New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DOM.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Chap_DOM.tex @ 994

Last change on this file since 994 was 994, checked in by gm, 16 years ago

trunk - add steven correction + several other things + rename BETA into TexFiles?

  • Property svn:executable set to *
File size: 61.9 KB
Line 
1
2% ================================================================
3% Chapter 2 Ñ Space and Time Domain (DOM)
4% ================================================================
5\chapter{Space and Time Domain (DOM) }
6\label{DOM}
7\minitoc
8
9% Missing things:
10%  - istate: description of the initial state   ==> this has to be put elsewhere..
11%                  perhaps in MISC ?  By the way the initialisation of T S and dynamics
12%                  should be put outside of DOM routine (better with TRC staff and off-line
13%                  tracers)
14%  - daymod: definition of the time domain (nit000, nitend andd the calendar)
15%  -geo2ocean:  how to switch from geographic to mesh coordinate
16%  - domclo:  closed sea and lakes.... management of closea sea area : specific to global configuration, both forced and coupled
17
18\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction which could be referred to here, would help  ==> to be added}
19%%%%
20
21
22\newpage
23$\ $\newline    % force a new ligne
24
25
26Having defined the continuous equations in Chap.~\ref{PE}, we need to choose a
27discretization on a grid, and numerical algorithms. In the present chapter, we
28provide a general description of the staggered grid used in \NEMO, and other
29information relevant to the main directory routines (time stepping, main program)
30as well as the DOM (DOMain) directory.
31
32% ================================================================
33% Fundamentals of the Discretisation
34% ================================================================
35\section{Fundamentals of the Discretisation}
36\label{DOM_basics}
37
38% -------------------------------------------------------------------------------------------------------------
39%        Arrangement of Variables
40% -------------------------------------------------------------------------------------------------------------
41\subsection{Arrangement of Variables}
42\label{DOM_cell}
43
44%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
45\begin{figure}[!tb] \label{Fig_cell}  \begin{center}
46\includegraphics[width=0.90\textwidth]{./Figures/Fig_cell.pdf}
47\caption{Arrangement of variables. $T$ indicates scalar points where temperature,
48salinity, density, pressure and horizontal divergence are defined. ($u$,$v$,$w$)
49indicates vector points, and $f$ indicates vorticity points where both relative and
50planetary vorticities are defined}
51\end{center}   \end{figure}
52%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
53
54The numerical techniques used to solve the Primitive Equations in this model are
55based on the traditional, centred second-order finite difference approximation.
56Special attention has been given to the homogeneity of the solution in the three
57space directions. The arrangement of variables is the same in all directions.
58It consists of cells centred on scalar points ($T$, $S$, $p$, $\rho$) with vector
59points $(u, v, w)$ defined in the centre of each face of the cells (Fig. \ref{Fig_cell}).
60This is the generalisation to three dimensions of the well-known ``C'' grid in
61Arakawa's classification \citep{Mesinger_Arakawa_Bk76}. The relative and
62planetary vorticity, $\zeta$ and $f$, are defined in the centre of each vertical edge
63and the barotropic stream function $\psi$ is defined at horizontal points overlying
64the $\zeta$ and $f$-points.
65
66The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
67by the transformation that gives ($\lambda$ ,$\varphi$ ,$z$) as a function of $(i,j,k)$.
68The grid-points are located at integer or integer and a half value of $(i,j,k)$ as
69indicated on Table \ref{Tab_cell}. In all the following, subscripts $u$, $v$, $w$,
70$f$, $uw$, $vw$ or $fw$ indicate the position of the grid-point where the scale
71factors are defined. Each scale factor is defined as the local analytical value
72provided by \eqref{Eq_scale_factors}. As a result, the mesh on which partial
73derivatives $\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial \varphi}$, and
74$\frac{\partial}{\partial z} $ are evaluated is a uniform mesh with a grid size of unity. Discrete partial derivatives are formulated by the traditional, centred second order
75finite difference approximation while the scale factors are chosen equal to their
76local analytical value. An important point here is that the partial derivative of the
77scale factors must be evaluated by centred finite difference approximation, not
78from their analytical expression. This preserves the symmetry of the discrete set
79of equations and therefore satisfies many of the continuous properties (see
80Appendix~\ref{Apdx_C}). A similar, related remark can be made about the domain
81size: when needed, an area, volume, or the total ocean depth must be evaluated
82as the sum of the relevant scale factors (see \eqref{DOM_bar}) in the next section).
