New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DOM.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Chap_DOM.tex @ 6320

Last change on this file since 6320 was 6320, checked in by mathiot, 8 years ago

ISF: update documentation

File size: 53.8 KB
Line 
1% ================================================================
2% Chapter 2 ——— Space and Time Domain (DOM)
3% ================================================================
4\chapter{Space Domain (DOM) }
5\label{DOM}
6\minitoc
7
8% Missing things:
9%  - istate: description of the initial state   ==> this has to be put elsewhere..
10%                  perhaps in MISC ?  By the way the initialisation of T S and dynamics
11%                  should be put outside of DOM routine (better with TRC staff and off-line
12%                  tracers)
13%  -geo2ocean:  how to switch from geographic to mesh coordinate
14%     - domclo:  closed sea and lakes.... management of closea sea area : specific to global configuration, both forced and coupled
15
16
17\newpage
18$\ $\newline    % force a new ligne
19
20Having defined the continuous equations in Chap.~\ref{PE} and chosen a time
21discretization Chap.~\ref{STP}, we need to choose a discretization on a grid,
22and numerical algorithms. In the present chapter, we provide a general description
23of the staggered grid used in \NEMO, and other information relevant to the main
24directory routines as well as the DOM (DOMain) directory.
25
26$\ $\newline    % force a new lign
27
28% ================================================================
29% Fundamentals of the Discretisation
30% ================================================================
31\section{Fundamentals of the Discretisation}
32\label{DOM_basics}
33
34% -------------------------------------------------------------------------------------------------------------
35%        Arrangement of Variables
36% -------------------------------------------------------------------------------------------------------------
37\subsection{Arrangement of Variables}
38\label{DOM_cell}
39
40%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
41\begin{figure}[!tb]    \begin{center}
42\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_cell.pdf}
43\caption{ \label{Fig_cell}   
44Arrangement of variables. $t$ indicates scalar points where temperature,
45salinity, density, pressure and horizontal divergence are defined. ($u$,$v$,$w$)
46indicates vector points, and $f$ indicates vorticity points where both relative and
47planetary vorticities are defined}
48\end{center}   \end{figure}
49%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
50
51The numerical techniques used to solve the Primitive Equations in this model are
52based on the traditional, centred second-order finite difference approximation.
53Special attention has been given to the homogeneity of the solution in the three
54space directions. The arrangement of variables is the same in all directions.
55It consists of cells centred on scalar points ($t$, $S$, $p$, $\rho$) with vector
56points $(u, v, w)$ defined in the centre of each face of the cells (Fig. \ref{Fig_cell}).
57This is the generalisation to three dimensions of the well-known ``C'' grid in
58Arakawa's classification \citep{Mesinger_Arakawa_Bk76}. The relative and
59planetary vorticity, $\zeta$ and $f$, are defined in the centre of each vertical edge
60and the barotropic stream function $\psi$ is defined at horizontal points overlying
61the $\zeta$ and $f$-points.
62
63The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
64by the transformation that gives ($\lambda$ ,$\varphi$ ,$z$) as a function of $(i,j,k)$.
65The grid-points are located at integer or integer and a half value of $(i,j,k)$ as
66indicated on Table \ref{Tab_cell}. In all the following, subscripts $u$, $v$, $w$,
67$f$, $uw$, $vw$ or $fw$ indicate the position of the grid-point where the scale
68factors are defined. Each scale factor is defined as the local analytical value
69provided by \eqref{Eq_scale_factors}. As a result, the mesh on which partial
70derivatives $\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial \varphi}$, and
71$\frac{\partial}{\partial z} $ are evaluated is a uniform mesh with a grid size of unity.
72Discrete partial derivatives are formulated by the traditional, centred second order
73finite difference approximation while the scale factors are chosen equal to their
74local analytical value. An important point here is that the partial derivative of the
75scale factors must be evaluated by centred finite difference approximation, not
76from their analytical expression. This preserves the symmetry of the discrete set
77of equations and therefore satisfies many of the continuous properties (see
78Appendix~\ref{Apdx_C}). A similar, related remark can be made about the domain
79size: when needed, an area, volume, or the total ocean depth must be evaluated
80as the sum of the relevant scale factors (see \eqref{DOM_bar}) in the next section).
81
82%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
83\begin{table}[!tb]
84\begin{center} \begin{tabular}{|p{46pt}|p{56pt}|p{56pt}|p{56pt}|}
85\hline
86&$i$     & $j$    & $k$     \\ \hline
87& $i+1/2$   & $j$    & $k$    \\ \hline
88& $i$    & $j+1/2$   & $k$    \\ \hline
89& $i$    & $j$    & $k+1/2$   \\ \hline
90& $i+1/2$   & $j+1/2$   & $k$    \\ \hline
91uw & $i+1/2$   & $j$    & $k+1/2$   \\ \hline
92vw & $i$    & $j+1/2$   & $k+1/2$   \\ \hline
93fw & $i+1/2$   & $j+1/2$   & $k+1/2$   \\ \hline
94\end{tabular}
95\caption{ \label{Tab_cell}
96Location of grid-points as a function of integer or integer and a half value of the column,
97line or level. This indexing is only used for the writing of the semi-discrete equation.
