1/2} 
1062         \left[ e_{2v}\,v \right]
1063      - \delta_{j+1/ 2} 
1064         \left[ e_{1u}\,u \right]
1065       \Bigr]
1066   \right]
1067   &&&\\
1068\end{flalign*}
1069\begin{flalign*}
1070\equiv - A^{\,vm} \sum\limits_{i,j,k} \frac{1} {e_{3w}}
1071   \left(
1072   \delta_{k+1/2} 
1073      \left[ \zeta  \right]
1074    \right)^2 \;
1075    e_{1f}\,e_{2f} 
1076    \; \leq 0
1077    &&&\\
1078\end{flalign*}
1079Similarly, the horizontal divergence is obviously conserved:
1080
1081\begin{flalign*}
1082\int\limits_D \nabla \cdot 
1083   \left(
1084   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
1085      \left(
1086      \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} 
1087      \right)
1088   \right)\;
1089   dv = 0
1090   &&&\\
1091\end{flalign*}
1092and the square of the horizontal divergence decreases (i.e. the horizontal divergence is dissipated) if vertical diffusion coefficient is uniform over the whole domain:
1093
1094\begin{flalign*}
1095\int\limits_D \chi \;\nabla \cdot 
1096   \left(
1097   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
1098      \left(
1099      \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} 
1100      \right)
1101   \right)\;
1102   dv = 0
1103   &&&\\
1104\end{flalign*}
1105This property is only satisfied in $z$-coordinates:
1106
1107\begin{flalign*}
1108\int\limits_D \chi \;\nabla \cdot 
1109   \left(
1110   \frac{1} {e_3 }\; \frac{\partial } {\partial k}
1111      \left(
1112      \frac{A^{\,vm}} {e_3 }\; \frac{\partial \textbf{U}_h } {\partial k} 
1113      \right)
1114   \right)\;
1115   dv
1116   &&&\\
1117\end{flalign*}
1118\begin{flalign*}
1119\equiv \sum\limits_{i,j,k} \frac{\chi } {e_{1T}\,e_{2T}}
1120   \biggl\{    \Biggr\quad
1121   \delta_{i+1/2} 
1122      &\left(
1123         \frac{e_{2u}} {e_{3u}} \delta_k
1124            \left[
1125         \frac{A_u^{\,vm}} {e_{3uw}} \delta_{k+1/2} 
1126            \left[ u \right] 
1127         \right]
1128       \right)
1129       &&\\ 
1130   \Biggl.
1131   + \delta_{j+1/2} 
1132      &\left(
1133      \frac{e_{1v}} {e_{3v}} \delta_k
1134         \left[
1135         \frac{A_v^{\,vm}} {e_{3vw}} \delta_{k+1/2} 
1136            \left[ v \right]
1137          \right]
1138      \right)
1139   \Biggr\} \;
1140   e_{1T}\,e_{2T}\,e_{3T} 
1141   &&\\ 
1142\end{flalign*}
1143
1144\begin{flalign*}
1145\equiv A^{\,vm} \sum\limits_{i,j,k}  \chi \,
1146   \biggl\{ \biggr\quad
1147   \delta_{i+1/2}
1148      &\left(
1149         \delta_k
1150         \left[
1151         \frac{1} {e_{3uw}} \delta_{k+1/2} 
1152            \left[ e_{2u}\,u \right]
1153          \right]
1154         \right)
1155         && \\ 
1156   \biggl.
1157   + \delta_{j+1/2} 
1158      &\left(
1159         \delta_k
1160         \left[
1161         \frac{1} {e_{3vw}} \delta_{k+1/2} 
1162            \left[ e_{1v}\,v \right]
1163          \right]
1164         \right)
1165   \biggr\} 
1166   && \\ 
1167\end{flalign*}
1168
1169\begin{flalign*}
1170\equiv -A^{\,vm} \sum\limits_{i,j,k} 
1171\frac{\delta_{k+1/2} \left[ \chi \right]} {e_{3w}}\;
1172   \biggl\{ 
1173   \delta_{k+1/2} 
1174      \Bigl[
1175         \delta_{i+1/2} 
1176         \left[ e_{2u}\,u \right]
1177      + \delta_{j+1/2} 
1178         \left[ e_{1v}\,v \right]
1179      \Bigr]
1180   \biggr\} 
1181   &&&\\
1182\end{flalign*}
1183
1184\begin{flalign*}
1185\equiv -A^{\,vm} \sum\limits_{i,j,k}
1186 \frac{1} {e_{3w}} 
1187\delta_{k+1/2} 
1188   \left[ \chi \right]\;
1189\delta_{k+1/2} 
1190   \left[ e_{1T}\,e_{2T} \;\chi \right]
1191&&&\\
1192\end{flalign*}
1193
1194\begin{flalign*}
1195\equiv -A^{\,vm} \sum\limits_{i,j,k} 
1196\frac{e_{1T}\,e_{2T}} {e_{3w}}\;
1197   \left(
1198   \delta_{k+1/2} 
1199      \left[ \chi \right]
1200   \right)^2
1201   \quad  \equiv 0
1202&&&\\
1203\end{flalign*}
1204
1205% ================================================================
1206% Conservation Properties on Tracer Physics
1207% ================================================================
1208\section{Conservation Properties on Tracer Physics}
1209\label{Apdx_C.5}
1210
1211
1212
1213The numerical schemes used for tracer subgridscale physics are written such that the heat and salt contents are conserved (equations in flux form, second order centered finite differences). As a form flux is used to compute the temperature and salinity, the quadratic form of these quantities (i.e. their variance) globally tends to diminish. As for the advection term, there is generally no strict conservation of mass even if, in practice, the mass is conserved with a very good accuracy.