83
84\begin{table}[!tb] \label{Tab_cell}
85\begin{center} \begin{tabular}{|p{46pt}|p{56pt}|p{56pt}|p{56pt}|}
86\hline
87&$i$     & $j$    & $k$     \\ \hline
88& $i+1/2$   & $j$    & $k$    \\ \hline
89& $i$    & $j+1/2$   & $k$    \\ \hline
90& $i$    & $j$    & $k+1/2$   \\ \hline
91& $i+1/2$   & $j+1/2$   & $k$    \\ \hline
92uw & $i+1/2$   & $j$    & $k+1/2$   \\ \hline
93vw & $i$    & $j+1/2$   & $k+1/2$   \\ \hline
94fw & $i+1/2$   & $j+1/2$   & $k+1/2$   \\ \hline
95\end{tabular}
96\caption{Location of grid-points as a function of integer or integer and a half value
97of the column, line or level. This indexing is only used for the writing of the semi-
98discrete equation. In the code, the indexing uses integer values only and has a
99reverse direction in the vertical (see \S\ref{DOM_Num_Index})}
100\end{center}
101\end{table}
102
103% -------------------------------------------------------------------------------------------------------------
104%        Vector Invariant Formulation
105% -------------------------------------------------------------------------------------------------------------
106\subsection{Discrete Operators}
107\label{DOM_operators}
108
109Given the values of a variable $q$ at adjacent points, the differencing and
110averaging operators at the midpoint between them are:
111\begin{subequations} \label{Eq_di_mi}
112\begin{align}
113 \delta _i [q]       &\  \    q(i+1/2)  - q(i-1/2)    \\
114 \overline q^{\,i} &= \left\{ q(i+1/2) + q(i-1/2) \right\} \; / \; 2
115\end{align}
116\end{subequations}
117
118Similar operators are defined with respect to $i+1/2$, $j$, $j+1/2$, $k$, and
119$k+1/2$. Following \eqref{Eq_PE_grad} and \eqref{Eq_PE_lap}, the gradient of a
120variable $q$ defined at a $T$-point has its three components defined at $u$-, $v$-
121and $w$-points while its Laplacien is defined at $T$-point. These operators have
122the following discrete forms in the curvilinear $s$-coordinate system:
123\begin{equation} \label{Eq_DOM_grad}
124\nabla q\equiv    \frac{1}{e_{1u} }\delta _{i+1/2} \left[ q \right]\;\,{\rm {\bf i}}
125         +  \frac{1}{e_{2v} }\delta _{j+1/2} \left[ q \right]\;\,{\rm {\bf j}}
126         +  \frac{1}{e_{3w} }\delta _{k+1/2} \left[ q \right]\;\,{\rm {\bf k}}
127\end{equation}
128\begin{multline} \label{Eq_DOM_lap}
129\Delta q\equiv \frac{1}{e_{1T} {\kern 1pt}e_{2T} {\kern 1pt}e_{3T} }\;\left(
130{\delta _i \left[ {\frac{e_{2u} e_{3u} }{e_{1u} }\;\delta _{i+1/2} 
131\left[ q \right]} \right]
132+\delta _j \left[ {\frac{e_{1v} e_{3v} }{e_{2v} 
133}\;\delta _{j+1/2} \left[ q \right]} \right]\;} \right)     \\
134+\frac{1}{e_{3T} }\delta _k \left[ {\frac{1}{e_{3w} }\;\delta _{k+1/2} 
135\left[ q \right]} \right]
136\end{multline}
137
138Following \eqref{Eq_PE_curl} and \eqref{Eq_PE_div}, a vector ${\rm {\bf A}}=\left( a_1,a_2,a_3\right)$ defined at vector points $(u,v,w)$ has its three curl