98In the code, the indexing uses integer values only and has a reverse direction
99in the vertical (see \S\ref{DOM_Num_Index})}
100\end{center}
101\end{table}
102%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
103
104% -------------------------------------------------------------------------------------------------------------
105%        Vector Invariant Formulation
106% -------------------------------------------------------------------------------------------------------------
107\subsection{Discrete Operators}
108\label{DOM_operators}
109
110Given the values of a variable $q$ at adjacent points, the differencing and
111averaging operators at the midpoint between them are:
112\begin{subequations} \label{Eq_di_mi}
113\begin{align}
114 \delta _i [q]       &\  \    q(i+1/2)  - q(i-1/2)    \\
115 \overline q^{\,i} &= \left\{ q(i+1/2) + q(i-1/2) \right\} \; / \; 2
116\end{align}
117\end{subequations}
118
119Similar operators are defined with respect to $i+1/2$, $j$, $j+1/2$, $k$, and
120$k+1/2$. Following \eqref{Eq_PE_grad} and \eqref{Eq_PE_lap}, the gradient of a
121variable $q$ defined at a $t$-point has its three components defined at $u$-, $v$-
122and $w$-points while its Laplacien is defined at $t$-point. These operators have
123the following discrete forms in the curvilinear $s$-coordinate system:
124\begin{equation} \label{Eq_DOM_grad}
125\nabla q\equiv    \frac{1}{e_{1u} } \delta _{i+1/2 } [q] \;\,\mathbf{i}
126      +  \frac{1}{e_{2v} } \delta _{j+1/2 } [q] \;\,\mathbf{j}
127      +  \frac{1}{e_{3w}} \delta _{k+1/2} [q] \;\,\mathbf{k}
128\end{equation}
129\begin{multline} \label{Eq_DOM_lap}
130\Delta q\equiv \frac{1}{e_{1t}\,e_{2t}\,e_{3t} }
131       \;\left(          \delta_\left[ \frac{e_{2u}\,e_{3u}} {e_{1u}} \;\delta_{i+1/2} [q] \right]
132+                        \delta_\left[ \frac{e_{1v}\,e_{3v}}  {e_{2v}} \;\delta_{j+1/2} [q] \right] \;  \right)      \\
133+\frac{1}{e_{3t}} \delta_k \left[ \frac{1}{e_{3w} }                     \;\delta_{k+1/2} [q] \right]
134\end{multline}
135
136Following \eqref{Eq_PE_curl} and \eqref{Eq_PE_div}, a vector ${\rm {\bf A}}=\left( a_1,a_2,a_3\right)$ 
137defined at vector points $(u,v,w)$ has its three curl components defined at $vw$-, $uw$,
138and $f$-points, and its divergence defined at $t$-points:
139\begin{eqnarray}  \label{Eq_DOM_curl}
140 \nabla \times {\rm{\bf A}}\equiv &
141      \frac{1}{e_{2v}\,e_{3vw} } \ \left( \delta_{j +1/2} \left[e_{3w}\,a_3 \right] -\delta_{k+1/2} \left[e_{2v} \,a_2 \right] \right&\ \mathbf{i} \\ 
142 +& \frac{1}{e_{2u}\,e_{3uw}} \ \left( \delta_{k+1/2} \left[e_{1u}\,a_1  \right] -\delta_{i +1/2} \left[e_{3w}\,a_3 \right] \right&\ \mathbf{j} \\
143 +& \frac{1}{e_{1f} \,e_{2f}    } \ \left( \delta_{i +1/2} \left[e_{2v}\,a_2  \right] -\delta_{j +1/2} \left[e_{1u}\,a_1 \right] \right&\ \mathbf{k}
144 \end{eqnarray}
145\begin{eqnarray} \label{Eq_DOM_div}
146\nabla \cdot \rm{\bf A} \equiv 
147    \frac{1}{e_{1t}\,e_{2t}\,e_{3t}} \left( \delta_i \left[e_{2u}\,e_{3u}\,a_1 \right]
148                                           +\delta_j \left[e_{1v}\,e_{3v}\,a_2 \right] \right)+\frac{1}{e_{3t} }\delta_k \left[a_3 \right]
149\end{eqnarray}
150
151The vertical average over the whole water column denoted by an overbar becomes
152for a quantity $q$ which is a masked field (i.e. equal to zero inside solid area):
153\begin{equation} \label{DOM_bar}
154\bar q   =         \frac{1}{H}    \int_{k^b}^{k^o} {q\;e_{3q} \,dk} 
155      \equiv \frac{1}{H_q }\sum\limits_k {q\;e_{3q} }
156\end{equation}
157where $H_q$  is the ocean depth, which is the masked sum of the vertical scale
158factors at $q$ points, $k^b$ and $k^o$ are the bottom and surface $k$-indices,
159and the symbol $k^o$ refers to a summation over all grid points of the same type
160in the direction indicated by the subscript (here $k$).
161
162In continuous form, the following properties are satisfied:
163\begin{equation} \label{Eq_DOM_curl_grad}
164\nabla \times \nabla q ={\rm {\bf {0}}}
165\end{equation}
166\begin{equation} \label{Eq_DOM_div_curl}
167\nabla \cdot \left( {\nabla \times {\rm {\bf A}}} \right)=0
168\end{equation}
169
170It is straightforward to demonstrate that these properties are verified locally in
171discrete form as soon as the scalar $q$ is taken at $t$-points and the vector
172\textbf{A} has its components defined at vector points $(u,v,w)$.
173
174Let $a$ and $b$ be two fields defined on the mesh, with value zero inside
175continental area. Using integration by parts it can be shown that the differencing
176operators ($\delta_i$, $\delta_j$ and $\delta_k$) are skew-symmetric linear operators,
177and further that the averaging operators $\overline{\,\cdot\,}^{\,i}$,
178$\overline{\,\cdot\,}^{\,k}$ and $\overline{\,\cdot\,}^{\,k}$) are symmetric linear
179operators, $i.e.$
180\begin{align} 
181\label{DOM_di_adj}
182\sum\limits_i { a_i \;\delta _i \left[ b \right]} 
183   &\equiv -\sum\limits_i {\delta _{i+1/2} \left[ a \right]\;b_{i+1/2} }      \\
184\label{DOM_mi_adj}
185\sum\limits_i { a_i \;\overline b^{\,i}} 
186   & \equiv \quad \sum\limits_i {\overline a ^{\,i+1/2}\;b_{i+1/2} } 
187\end{align}
188
189In other words, the adjoint of the differencing and averaging operators are
190$\delta_i^*=\delta_{i+1/2}$ and
191${(\overline{\,\cdot \,}^{\,i})}^*= \overline{\,\cdot\,}^{\,i+1/2}$, respectively.
192These two properties will be used extensively in the Appendix~\ref{Apdx_C} to
193demonstrate integral conservative properties of the discrete formulation chosen.
194
195% -------------------------------------------------------------------------------------------------------------
196%        Numerical Indexing
197% -------------------------------------------------------------------------------------------------------------
198\subsection{Numerical Indexing}
199\label{DOM_Num_Index}
200
201%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
202\begin{figure}[!tb]  \begin{center}
203\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_index_hor.pdf}
204\caption{   \label{Fig_index_hor}   
205Horizontal integer indexing used in the \textsc{Fortran} code. The dashed area indicates
206the cell in which variables contained in arrays have the same $i$- and $j$-indices}
207\end{center}   \end{figure}
208%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
209
210The array representation used in the \textsc{Fortran} code requires an integer
211indexing while the analytical definition of the mesh (see \S\ref{DOM_cell}) is
212associated with the use of integer values for $t$-points and both integer and
213integer and a half values for all the other points. Therefore a specific integer
214indexing must be defined for points other than $t$-points ($i.e.$ velocity and
215vorticity grid-points). Furthermore, the direction of the vertical indexing has
216been changed so that the surface level is at $k=1$.
217
218% -----------------------------------
219%        Horizontal Indexing
220% -----------------------------------
221\subsubsection{Horizontal Indexing}
222\label{DOM_Num_Index_hor}
223
224The indexing in the horizontal plane has been chosen as shown in Fig.\ref{Fig_index_hor}.
225For an increasing $i$ index ($j$ index), the $t$-point and the eastward $u$-point
226(northward $v$-point) have the same index (see the dashed area in Fig.\ref{Fig_index_hor}).
227A $t$-point and its nearest northeast $f$-point have the same $i$-and $j$-indices.
228
229% -----------------------------------
230%        Vertical indexing
231% -----------------------------------
232\subsubsection{Vertical Indexing}
233\label{DOM_Num_Index_vertical}
234
235In the vertical, the chosen indexing requires special attention since the
236$k$-axis is re-orientated downward in the \textsc{Fortran} code compared
237to the indexing used in the semi-discrete equations and given in \S\ref{DOM_cell}.
238The sea surface corresponds to the $w$-level $k=1$ which is the same index
239as $t$-level just below (Fig.\ref{Fig_index_vert}). The last $w$-level ($k=jpk$)
240either corresponds to the ocean floor or is inside the bathymetry while the last
241$t$-level is always inside the bathymetry (Fig.\ref{Fig_index_vert}). Note that
242for an increasing $k$ index, a $w$-point and the $t$-point just below have the
243same $k$ index, in opposition to what is done in the horizontal plane where
244it is the $t$-point and the nearest velocity points in the direction of the horizontal
245axis that have the same $i$ or $j$ index (compare the dashed area in
246Fig.\ref{Fig_index_hor} and \ref{Fig_index_vert}). Since the scale factors are
247chosen to be strictly positive, a \emph{minus sign} appears in the \textsc{Fortran} 
248code \emph{before all the vertical derivatives} of the discrete equations given in
249this documentation.