1214
1215% -------------------------------------------------------------------------------------------------------------
1216%       Conservation of Tracers
1217% -------------------------------------------------------------------------------------------------------------
1218\subsection{Conservation of Tracers}
1219\label{Apdx_C.5.1}
1220
1221constraint of conservation of tracers:
1222\begin{flalign*}
1223&\int\limits_\nabla  \cdot \left( A\;\nabla T \right)\;dv  &&&\\ 
1224\\
1225&\equiv \sum\limits_{i,j,k} 
1226   \biggl\{    \biggr.
1227   \delta_i
1228      \left[
1229      A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} 
1230         \left[ T \right]
1231      \right]
1232   + \delta_j
1233      \left[
1234      A_v^{\,lT} \frac{e_{1v}\,e_{3v}} {e_{2v}} \delta_{j+1/2} 
1235         \left[ T \right] 
1236      \right]
1237   &&\\  & \qquad \qquad \qquad \qquad \qquad \qquad \quad \;\;\;
1238   + \delta_k
1239      \left[
1240      A_w^{\,vT} \frac{e_{1T}\,e_{2T}} {e_{3T}} \delta_{k+1/2} 
1241         \left[ T \right] 
1242      \right]
1243   \biggr\}   \quad  \equiv 0
1244   &&\\ 
1245\end{flalign*}
1246
1247In fact, this property is simply resulting from the flux form of the operator.
1248
1249% -------------------------------------------------------------------------------------------------------------
1250%       Dissipation of Tracer Variance
1251% -------------------------------------------------------------------------------------------------------------
1252\subsection{Dissipation of Tracer Variance}
1253\label{Apdx_C.5.2}
1254
1255constraint of dissipation of tracer variance:
1256\begin{flalign*}
1257\int\limits_D T\;\nabla & \cdot \left( A\;\nabla T \right)\;dv &&&\\ 
1258&\equiv   \sum\limits_{i,j,k} \; T
1259\biggl\{  \biggr.
1260     \delta_i \left[ A_u^{\,lT} \frac{e_{2u}\,e_{3u}} {e_{1u}} \delta_{i+1/2} \left[T\right] \right]
1261& + \delta_j \left[ A_v^{\,lT} \frac{e_{1v} \,e_{3v}} {e_{2v}} \delta_{j+1/2} \left[T\right] \right]
1262      \quad&& \\ 
1263 \biggl.
1264&&+ \delta_k \left[A_w^{\,vT}\frac{e_{1T}\,e_{2T}} {e_{3T}}\delta_{k+1/2}\left[T\right]\right]
1265\biggr\} && 
1266\end{flalign*}
1267\begin{flalign*}
1268\equiv - \sum\limits_{i,j,k} 
1269   \biggl\{    \biggr\quad
1270   & A_u^{\,lT} 
1271      \left(
1272      \frac{1} {e_{1u}} \delta_{i+1/2} 
1273         \left[ T \right]
1274      \right)^2
1275      e_{1u}\,e_{2u}\,e_{3u}
1276   && \\
1277   & + A_v^{\,lT} 
1278      \left(
1279      \frac{1} {e_{2v}} \delta_{j+1/2} 
1280         \left[ T \right] 
1281      \right)^2
1282      e_{1v}\,e_{2v}\,e_{3v}
1283   && \\ 
1284   \biggl.
1285   & + A_w^{\,vT} 
1286      \left(
1287      \frac{1} {e_{3w}} \delta_{k+1/2} 
1288         \left[ T \right] 
1289      \right)^2
1290      e_{1w}\,e_{2w}\,e_{3w} 
1291   \biggr\} 
1292   \quad \leq 0
1293   && \\ 
1294\end{flalign*}
1295
1296
1297%%%%  end of appendix in gm comment
1298%}
Note: See TracBrowser for help on using the repository browser.