139components defined at $vw$-, $uw$, and $f$-points, and its divergence defined
140at $T$-points:
141\begin{equation} \label{Eq_DOM_curl}
142\begin{split}
143 \nabla \times {\rm {\bf A}}\equiv \frac{1}{e_{2v} {\kern 1pt}e_{3vw} 
144}{\kern 1pt}\,\;\left( {\delta _{j+1/2} \left[ {e_{3w} a_3 } \right]-\delta 
145_{k+1/2} \left[ {e_{2v} a_2 } \right]} \right&\;\;{\rm {\bf i}} \\ 
146 +\frac{1}{e_{2u} {\kern 1pt}e_{3uw} }\;\left( {\delta _{k+1/2} \left[ {e_{1u} a_1 } 
147\right]-\delta _{i+1/2} \left[ {e_{3w} a_3 } \right]} \right&\;\;{\rm{\bf j}} \\ 
148 +\frac{e_{3f} }{e_{1f} {\kern 1pt}e_{2f} }\,{\kern 1pt}\;\left( {\delta 
149_{i+1/2} \left[ {e_{2v} a_2 } \right]-\delta _{j+12} \left[ {e_{1u} a_1 } \right]} 
150\right&\;\;{\rm {\bf k}}
151 \end{split}
152\end{equation}
153\begin{equation} \label{Eq_DOM_div}
154\nabla \cdot {\rm {\bf A}}=\frac{1}{e_{1T} e_{2T} e_{3T} }\left( {\delta 
155_i \left[ {e_{2u} e_{3u} a_1 } \right]+\delta _j \left[ {e_{1v} e_{3v} a_2 } 
156\right]} \right)+\frac{1}{e_{3T} }\delta _k \left[ {a_3 } \right]
157\end{equation}
158
159In the special case of a pure $z$-coordinate system, \eqref{Eq_DOM_lap} and
160\eqref{Eq_DOM_div} can be simplified. In this case, the vertical scale factor
161becomes a function of the single variable $k$ and thus does not depend on the
162horizontal location of a grid point. For example \eqref{Eq_DOM_div} reduces to:
163\begin{equation*}
164\nabla \cdot {\rm {\bf A}}=\frac{1}{e_{1T} e_{2T} }\left( {\delta 
165_i \left[ {e_{2u} a_1 } \right]+\delta _j \left[ {e_{1v}  a_2 } 
166\right]} \right)+\frac{1}{e_{3T} }\delta _k \left[ {a_3 } \right]
167\end{equation*}
168
169The vertical average over the whole water column denoted by an overbar becomes
170for a quantity $q$ which is a masked field (i.e. equal to zero inside solid area):
171\begin{equation} \label{DOM_bar}
172\bar q   = \frac{1}{H}\int_{k^b}^{k^o} {q\;e_{3q} \,dk} 
173      \equiv \frac{1}{H_q }\sum\limits_k {q\;e_{3q} }
174\end{equation}
175where $H_q$  is the ocean depth, which is the masked sum of the vertical scale
176factors at $q$ points, $k^b$ and $k^o$ are the bottom and surface $k$-indices,
177and the symbol $k^o$ refers to a summation over all grid points of the same type
178in the direction indicated by the subscript (here $k$).
179
180In continuous form, the following properties are satisfied:
181\begin{equation} \label{Eq_DOM_curl_grad}
182\nabla \times \nabla q ={\rm {\bf {0}}}
183\end{equation}
184\begin{equation} \label{Eq_DOM_div_curl}
185\nabla \cdot \left( {\nabla \times {\rm {\bf A}}} \right)=0
186\end{equation}
187
188It is straightforward to demonstrate that these properties are verified locally in
189discrete form as soon as the scalar $q$ is taken at $T$-points and the vector
190\textbf{A} has its components defined at vector points $(u,v,w)$.