250
251%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
252\begin{figure}[!pt]    \begin{center}
253\includegraphics[width=.90\textwidth]{./TexFiles/Figures/Fig_index_vert.pdf}
254\caption{ \label{Fig_index_vert}     
255Vertical integer indexing used in the \textsc{Fortran } code. Note that
256the $k$-axis is orientated downward. The dashed area indicates the cell in
257which variables contained in arrays have the same $k$-index.}
258\end{center}   \end{figure}
259%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
260
261% -----------------------------------
262%        Domain Size
263% -----------------------------------
264\subsubsection{Domain Size}
265\label{DOM_size}
266
267The total size of the computational domain is set by the parameters \np{jpiglo},
268\np{jpjglo} and \np{jpkdta} in the $i$, $j$ and $k$ directions respectively. They are
269given as namelist variables in the \ngn{namcfg} namelist.
270
271Note that are other namelist variables in the \ngn{namcfg} namelist that refer to
272 the domain size.
273The two variables \np{jpidta} and \np{jpjdta} may be larger than \np{jpiglo}, \np{jpjglo}
274when the user wants to use only a sub-region of a given configuration. This is
275the "zoom" capability described in \S\ref{MISC_zoom}. In most applications of
276the model, $jpidta=jpiglo$, $jpjdta=jpjglo$, and $jpizoom=jpjzoom=1$. Parameters
277$jpi$ and $jpj$ refer to the size of each processor subdomain when the code is
278run in parallel using domain decomposition (\key{mpp\_mpi} defined, see
279\S\ref{LBC_mpp}).
280
281
282$\ $\newline    % force a new lign
283
284% ================================================================
285% Domain: Horizontal Grid (mesh)
286% ================================================================
287\section  [Domain: Horizontal Grid (mesh) (\textit{domhgr})]               
288      {Domain: Horizontal Grid (mesh) \small{(\mdl{domhgr} module)} }
289\label{DOM_hgr}
290
291% -------------------------------------------------------------------------------------------------------------
292%        Coordinates and scale factors
293% -------------------------------------------------------------------------------------------------------------
294\subsection{Coordinates and scale factors}
295\label{DOM_hgr_coord_e}
296
297The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
298by the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$.
299The grid-points are located at integer or integer and a half values of as indicated
300in Table~\ref{Tab_cell}. The associated scale factors are defined using the
301analytical first derivative of the transformation \eqref{Eq_scale_factors}. These
302definitions are done in two modules, \mdl{domhgr} and \mdl{domzgr}, which
303provide the horizontal and vertical meshes, respectively. This section deals with
304the horizontal mesh parameters.
305
306In a horizontal plane, the location of all the model grid points is defined from the
307analytical expressions of the longitude $\lambda$ and  latitude $\varphi$ as a
308function of  $(i,j)$. The horizontal scale factors are calculated using
309\eqref{Eq_scale_factors}. For example, when the longitude and latitude are
310function of a single value ($i$ and $j$, respectively) (geographical configuration
311of the mesh), the horizontal mesh definition reduces to define the wanted
312$\lambda(i)$, $\varphi(j)$, and their derivatives $\lambda'(i)$ $\varphi'(j)$ in the
313\mdl{domhgr} module. The model computes the grid-point positions and scale
314factors in the horizontal plane as follows:
315\begin{flalign*}
316\lambda_t &\equiv \text{glamt}= \lambda(i)     & \varphi_t &\equiv \text{gphit} = \varphi(j)\\
317\lambda_u &\equiv \text{glamu}= \lambda(i+1/2)& \varphi_u &\equiv \text{gphiu}= \varphi(j)\\
318\lambda_v &\equiv \text{glamv}= \lambda(i)       & \varphi_v &\equiv \text{gphiv} = \varphi(j+1/2)\\
319\lambda_f &\equiv \text{glamf }= \lambda(i+1/2)& \varphi_f &\equiv \text{gphif }= \varphi(j+1/2)
320\end{flalign*}
321\begin{flalign*}
322e_{1t} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j)  |&
323e_{2t} &\equiv \text{e2t} = r_a |\varphi'(j)|  \\
324e_{1u} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)   \; \cos\varphi(j)  |&
325e_{2u} &\equiv \text{e2t} = r_a |\varphi'(j)|\\
326e_{1v} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j+1/2)  |&
327e_{2v} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|\\
328e_{1f} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)\; \cos\varphi(j+1/2)  |&
329e_{2f} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|
330\end{flalign*}
331where the last letter of each computational name indicates the grid point
332considered and $r_a$ is the earth radius (defined in \mdl{phycst} along with
333all universal constants). Note that the horizontal position of and scale factors
334at $w$-points are exactly equal to those of $t$-points, thus no specific arrays
335are defined at $w$-points.
336
337Note that the definition of the scale factors ($i.e.$ as the analytical first derivative
338of the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$) is
339specific to the \NEMO model \citep{Marti_al_JGR92}. As an example, $e_{1t}$ is defined
340locally at a $t$-point, whereas many other models on a C grid choose to define
341such a scale factor as the distance between the $U$-points on each side of the
342$t$-point. Relying on an analytical transformation has two advantages: firstly, there
343is no ambiguity in the scale factors appearing in the discrete equations, since they
344are first introduced in the continuous equations; secondly, analytical transformations
345encourage good practice by the definition of smoothly varying grids (rather than
346allowing the user to set arbitrary jumps in thickness between adjacent layers)
347\citep{Treguier1996}. An example of the effect of such a choice is shown in
348Fig.~\ref{Fig_zgr_e3}.
349%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
350\begin{figure}[!t]     \begin{center}
351\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_zgr_e3.pdf}
352\caption{ \label{Fig_zgr_e3}   
353Comparison of (a) traditional definitions of grid-point position and grid-size in the vertical,
354and (b) analytically derived grid-point position and scale factors.
355For both grids here,  the same $w$-point depth has been chosen but in (a) the
356$t$-points are set half way between $w$-points while in (b) they are defined from
357an analytical function: $z(k)=5\,(k-1/2)^3 - 45\,(k-1/2)^2 + 140\,(k-1/2) - 150$.
358Note the resulting difference between the value of the grid-size $\Delta_k$ and
359those of the scale factor $e_k$. }
360\end{center}   \end{figure}
361%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
362
363% -------------------------------------------------------------------------------------------------------------
364%        Choice of horizontal grid
365% -------------------------------------------------------------------------------------------------------------
366\subsection{Choice of horizontal grid}
367\label{DOM_hgr_msh_choice}
368
369The user has three options available in defining a horizontal grid, which involve
370the namelist variable \np{jphgr\_mesh} of the \ngn{namcfg} namelist.
371\begin{description}
372\item[\np{jphgr\_mesh}=0]  The most general curvilinear orthogonal grids.
373The coordinates and their first derivatives with respect to $i$ and $j$ are provided
374in a input file (\ifile{coordinates}), read in \rou{hgr\_read} subroutine of the domhgr module.
375\item[\np{jphgr\_mesh}=1 to 5] A few simple analytical grids are provided (see below).