191
192Let $a$ and $b$ be two fields defined on the mesh, with value zero inside
193continental area. Using integration by parts it can be shown that the differencing
194operators ($\delta_i$, $\delta_j$ and $\delta_k$) are anti-symmetric linear
195operators, and further that the averaging operators $\overline{\,\cdot\,}^{\,i}$,
196$\overline{\,\cdot\,}^{\,k}$ and $\overline{\,\cdot\,}^{\,k}$) are symmetric linear
197operators, $i.e.$
198\begin{align} 
199\label{DOM_di_adj}
200\sum\limits_i { a_i \;\delta _i \left[ b \right]} 
201   &\equiv -\sum\limits_i {\delta _{i+1/2} \left[ a \right]\;b_{i+1/2} }      \\
202\label{DOM_mi_adj}
203\sum\limits_i { a_i \;\overline b^{\,i}} 
204   & \equiv \quad \sum\limits_i {\overline a ^{\,i+1/2}\;b_{i+1/2} } 
205\end{align}
206
207In other words, the adjoint of the differencing and averaging operators are
208$\delta_i^*=\delta_{i+1/2}$ and
209${(\overline{\,\cdot \,}^{\,i})}^*= \overline{\,\cdot\,}^{\,i+1/2}$, respectively.
210These two properties will be used extensively in the Appendix~\ref{Apdx_C} to
211demonstrate integral conservative properties of the discrete formulation chosen.
212
213% -------------------------------------------------------------------------------------------------------------
214%        Numerical Indexing
215% -------------------------------------------------------------------------------------------------------------
216\subsection{Numerical Indexing}
217\label{DOM_Num_Index}
218
219%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
220\begin{figure}[!tb] \label{Fig_index_hor}  \begin{center}
221\includegraphics[width=0.90\textwidth]{./Figures/Fig_index_hor.pdf}
222\caption{Horizontal integer indexing used in the \textsc{Fortran} code. The dashed
223area indicates the cell in which variables contained in arrays have the same
224$i$- and $j$-indices}
225\end{center}   \end{figure}
226%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
227
228The array representation used in the \textsc{Fortran} code requires an integer
229indexing while the analytical definition of the mesh (see \S\ref{DOM_cell}) is
230associated with the use of integer values for $T$-points and both integer and
231integer and a half values for all the other points. Therefore a specific integer
232indexing must be defined for points other than $T$-points ($i.e.$ velocity and
233vorticity grid-points). Furthermore, the direction of the vertical indexing has
234been changed so that the surface level is at $k=1$.
235
236% -----------------------------------
237%        Horizontal Indexing
238% -----------------------------------
239\subsubsection{Horizontal Indexing}
240\label{DOM_Num_Index_hor}
241
242The indexing in the horizontal plane has been chosen as shown in Fig.\ref{Fig_index_hor}. For an increasing $i$ index ($j$ index), the $T$-point
243and the eastward $u$-point (northward $v$-point) have the same index
244(see the dashed area in Fig.\ref{Fig_index_hor}). A $T$-point and its
245nearest northeast $f$-point have the same $i$-and $j$-indices.
246
247% -----------------------------------
248%        Vertical indexing
249% -----------------------------------
250\subsubsection{Vertical Indexing}
251\label{DOM_Num_Index_vertical}
252
253In the vertical, the chosen indexing requires special attention since the
254$k$-axis is re-orientated downward in the \textsc{Fortran} code compared
255to the indexing used in the semi-discrete equations and given in \S\ref{DOM_cell}.
256The sea surface corresponds to the $w$-level $k=1$ which is the same index
257as $T$-level just below (Fig.\ref{Fig_index_vert}). The last $w$-level ($k=jpk$)
258either corresponds to the ocean floor or is inside the bathymetry while the last
259$T$-level is always inside the bathymetry (Fig.\ref{Fig_index_vert}). Note that
260for an increasing $k$ index, a $w$-point and the $T$-point just below have the
261same $k$ index, in opposition to what is done in the horizontal plane where
262it is the $T$-point and the nearest velocity points in the direction of the horizontal
263axis that have the same $i$ or $j$ index (compare the dashed area in Fig.\ref{Fig_index_hor} and \ref{Fig_index_vert}). Since the scale factors are chosen
264to be strictly positive, a \emph{minus sign} appears in the \textsc{Fortran} code
265\emph{before all the vertical derivatives} of the discrete equations given in this
266documentation.