376For other analytical grids, the \mdl{domhgr} module must be modified by the user.
377\end{description}
378
379There are two simple cases of geographical grids on the sphere. With
380\np{jphgr\_mesh}=1, the grid (expressed in degrees) is regular in space,
381with grid sizes specified by parameters \np{ppe1\_deg} and \np{ppe2\_deg},
382respectively. Such a geographical grid can be very anisotropic at high latitudes
383because of the convergence of meridians (the zonal scale factors $e_1$ 
384become much smaller than the meridional scale factors $e_2$). The Mercator
385grid (\np{jphgr\_mesh}=4) avoids this anisotropy by refining the meridional scale
386factors in the same way as the zonal ones. In this case, meridional scale factors
387and latitudes are calculated analytically using the formulae appropriate for
388a Mercator projection, based on \np{ppe1\_deg} which is a reference grid spacing
389at the equator (this applies even when the geographical equator is situated outside
390the model domain).
391%%%
392\gmcomment{ give here the analytical expression of the Mercator mesh}
393%%%
394In these two cases (\np{jphgr\_mesh}=1 or 4), the grid position is defined by the
395longitude and latitude of the south-westernmost point (\np{ppglamt0} 
396and \np{ppgphi0}). Note that for the Mercator grid the user need only provide
397an approximate starting latitude: the real latitude will be recalculated analytically,
398in order to ensure that the equator corresponds to line passing through $t$-
399and $u$-points. 
400
401Rectangular grids ignoring the spherical geometry are defined with
402\np{jphgr\_mesh} = 2, 3, 5. The domain is either an $f$-plane (\np{jphgr\_mesh} = 2,
403Coriolis factor is constant) or a beta-plane (\np{jphgr\_mesh} = 3, the Coriolis factor
404is linear in the $j$-direction). The grid size is uniform in meter in each direction,
405and given by the parameters \np{ppe1\_m} and \np{ppe2\_m} respectively.
406The zonal grid coordinate (\textit{glam} arrays) is in kilometers, starting at zero
407with the first $t$-point. The meridional coordinate (gphi. arrays) is in kilometers,
408and the second $t$-point corresponds to coordinate $gphit=0$. The input
409variable \np{ppglam0} is ignored. \np{ppgphi0} is used to set the reference
410latitude for computation of the Coriolis parameter. In the case of the beta plane,
411\np{ppgphi0} corresponds to the center of the domain. Finally, the special case
412\np{jphgr\_mesh}=5 corresponds to a beta plane in a rotated domain for the
413GYRE configuration, representing a classical mid-latitude double gyre system.
414The rotation allows us to maximize the jet length relative to the gyre areas
415(and the number of grid points).
416
417The choice of the grid must be consistent with the boundary conditions specified
418by \np{jperio}, a parameter found in \ngn{namcfg} namelist (see {\S\ref{LBC}).
419
420% -------------------------------------------------------------------------------------------------------------
421%        Grid files
422% -------------------------------------------------------------------------------------------------------------
423\subsection{Output Grid files}
424\label{DOM_hgr_files}
425
426All the arrays relating to a particular ocean model configuration (grid-point
427position, scale factors, masks) can be saved in files if $\np{nn\_msh} \not= 0$ 
428(namelist variable in \ngn{namdom}). This can be particularly useful for plots and off-line
429diagnostics. In some cases, the user may choose to make a local modification
430of a scale factor in the code. This is the case in global configurations when
431restricting the width of a specific strait (usually a one-grid-point strait that
432happens to be too wide due to insufficient model resolution). An example
433is Gibraltar Strait in the ORCA2 configuration. When such modifications are done,
434the output grid written when $\np{nn\_msh} \not=0$ is no more equal to the input grid.
435
436$\ $\newline    % force a new lign
437
438% ================================================================
439% Domain: Vertical Grid (domzgr)
440% ================================================================
441\section  [Domain: Vertical Grid (\textit{domzgr})]
442      {Domain: Vertical Grid \small{(\mdl{domzgr} module)} }
443\label{DOM_zgr}
444%-----------------------------------------nam_zgr & namdom-------------------------------------------
445\namdisplay{namzgr} 
446\namdisplay{namdom} 
447%-------------------------------------------------------------------------------------------------------------
448
449Variables are defined through the \ngn{namzgr} and \ngn{namdom} namelists.
450In the vertical, the model mesh is determined by four things:
451(1) the bathymetry given in meters ;
452(2) the number of levels of the model (\jp{jpk}) ;
453(3) the analytical transformation $z(i,j,k)$ and the vertical scale factors
454(derivatives of the transformation) ;
455and (4) the masking system, $i.e.$ the number of wet model levels at each
456$(i,j)$ column of points.
457
458%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
459\begin{figure}[!tb]    \begin{center}
460\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_z_zps_s_sps.pdf}
461\caption{  \label{Fig_z_zps_s_sps}   
462The ocean bottom as seen by the model:
463(a) $z$-coordinate with full step,
464(b) $z$-coordinate with partial step,
465(c) $s$-coordinate: terrain following representation,
466(d) hybrid $s-z$ coordinate,
467(e) hybrid $s-z$ coordinate with partial step, and
468(f) same as (e) but in the non-linear free surface (\np{ln\_linssh}=false).
469Note that the non-linear free surface can be used with any of the
4705 coordinates (a) to (e).}
471\end{center}   \end{figure}
472%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
473
474The choice of a vertical coordinate, even if it is made through \ngn{namzgr} namelist parameters,
475must be done once of all at the beginning of an experiment. It is not intended as an
476option which can be enabled or disabled in the middle of an experiment. Three main
477choices are offered (Fig.~\ref{Fig_z_zps_s_sps}a to c): $z$-coordinate with full step
478bathymetry (\np{ln\_zco}~=~true), $z$-coordinate with partial step bathymetry
479(\np{ln\_zps}~=~true), or generalized, $s$-coordinate (\np{ln\_sco}~=~true).
480Hybridation of the three main coordinates are available: $s-z$ or $s-zps$ coordinate
481(Fig.~\ref{Fig_z_zps_s_sps}d and \ref{Fig_z_zps_s_sps}e). By default a non-linear free surface is used:
482the coordinate follow the time-variation of the free surface so that the transformation is time dependent:
483$z(i,j,k,t)$ (Fig.~\ref{Fig_z_zps_s_sps}f). When a linear free surface is assumed (\np{ln\_linssh}=true),
484the vertical coordinate are fixed in time, but the seawater can move up and down across the z=0 surface
485(in other words, the top of the ocean in not a rigid-lid).
486The last choice in terms of vertical coordinate concerns the presence (or not) in the model domain
487of ocean cavities beneath ice shelves. Setting \np{ln\_isfcav} to true allows to manage ocean cavities,
488otherwise they are filled in.
489
490Contrary to the horizontal grid, the vertical grid is computed in the code and no
491provision is made for reading it from a file. The only input file is the bathymetry
492(in meters) (\ifile{bathy\_meter}).
493\footnote{N.B. in full step $z$-coordinate, a \ifile{bathy\_level} file can replace the
494\ifile{bathy\_meter} file, so that the computation of the number of wet ocean point
495in each water column is by-passed}.
496If \np{ln\_isfcav}~=~true, an extra file input file describing the ice shelf draft
497(in meters) (\ifile{isf\_draft\_meter}) is needed.
498
499After reading the bathymetry, the algorithm for vertical grid definition differs
500between the different options:
501\begin{description}
502\item[\textit{zco}] set a reference coordinate transformation $z_0 (k)$, and set $z(i,j,k,t)=z_0 (k)$.
503\item[\textit{zps}] set a reference coordinate transformation $z_0 (k)$, and
504calculate the thickness of the deepest level at each $(i,j)$ point using the
505bathymetry, to obtain the final three-dimensional depth and scale factor arrays.
506\item[\textit{sco}] smooth the bathymetry to fulfil the hydrostatic consistency
507criteria and set the three-dimensional transformation.
508\item[\textit{s-z} and \textit{s-zps}] smooth the bathymetry to fulfil the hydrostatic
509consistency criteria and set the three-dimensional transformation $z(i,j,k)$, and
510possibly introduce masking of extra land points to better fit the original bathymetry file
511\end{description}
512%%%
513\gmcomment{   add the description of the smoothing:  envelop topography...}
514%%%
515
516Unless a linear free surface is used (\np{ln\_linssh}=false), the arrays describing
517the grid point depths and vertical scale factors are three set of three dimensional arrays $(i,j,k)$ 
518defined at \textit{before}, \textit{now} and \textit{after} time step. The time at which they are
519defined is indicated by a suffix:$\_b$, $\_n$, or $\_a$, respectively. They are updated at each model time step
520using a fixed reference coordinate system which computer names have a $\_0$ suffix.
521When the linear free surface option is used (\np{ln\_linssh}=true), \textit{before}, \textit{now} 
522and \textit{after} arrays are simply set one for all to their reference counterpart.
523
524
525% -------------------------------------------------------------------------------------------------------------
526%        Meter Bathymetry
527% -------------------------------------------------------------------------------------------------------------
528\subsection{Meter Bathymetry}
529\label{DOM_bathy}
530
531Three options are possible for defining the bathymetry, according to the
532namelist variable \np{nn\_bathy} (found in \ngn{namdom} namelist):
533\begin{description}
534\item[\np{nn\_bathy} = 0] a flat-bottom domain is defined. The total depth $z_w (jpk)$ 
535is given by the coordinate transformation. The domain can either be a closed
536basin or a periodic channel depending on the parameter \np{jperio}.
537\item[\np{nn\_bathy} = -1] a domain with a bump of topography one third of the
538domain width at the central latitude. This is meant for the "EEL-R5" configuration,
539a periodic or open boundary channel with a seamount.
540\item[\np{nn\_bathy} = 1] read a bathymetry and ice shelf draft (if needed).
541 The \ifile{bathy\_meter} file (Netcdf format) provides the ocean depth (positive, in meters)
542 at each grid point of the model grid. The bathymetry is usually built by interpolating a standard bathymetry product
543($e.g.$ ETOPO2) onto the horizontal ocean mesh. Defining the bathymetry also
544defines the coastline: where the bathymetry is zero, no model levels are defined
545(all levels are masked).
546
547The \ifile{isfdraft\_meter} file (Netcdf format) provides the ice shelf draft (positive, in meters)
548 at each grid point of the model grid. This file is only needed if \np{ln\_isfcav}~=~true.
549Defining the ice shelf draft will also define the ice shelf edge and the grounding line position.
550\end{description}
551
552When a global ocean is coupled to an atmospheric model it is better to represent
553all large water bodies (e.g, great lakes, Caspian sea...) even if the model
554resolution does not allow their communication with the rest of the ocean.
555This is unnecessary when the ocean is forced by fixed atmospheric conditions,
556so these seas can be removed from the ocean domain. The user has the option
557to set the bathymetry in closed seas to zero (see \S\ref{MISC_closea}), but the
558code has to be adapted to the user's configuration.
559
560% -------------------------------------------------------------------------------------------------------------
561%        z-coordinate  and reference coordinate transformation
562% -------------------------------------------------------------------------------------------------------------
563\subsection[$z$-coordinate (\np{ln\_zco}]
564        {$z$-coordinate (\np{ln\_zco}=true) and reference coordinate}
565\label{DOM_zco}
566
567%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
568\begin{figure}[!tb]    \begin{center}
569\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_zgr.pdf}
570\caption{ \label{Fig_zgr}   
571Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level functions for
572(a) T-point depth and (b) the associated scale factor as computed
573from \eqref{DOM_zgr_ana} using \eqref{DOM_zgr_coef} in $z$-coordinate.}
574\end{center}   \end{figure}
575%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
576
577The reference coordinate transformation $z_0 (k)$ defines the arrays $gdept_0$ 
578and $gdepw_0$ for $t$- and $w$-points, respectively. As indicated on
579Fig.\ref{Fig_index_vert} \jp{jpk} is the number of $w$-levels. $gdepw_0(1)$ is the
580ocean surface. There are at most \jp{jpk}-1 $t$-points inside the ocean, the
581additional $t$-point at $jk=jpk$ is below the sea floor and is not used.
582The vertical location of $w$- and $t$-levels is defined from the analytic expression
583of the depth $z_0(k)$ whose analytical derivative with respect to $k$ provides the
584vertical scale factors. The user must provide the analytical expression of both
585$z_0$ and its first derivative with respect to $k$. This is done in routine \mdl{domzgr} 
586through statement functions, using parameters provided in the \ngn{namcfg} namelist.
587
588It is possible to define a simple regular vertical grid by giving zero stretching (\np{ppacr=0}).
589In that case, the parameters \jp{jpk} (number of $w$-levels) and \np{pphmax} 
590(total ocean depth in meters) fully define the grid.
591
592For climate-related studies it is often desirable to concentrate the vertical resolution
593near the ocean surface. The following function is proposed as a standard for a
594$z$-coordinate (with either full or partial steps):
595\begin{equation} \label{DOM_zgr_ana}
596\begin{split}
597 z_0 (k)    &= h_{sur} -h_0 \;k-\;h_1 \;\log \left[ {\,\cosh \left( {{(k-h_{th} )} / {h_{cr} }} \right)\,} \right] \\ 
598 e_3^0 (k)  &= \left| -h_0 -h_1 \;\tanh \left( {{(k-h_{th} )} / {h_{cr} }} \right) \right|
599\end{split}
600\end{equation}
601where $k=1$ to \jp{jpk} for $w$-levels and $k=1$ to $k=1$ for $T-$levels. Such an
602expression allows us to define a nearly uniform vertical location of levels at the
603ocean top and bottom with a smooth hyperbolic tangent transition in between
604(Fig.~\ref{Fig_zgr}).
605
606If the ice shelf cavities are opened (\np{ln\_isfcav}=~true~}), the definition of $z_0$ is the same.