267
268%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
269\begin{figure}[!pt] \label{Fig_index_vert}  \begin{center}
270\includegraphics[width=.90\textwidth]{./Figures/Fig_index_vert.pdf}
271\caption{Vertical integer indexing used in the \textsc{Fortran } code. Note that
272the $k$-axis is orientated downward. The dashed area indicates the cell in
273which variables contained in arrays have the same $k$-index.}
274\end{center}   \end{figure}
275%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
276
277% -----------------------------------
278%        Domain Size
279% -----------------------------------
280\subsubsection{Domain Size}
281\label{DOM_size}
282
283The total size of the computational domain is set by the parameters \jp{jpiglo},
284\jp{jpjglo} and \jp{jpk} in the $i$, $j$ and $k$ directions respectively. They are
285given as parameters in the \mdl{par\_oce} module\footnote{When a specific
286configuration is used (ORCA2 global ocean, etc...) the parameter are actually
287defined in additional files introduced by \mdl{par\_oce} module via CPP
288\textit{include} command. For example, ORCA2 parameters are set in
289\textit{par\_ORCA\_R2.h90} file}. The use of parameters rather than variables
290(together with dynamic allocation of arrays) was chosen because it ensured that
291the compiler would optimize the executable code efficiently, especially on vector
292machines (optimization may be less efficient when the problem size is unknown
293at the time of compilation). Nevertheless, it is possible to set up the code with full
294dynamical allocation by using the AGRIF packaged \citep{Debreu_al_CG2008}.
295%
296\gmcomment{  add the following ref
297\colorbox{yellow}{(ref part of the doc)} } 
298%
299Note that are other parameters in \mdl{par\_oce} that refer to the domain size.
300The two parameters $jpidta$ and $jpjdta$ may be larger than $jpiglo$, $jpjglo$ 
301when the user wants to use only a sub-region of a given configuration. This is
302the "zoom" capability described in \S\ref{MISC_zoom}. In most applications of
303the model, $jpidta=jpiglo$, $jpjdta=jpjglo$, and $jpizoom=jpjzoom=1$. Parameters
304$jpi$ and $jpj$ refer to the size of each processor subdomain when the code is
305run in parallel using domain decomposition (\key{mpp\_mpi} defined, see
306\S\ref{LBC_mpp}).
307
308% ================================================================
309% Domain: Horizontal Grid (mesh)
310% ================================================================
311\section  [Domain: Horizontal Grid (mesh) (\textit{domhgr})]               
312      {Domain: Horizontal Grid (mesh) \small{(\mdl{domhgr} module)} }
313\label{DOM_hgr}
314
315% -------------------------------------------------------------------------------------------------------------
316%        Coordinates and scale factors
317% -------------------------------------------------------------------------------------------------------------
318\subsection{Coordinates and scale factors}
319\label{DOM_hgr_coord_e}
320
321The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
322by the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$.
323The grid-points are located at integer or integer and a half values of as indicated
324in Table~\ref{Tab_cell}. The associated scale factors are defined using the
325analytical first derivative of the transformation \eqref{Eq_scale_factors}. These
326definitions are done in two modules, \mdl{domhgr} and \mdl{domzgr}, which
327provide the horizontal and vertical meshes, respectively. This section deals with
328the horizontal mesh parameters.
329
330In a horizontal plane, the location of all the model grid points is defined from the
331analytical expressions of the longitude $\lambda$ and  latitude $\varphi$ as a
332function of  $(i,j)$. The horizontal scale factors are calculated using
333\eqref{Eq_scale_factors}. For example, when the longitude and latitude are
334function of a single value ($i$ and $j$, respectively) (geographical configuration
335of the mesh), the horizontal mesh definition reduces to define the wanted
336$\lambda(i)$, $\varphi(j)$, and their derivatives $\lambda'(i)$ $\varphi'(j)$ in the
337\mdl{domhgr} module. The model computes the grid-point positions and scale
338factors in the horizontal plane as follows:
339\begin{flalign*}
340\lambda_T &\equiv \text{glamt}= \lambda(i)     & \varphi_T &\equiv \text{gphit} = \varphi(j)\\
341\lambda_u &\equiv \text{glamu}= \lambda(i+1/2)& \varphi_u &\equiv \text{gphiu}= \varphi(j)\\
342\lambda_v &\equiv \text{glamv}= \lambda(i)       & \varphi_v &\equiv \text{gphiv} = \varphi(j+1/2)\\
343\lambda_f &\equiv \text{glamf }= \lambda(i+1/2)& \varphi_f &\equiv \text{gphif }= \varphi(j+1/2)
344\end{flalign*}
345\begin{flalign*}
346e_{1T} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j)  |&
347e_{2T} &\equiv \text{e2t} = r_a |\varphi'(j)|  \\
348e_{1u} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)   \; \cos\varphi(j)  |&
349e_{2u} &\equiv \text{e2t} = r_a |\varphi'(j)|\\
350e_{1v} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j+1/2)  |&
351e_{2v} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|\\
352e_{1f} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)\; \cos\varphi(j+1/2)  |&
353e_{2f} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|
354\end{flalign*}
355where the last letter of each computational name indicates the grid point
356considered and $r_a$ is the earth radius (defined in \mdl{phycst} along with
357all universal constants). Note that the horizontal position of and scale factors
358at $w$-points are exactly equal to those of $T$-points, thus no specific arrays
359are defined at $w$-points.
360
361Note that the definition of the scale factors ($i.e.$ as the analytical first derivative
362of the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$) is
363specific to the \NEMO model \citep{Marti1992}. As an example, $e_{1T}$ is defined
364locally at a $T$-point, whereas many other models on a C grid choose to define
365such a scale factor as the distance between the $U$-points on each side of the
366$T$-point. Relying on an analytical transformation has two advantages: firstly, there
367is no ambiguity in the scale factors appearing in the discrete equations, since they
368are first introduced in the continuous equations; secondly, analytical transformations
369encourage good practice by the definition of smoothly varying grids (rather than
370allowing the user to set arbitrary jumps in thickness between adjacent layers)
371\citep{Treguier1996}. An example of the effect of such a choice is shown in
372Fig.~\ref{Fig_zgr_e3}.
373%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
374\begin{figure}[!t] \label{Fig_zgr_e3}  \begin{center}
375\includegraphics[width=0.90\textwidth]{./Figures/Fig_zgr_e3.pdf}
376\caption{Comparison of (a) traditional definitions of grid-point position and grid-size
377in the vertical, and (b) analytically derived grid-point position and scale factors. For
378both grids here,  the same $w$-point depth has been chosen but in (a) the
379$T$-points are set half way between $w$-points while in (b) they are defined from
380an analytical function: $z(k)=5\,(i-1/2)^3 - 45\,(i-1/2)^2 + 140\,(i-1/2) - 150$.
381Note the resulting difference between the value of the grid-size $\Delta_k$ and
382those of the scale factor $e_k$. }
383\end{center}   \end{figure}
384%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
385
386% -------------------------------------------------------------------------------------------------------------
387%        Choice of horizontal grid
388% -------------------------------------------------------------------------------------------------------------
389\subsection{Choice of horizontal grid}
390\label{DOM_hgr_msh_choice}
391
392The user has three options available in defining a horizontal grid, which involve
393the parameter $jphgr\_mesh$ of the \mdl{par\_oce} module.
394\begin{description}
395\item[\jp{jphgr\_mesh}=0]  The most general curvilinear orthogonal grids.
396The coordinates and their first derivatives with respect to $i$ and $j$ are
397provided in a file, read in \rou{hgr\_read} subroutine of the domhgr module.
398\item[\jp{jphgr\_mesh}=1 to 5] A few simple analytical grids are provided (see below).
399For other analytical grids, the \mdl{domhgr} module must be modified by the user.