607However, definition of $e_3^0$ at $t$- and $w$-points is respectively changed to:
608\begin{equation} \label{DOM_zgr_ana}
609\begin{split}
610 e_3^T(k) &= z_W (k+1) - z_W (k)   \\
611 e_3^W(k) &= z_T (k)   - z_T (k-1) \\
612\end{split}
613\end{equation}
614This formulation decrease the self-generated circulation into the ice shelf cavity
615(which can, in extreme case, leads to blow up).\\
616
617 
618The most used vertical grid for ORCA2 has $10~m$ ($500~m)$ resolution in the
619surface (bottom) layers and a depth which varies from 0 at the sea surface to a
620minimum of $-5000~m$. This leads to the following conditions:
621\begin{equation} \label{DOM_zgr_coef}
622\begin{split}
623 e_3 (1+1/2)      &=10. \\ 
624 e_3 (jpk-1/2) &=500. \\ 
625 z(1)       &=0. \\ 
626 z(jpk)        &=-5000. \\ 
627\end{split}
628\end{equation}
629
630With the choice of the stretching $h_{cr} =3$ and the number of levels
631\jp{jpk}=$31$, the four coefficients $h_{sur}$, $h_{0}$, $h_{1}$, and $h_{th}$ in
632\eqref{DOM_zgr_ana} have been determined such that \eqref{DOM_zgr_coef} is
633satisfied, through an optimisation procedure using a bisection method. For the first
634standard ORCA2 vertical grid this led to the following values: $h_{sur} =4762.96$,
635$h_0 =255.58, h_1 =245.5813$, and $h_{th} =21.43336$. The resulting depths and
636scale factors as a function of the model levels are shown in Fig.~\ref{Fig_zgr} and
637given in Table \ref{Tab_orca_zgr}. Those values correspond to the parameters
638\np{ppsur}, \np{ppa0}, \np{ppa1}, \np{ppkth} in \ngn{namcfg} namelist.
639
640Rather than entering parameters $h_{sur}$, $h_{0}$, and $h_{1}$ directly, it is
641possible to recalculate them. In that case the user sets
642\np{ppsur}=\np{ppa0}=\np{ppa1}=999999., in \ngn{namcfg} namelist,
643and specifies instead the four following parameters:
644\begin{itemize}
645\item    \np{ppacr}=$h_{cr} $: stretching factor (nondimensional). The larger
646\np{ppacr}, the smaller the stretching. Values from $3$ to $10$ are usual.
647\item    \np{ppkth}=$h_{th} $: is approximately the model level at which maximum
648stretching occurs (nondimensional, usually of order 1/2 or 2/3 of \jp{jpk})
649\item    \np{ppdzmin}: minimum thickness for the top layer (in meters)
650\item    \np{pphmax}: total depth of the ocean (meters).
651\end{itemize}
652As an example, for the $45$ layers used in the DRAKKAR configuration those
653parameters are: \jp{jpk}=46, \np{ppacr}=9, \np{ppkth}=23.563, \np{ppdzmin}=6m,
654\np{pphmax}=5750m.
655
656%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
657\begin{table}     \begin{center} \begin{tabular}{c||r|r|r|r}
658\hline
659\textbf{LEVEL}& \textbf{gdept}& \textbf{gdepw}& \textbf{e3t }& \textbf{e3w  } \\ \hline
660&  \textbf{  5.00}   &       0.00 & \textbf{ 10.00} &  10.00 \\   \hline
661&  \textbf{15.00} &    10.00 &   \textbf{ 10.00} &  10.00 \\   \hline
662&  \textbf{25.00} &    20.00 &   \textbf{ 10.00} &     10.00 \\   \hline
663&  \textbf{35.01} &    30.00 &   \textbf{ 10.01} &     10.00 \\   \hline
664&  \textbf{45.01} &    40.01 &   \textbf{ 10.01} &  10.01 \\   \hline
665&  \textbf{55.03} &    50.02 &   \textbf{ 10.02} &     10.02 \\   \hline
666&  \textbf{65.06} &    60.04 &   \textbf{ 10.04} &  10.03 \\   \hline
667&  \textbf{75.13} &    70.09 &   \textbf{ 10.09} &  10.06 \\   \hline
668&  \textbf{85.25} &    80.18 &   \textbf{ 10.17} &  10.12 \\   \hline
66910 &  \textbf{95.49} &    90.35 &   \textbf{ 10.33} &  10.24 \\   \hline
67011 &  \textbf{105.97}   &   100.69 &   \textbf{ 10.65} &  10.47 \\   \hline
67112 &  \textbf{116.90}   &   111.36 &   \textbf{ 11.27} &  10.91 \\   \hline
67213 &  \textbf{128.70}   &   122.65 &   \textbf{ 12.47} &  11.77 \\   \hline
67314 &  \textbf{142.20}   &   135.16 &   \textbf{ 14.78} &  13.43 \\   \hline
67415 &  \textbf{158.96}   &   150.03 &   \textbf{ 19.23} &  16.65 \\   \hline
67516 &  \textbf{181.96}   &   169.42 &   \textbf{ 27.66} &  22.78 \\   \hline
67617 &  \textbf{216.65}   &   197.37 &   \textbf{ 43.26} &  34.30 \\ \hline
67718 &  \textbf{272.48}   &   241.13 &   \textbf{ 70.88} &  55.21 \\ \hline
67819 &  \textbf{364.30}   &   312.74 &   \textbf{116.11} &  90.99 \\ \hline
67920 &  \textbf{511.53}   &   429.72 &   \textbf{181.55} &    146.43 \\ \hline
68021 &  \textbf{732.20}   &   611.89 &   \textbf{261.03} &    220.35 \\ \hline
68122 &  \textbf{1033.22}&  872.87 &   \textbf{339.39} &    301.42 \\ \hline
68223 &  \textbf{1405.70}& 1211.59 & \textbf{402.26} &   373.31 \\ \hline
68324 &  \textbf{1830.89}& 1612.98 & \textbf{444.87} &   426.00 \\ \hline
68425 &  \textbf{2289.77}& 2057.13 & \textbf{470.55} &   459.47 \\ \hline
68526 &  \textbf{2768.24}& 2527.22 & \textbf{484.95} &   478.83 \\ \hline
68627 &  \textbf{3257.48}& 3011.90 & \textbf{492.70} &   489.44 \\ \hline
68728 &  \textbf{3752.44}& 3504.46 & \textbf{496.78} &   495.07 \\ \hline
68829 &  \textbf{4250.40}& 4001.16 & \textbf{498.90} &   498.02 \\ \hline
68930 &  \textbf{4749.91}& 4500.02 & \textbf{500.00} &   499.54 \\ \hline
69031 &  \textbf{5250.23}& 5000.00 &   \textbf{500.56} & 500.33 \\ \hline
691\end{tabular} \end{center} 
692\caption{ \label{Tab_orca_zgr}   
693Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration as computed
694from \eqref{DOM_zgr_ana} using the coefficients given in \eqref{DOM_zgr_coef}}
695\end{table}
696%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
697
698% -------------------------------------------------------------------------------------------------------------
699%        z-coordinate with partial step
700% -------------------------------------------------------------------------------------------------------------
701\subsection   [$z$-coordinate with partial step (\np{ln\_zps})]
702         {$z$-coordinate with partial step (\np{ln\_zps}=.true.)}
703\label{DOM_zps}
704%--------------------------------------------namdom-------------------------------------------------------
705\namdisplay{namdom} 
706%--------------------------------------------------------------------------------------------------------------
707
708In $z$-coordinate partial step, the depths of the model levels are defined by the
709reference analytical function $z_0 (k)$ as described in the previous
710section, \emph{except} in the bottom layer. The thickness of the bottom layer is
711allowed to vary as a function of geographical location $(\lambda,\varphi)$ to allow a
712better representation of the bathymetry, especially in the case of small
713slopes (where the bathymetry varies by less than one level thickness from
714one grid point to the next). The reference layer thicknesses $e_{3t}^0$ have been
715defined in the absence of bathymetry. With partial steps, layers from 1 to
716\jp{jpk}-2 can have a thickness smaller than $e_{3t}(jk)$. The model deepest layer (\jp{jpk}-1)
717is allowed to have either a smaller or larger thickness than $e_{3t}(jpk)$: the
718maximum thickness allowed is $2*e_{3t}(jpk-1)$. This has to be kept in mind when
719specifying values in \ngn{namdom} namelist, as the maximum depth \np{pphmax} 
720in partial steps: for example, with
721\np{pphmax}$=5750~m$ for the DRAKKAR 45 layer grid, the maximum ocean depth
722allowed is actually $6000~m$ (the default thickness $e_{3t}(jpk-1)$ being $250~m$).