400\end{description}
401
402There are two simple cases of geographical grids on the sphere. With
403\jp{jphgr\_mesh}=1, the grid (expressed in degrees) is regular in space,
404with grid sizes specified by parameters \pp{ppe1\_deg} and \pp{ppe2\_deg},
405respectively. Such a geographical grid can be very anisotropic at high latitudes
406because of the convergence of meridians (the zonal scale factors $e_1$ 
407become much smaller than the meridional scale factors $e_2$). The Mercator
408grid (\jp{jphgr\_mesh}=4) avoids this anisotropy by refining the meridional scale
409factors in the same way as the zonal ones. In this case, meridional scale factors
410and latitudes are calculated analytically using the formulae appropriate for
411a Mercator projection, based on \pp{ppe1\_deg} which is a reference grid spacing
412at the equator (this applies even when the geographical equator is situated outside
413the model domain).
414%%%
415\gmcomment{ give here the analytical expression of the Mercator mesh}
416%%%
417In these two cases (\jp{jphgr\_mesh}=1 or 4), the grid position is defined by the
418longitude and latitude of the south-westernmost point (\pp{ppglamt0} 
419and \pp{ppgphi0}). Note that for the Mercator grid the user need only provide
420an approximate starting latitude: the real latitude will be recalculated analytically,
421in order to ensure that the equator corresponds to line passing through $T$-
422and $u$-points. 
423
424Rectangular grids ignoring the spherical geometry are defined with
425\jp{jphgr\_mesh} = 2, 3, 5. The domain is either an $f$-plane (\jp{jphgr\_mesh} = 2,
426Coriolis factor is constant) or a beta-plane (\jp{jphgr\_mesh} = 3, the Coriolis factor
427is linear in the $j$-direction). The grid size is uniform in meter in each direction,
428and given by the parameters \pp{ppe1\_m} and \pp{ppe2\_m} respectively.
429The zonal grid coordinate (\textit{glam} arrays) is in kilometers, starting at zero
430with the first $T$-point. The meridional coordinate (gphi. arrays) is in kilometers,
431and the second $T$-point corresponds to coordinate $gphit=0$. The input
432parameter \pp{ppglam0} is ignored. \pp{ppgphi0} is used to set the reference
433latitude for computation of the Coriolis parameter. In the case of the beta plane,
434\pp{ppgphi0} corresponds to the center of the domain. Finally, the special case
435\jp{jphgr\_mesh}=5 corresponds to a beta plane in a rotated domain for the
436GYRE configuration, representing a classical mid-latitude double gyre system.
437The rotation allows us to maximize the jet length relative to the gyre areas
438(and the number of grid points).
439
440The choice of the grid must be consistent with the boundary conditions specified
441by the parameter \jp{jperio} (see {\S\ref{LBC}).
442
443% -------------------------------------------------------------------------------------------------------------
444%        Grid files
445% -------------------------------------------------------------------------------------------------------------
446\subsection{Grid files}
447\label{DOM_hgr_files}
448
449All the arrays relating to a particular ocean model configuration (grid-point
450position, scale factors, masks) can be saved in files if $\np{nmsh} \not= 0$ 
451(namelist parameter). This can be particularly useful for plots and off-line
452diagnostics. In some cases, the user may choose to make a local modification
453of a scale factor in the code. This is the case in global configurations when
454restricting the width of a specific strait (usually a one-grid-point strait that
455happens to be too wide due to insufficient model resolution). An example
456is Gibraltar Strait in the ORCA2 configuration. When such modifications are done,
457the output grid written when $\np{nmsh} \not=0$ is no more equal to the input grid.
458
459% ================================================================
460% Domain: Vertical Grid (domzgr)
461% ================================================================
462\section  [Domain: Vertical Grid (\textit{domzgr})]
463      {Domain: Vertical Grid \small{(\mdl{domzgr} module)} }
464\label{DOM_zgr}
465%-----------------------------------------nam_zgr & namdom-------------------------------------------
466\namdisplay{nam_zgr} 
467\namdisplay{namdom} 
468%-------------------------------------------------------------------------------------------------------------
469
470In the vertical, the model mesh is determined by four things:
471(1) the bathymetry given in meters ;
472(2) the number of levels of the model (\jp{jpk}) ;
473(3) the analytical transformation $z(i,j,k)$ and the vertical scale factors
474(derivatives of the transformation) ;
475and (4) the masking system, $i.e.$ the number of wet model levels at each
476$(i,j)$ column of points.