723Two variables in the namdom namelist are used to define the partial step
724vertical grid. The mimimum water thickness (in meters) allowed for a cell
725partially filled with bathymetry at level jk is the minimum of \np{rn\_e3zps\_min} 
726(thickness in meters, usually $20~m$) or $e_{3t}(jk)*\np{rn\_e3zps\_rat}$ (a fraction,
727usually 10\%, of the default thickness $e_{3t}(jk)$).
728
729\gmcomment{ \colorbox{yellow}{Add a figure here of pstep especially at last ocean level }  }
730
731% -------------------------------------------------------------------------------------------------------------
732%        s-coordinate
733% -------------------------------------------------------------------------------------------------------------
734\subsection   [$s$-coordinate (\np{ln\_sco})]
735           {$s$-coordinate (\np{ln\_sco}=true)}
736\label{DOM_sco}
737%------------------------------------------nam_zgr_sco---------------------------------------------------
738\namdisplay{namzgr_sco} 
739%--------------------------------------------------------------------------------------------------------------
740Options are defined in \ngn{namzgr\_sco}.
741In $s$-coordinate (\np{ln\_sco}~=~true), the depth and thickness of the model
742levels are defined from the product of a depth field and either a stretching
743function or its derivative, respectively:
744
745\begin{equation} \label{DOM_sco_ana}
746\begin{split}
747 z(k)       &= h(i,j) \; z_0(k)  \\
748 e_3(k)  &= h(i,j) \; z_0'(k)
749\end{split}
750\end{equation}
751
752where $h$ is the depth of the last $w$-level ($z_0(k)$) defined at the $t$-point
753location in the horizontal and $z_0(k)$ is a function which varies from $0$ at the sea
754surface to $1$ at the ocean bottom. The depth field $h$ is not necessary the ocean
755depth, since a mixed step-like and bottom-following representation of the
756topography can be used (Fig.~\ref{Fig_z_zps_s_sps}d-e) or an envelop bathymetry can be defined (Fig.~\ref{Fig_z_zps_s_sps}f).
757The namelist parameter \np{rn\_rmax} determines the slope at which the terrain-following coordinate intersects
758the sea bed and becomes a pseudo z-coordinate.
759The coordinate can also be hybridised by specifying \np{rn\_sbot\_min} and \np{rn\_sbot\_max} 
760as the minimum and maximum depths at which the terrain-following vertical coordinate is calculated.
761
762Options for stretching the coordinate are provided as examples, but care must be taken to ensure
763that the vertical stretch used is appropriate for the application.
764
765The original default NEMO s-coordinate stretching is available if neither of the other options
766are specified as true (\np{ln\_s\_SH94}~=~false and \np{ln\_s\_SF12}~=~false).
767This uses a depth independent $\tanh$ function for the stretching \citep{Madec_al_JPO96}:
768
769\begin{equation}
770  z = s_{min}+C\left(s\right)\left(H-s_{min}\right)
771  \label{eq:SH94_1}
772\end{equation}
773
774where $s_{min}$ is the depth at which the s-coordinate stretching starts and
775allows a z-coordinate to placed on top of the stretched coordinate,
776and z is the depth (negative down from the asea surface).
777
778\begin{equation}
779  s = -\frac{k}{n-1} \quad \text{ and } \quad 0 \leq k \leq n-1
780  \label{eq:s}
781\end{equation}
782
783\begin{equation} \label{DOM_sco_function}
784\begin{split}
785C(s)  &\frac{ \left[   \tanh{ \left( \theta \, (s+b) \right)} 
786               - \tanh{ \left\theta \, b      \right)}  \right]}
787            {2\;\sinh \left( \theta \right)}
788\end{split}
789\end{equation}
790
791A stretching function, modified from the commonly used \citet{Song_Haidvogel_JCP94} 
792stretching (\np{ln\_s\_SH94}~=~true), is also available and is more commonly used for shelf seas modelling:
793
794\begin{equation}
795  C\left(s\right) =   \left(1 - b \right)\frac{ \sinh\left( \theta s\right)}{\sinh\left(\theta\right)} +      \\
796  b\frac{ \tanh \left[ \theta \left(s + \frac{1}{2} \right)\right] - \tanh\left(\frac{\theta}{2}\right)}{ 2\tanh\left (\frac{\theta}{2}\right)}
797  \label{eq:SH94_2}
798\end{equation}
799
800%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
801\begin{figure}[!ht]    \begin{center}
802\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_sco_function.pdf}
803\caption{  \label{Fig_sco_function}   
804Examples of the stretching function applied to a seamount; from left to right:
805surface, surface and bottom, and bottom intensified resolutions}
806\end{center}   \end{figure}
807%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
808
809where $H_c$ is the critical depth (\np{rn\_hc}) at which the coordinate transitions from
810pure $\sigma$ to the stretched coordinate,  and $\theta$ (\np{rn\_theta}) and $b$ (\np{rn\_bb})
811are the surface and bottom control parameters such that $0\leqslant \theta \leqslant 20$, and
812$0\leqslant b\leqslant 1$. $b$ has been designed to allow surface and/or bottom
813increase of the vertical resolution (Fig.~\ref{Fig_sco_function}).
814
815Another example has been provided at version 3.5 (\np{ln\_s\_SF12}) that allows
816a fixed surface resolution in an analytical terrain-following stretching \citet{Siddorn_Furner_OM12}.
817In this case the a stretching function $\gamma$ is defined such that:
818
819\begin{equation}
820z = -\gamma h \quad \text{ with } \quad 0 \leq \gamma \leq 1
821\label{eq:z}
822\end{equation}
823
824The function is defined with respect to $\sigma$, the unstretched terrain-following coordinate:
825
826\begin{equation} \label{DOM_gamma_deriv}
827\gamma= A\left(\sigma-\frac{1}{2}\left(\sigma^{2}+f\left(\sigma\right)\right)\right)+B\left(\sigma^{3}-f\left(\sigma\right)\right)+f\left(\sigma\right)
828\end{equation}
829
830Where:
831\begin{equation} \label{DOM_gamma}
832f\left(\sigma\right)=\left(\alpha+2\right)\sigma^{\alpha+1}-\left(\alpha+1\right)\sigma^{\alpha+2} \quad \text{ and } \quad \sigma = \frac{k}{n-1} 
833\end{equation}
834
835This gives an analytical stretching of $\sigma$ that is solvable in $A$ and $B$ as a function of
836the user prescribed stretching parameter $\alpha$ (\np{rn\_alpha}) that stretches towards
837the surface ($\alpha > 1.0$) or the bottom ($\alpha < 1.0$) and user prescribed surface (\np{rn\_zs})
838and bottom depths. The bottom cell depth in this example is given as a function of water depth:
839
840\begin{equation} \label{DOM_zb}
841Z_b= h a + b
842\end{equation}
843
844where the namelist parameters \np{rn\_zb\_a} and \np{rn\_zb\_b} are $a$ and $b$ respectively.
845
846%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
847\begin{figure}[!ht]
848   \includegraphics[width=1.0\textwidth]{./TexFiles/Figures/FIG_DOM_compare_coordinates_surface.pdf}
849        \caption{A comparison of the \citet{Song_Haidvogel_JCP94} $S$-coordinate (solid lines), a 50 level $Z$-coordinate (contoured surfaces) and the \citet{Siddorn_Furner_OM12} $S$-coordinate (dashed lines) in the surface 100m for a idealised bathymetry that goes from 50m to 5500m depth. For clarity every third coordinate surface is shown.}
850    \label{fig_compare_coordinates_surface}
851\end{figure}
852%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
853
854This gives a smooth analytical stretching in computational space that is constrained to given specified surface and bottom grid cell thicknesses in real space. This is not to be confused with the hybrid schemes that superimpose geopotential coordinates on terrain following coordinates thus creating a non-analytical vertical coordinate that therefore may suffer from large gradients in the vertical resolutions. This stretching is less straightforward to implement than the \citet{Song_Haidvogel_JCP94} stretching, but has the advantage of resolving diurnal processes in deep water and has generally flatter slopes.
855
856As with the \citet{Song_Haidvogel_JCP94} stretching the stretch is only applied at depths greater than the critical depth $h_c$. In this example two options are available in depths shallower than $h_c$, with pure sigma being applied if the \np{ln\_sigcrit} is true and pure z-coordinates if it is false (the z-coordinate being equal to the depths of the stretched coordinate at $h_c$.
857
858Minimising the horizontal slope of the vertical coordinate is important in terrain-following systems as large slopes lead to hydrostatic consistency. A hydrostatic consistency parameter diagnostic following \citet{Haney1991} has been implemented, and is output as part of the model mesh file at the start of the run.
859
860% -------------------------------------------------------------------------------------------------------------
861%        z*- or s*-coordinate
862% -------------------------------------------------------------------------------------------------------------
863\subsection{$z^*$- or $s^*$-coordinate (\np{ln\_linssh}=false) }
864\label{DOM_zgr_star}
865
866This option is described in the Report by Levier \textit{et al.} (2007), available on the \NEMO web site.
867
868%gm% key advantage: minimise the diffusion/dispertion associated with advection in response to high frequency surface disturbances
869
870% -------------------------------------------------------------------------------------------------------------
871%        level bathymetry and mask
872% -------------------------------------------------------------------------------------------------------------
873\subsection{level bathymetry and mask}
874\label{DOM_msk}
875
876Whatever the vertical coordinate used, the model offers the possibility of
877representing the bottom topography with steps that follow the face of the
878model cells (step like topography) \citep{Madec_al_JPO96}. The distribution of
879the steps in the horizontal is defined in a 2D integer array, mbathy, which
880gives the number of ocean levels ($i.e.$ those that are not masked) at each
881$t$-point. mbathy is computed from the meter bathymetry using the definiton of
882gdept as the number of $t$-points which gdept $\leq$ bathy.
883
884Modifications of the model bathymetry are performed in the \textit{bat\_ctl} 
885routine (see \mdl{domzgr} module) after mbathy is computed. Isolated grid points
886that do not communicate with another ocean point at the same level are eliminated.
887
888In case of ice shelf cavities, as for the representation of bathymetry, a 2D integer array, misfdep, is created.
889misfdep defines the level of the first wet $t$-point (ie below the ice-shelf/ocean interface). All the cells between $k=1$ and $misfdep(i,j)-1$ are masked.
890By default, $misfdep(:,:)=1$ and no cells are masked.
891Modifications of the model bathymetry and ice shelf draft into
892the cavities are performed in the \textit{zgr\_isf} routine. The compatibility between ice shelf draft and bathymetry is checked.
893All the locations where the isf cavity is thinnest than \np{rn\_isfhmin} meters are grounded ($i.e.$ masked).
894If only one cell on the water column is opened at $t$-, $u$- or $v$-points, the bathymetry or the ice shelf draft is dug to fit this constrain.
895If the incompatibility is too strong (need to dig more than 1 cell), the cell is masked.\\ 
896
897From the \textit{mbathy} and \textit{misfdep} array, the mask fields are defined as follows:
898\begin{align*}
899tmask(i,j,k) &= \begin{cases}   \; 0&   \text{ if $k < misfdep(i,j) $ } \\
900                                \; 1&   \text{ if $misfdep(i,j) \leq k\leq mbathy(i,j)$  }    \\
901                                \; 0&   \text{ if $k > mbathy(i,j)$  }    \end{cases}     \\
902umask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
903vmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i,j+1,k)   \\
904fmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
905                   & \ \ \, * tmask(i,j,k) \ * \ tmask(i+1,j,k) \\
906wmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i,j,k-1) \text{ with } wmask(i,j,1) = tmask(i,j,1)
907\end{align*}
908
909Note, wmask is now defined. It allows, in case of ice shelves,
910to deal with the top boundary (ice shelf/ocean interface) exactly in the same way as for the bottom boundary.
911
912The specification of closed lateral boundaries requires that at least the first and last
913rows and columns of the \textit{mbathy} array are set to zero. In the particular
914case of an east-west cyclical boundary condition, \textit{mbathy} has its last
915column equal to the second one and its first column equal to the last but one
916(and so too the mask arrays) (see \S~\ref{LBC_jperio}).
917
918%%%
919\gmcomment{   \colorbox{yellow}{Add one word on tricky trick !} mbathy in further modified in zdfbfr{\ldots}}
920%%%
921
922% ================================================================
923% Domain: Initial State (dtatsd & istate)
924% ================================================================
925\section  [Domain: Initial State (\textit{istate and dtatsd})]
926      {Domain: Initial State \small{(\mdl{istate} and \mdl{dtatsd} modules)} }
927\label{DTA_tsd}
928%-----------------------------------------namtsd-------------------------------------------
929\namdisplay{namtsd} 
930%------------------------------------------------------------------------------------------
931
932Options are defined in \ngn{namtsd}.
933By default, the ocean start from rest (the velocity field is set to zero) and the initialization of
934temperature and salinity fields is controlled through the \np{ln\_tsd\_ini} namelist parameter.
935\begin{description}
936\item[ln\_tsd\_init = .true.]  use a T and S input files that can be given on the model grid itself or
937on their native input data grid. In the latter case, the data will be interpolated on-the-fly both in the
938horizontal and the vertical to the model grid (see \S~\ref{SBC_iof}). The information relative to the
939input files are given in the \np{sn\_tem} and \np{sn\_sal} structures.
940The computation is done in the \mdl{dtatsd} module.
941\item[ln\_tsd\_init = .false.] use constant salinity value of 35.5 psu and an analytical profile of temperature
942(typical of the tropical ocean), see \rou{istate\_t\_s} subroutine called from \mdl{istate} module.
943\end{description}
Note: See TracBrowser for help on using the repository browser.