477
478%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
479\begin{figure}[!tb] \label{Fig_z_zps_s_sps}  \begin{center}
480\includegraphics[width=1.0\textwidth]{./Figures/Fig_z_zps_s_sps.pdf}
481\caption{The ocean bottom as seen by the model:
482(a) $z$-coordinate with full step,
483(b) $z$-coordinate with partial step,
484(c) $s$-coordinate: terrain following representation,
485(d) hybrid $s-z$ coordinate,
486(e) hybrid $s-z$ coordinate with partial step, and
487(f) same as (e) but with variable volume associated with the non-linear free surface.
488Note that the variable volume option (\key{vvl}) can be used with any of the
4895 coordinates (a) to (e).}
490\end{center}   \end{figure}
491%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
492
493The choice of a vertical coordinate, even if it is made through a namelist parameter,
494must be done once of all at the beginning of an experiment. It is not intended as an
495option which can be enabled or disabled in the middle of an experiment. Three main
496choices are offered (Fig.~\ref{Fig_z_zps_s_sps}a to c): $z$-coordinate with full step
497bathymetry (\np{ln\_zco}=true), $z$-coordinate with partial step bathymetry
498(\np{ln\_zps}=true), or generalized, $s$-coordinate (\np{ln\_sco}=true).
499Hybridation of the three main coordinates are available: $s-z$ or $s-zps$ coordinate
500(Fig.~\ref{Fig_z_zps_s_sps}d and \ref{Fig_z_zps_s_sps}e). When using the variable
501volume option \key{vvl}) ($i.e.$ non-linear free surface), the coordinate follow the
502time-variation of the free surface so that the transformation is time dependent:
503$z(i,j,k,t)$ (Fig.~\ref{Fig_z_zps_s_sps}f). This option can be used with full step
504bathymetry or $s$-coordinate (hybride and partial step coordinates have not
505yet been tested in NEMO v2.3).
506
507Contrary to the horizontal grid, the vertical grid is computed in the code and no
508provision is made for reading it from a file. The only input file is the bathymetry
509(in meters)\footnote{N.B. in full step $z$-coordinate, a \textit{bathy\_level} file can
510replace the \textit{bathy\_meter} file, so that the computation of the number of
511wet ocean point in each water column is by-passed}. After reading the bathymetry,
512the algorithm for vertical grid definition differs between the different options:
513\begin{description}
514\item[\textit{zco}] set a reference coordinate transformation $z_0 (k)$, and set $z(i,j,k,t)=z_0 (k)$.
515\item[\textit{zps}] set a reference coordinate transformation $z_0 (k)$, and
516calculate the thickness of the deepest level at each $(i,j)$ point using the
517bathymetry, to obtain the final three-dimensional depth and scale factor arrays.
518\item[\textit{sco}] smooth the bathymetry to fulfil the hydrostatic consistency
519criteria and set the three-dimensional transformation.
520\item[\textit{s-z} and \textit{s-zps}] smooth the bathymetry to fulfil the hydrostatic
521consistency criteria and set the three-dimensional transformation $z(i,j,k)$, and
522possibly introduce masking of extra land points to better fit the original bathymetry file
523\end{description}
524%%%
525\gmcomment{   add the description of the smoothing:  envelop topography...}
526%%%
527
528Generally, the arrays describing the grid point depths and vertical scale factors
529are three dimensional arrays $(i,j,k)$. In the special case of $z$-coordinates with
530full step bottom topography, it is possible to define those arrays as one-dimensional,
531in order to save memory. This is performed by defining the \key{zco} 
532C-Pre-Processor (CPP) key. To improve the code readability while providing this
533flexibility, the vertical coordinate and scale factors are defined as functions of
534$(i,j,k)$ with "fs" as prefix (examples: \textit{fsdeptht, fse3t,} etc) that can be either
535three-dimensional arrays, or a one dimensional array when \key{zco} is defined.
536These functions are defined in the file \hf{domzgr\_substitute} of the DOM directory.
537They are used throughout the code, and replaced by the corresponding arrays at
538the time of pre-processing (CPP capability).
539
540% -------------------------------------------------------------------------------------------------------------
541%        Meter Bathymetry
542% -------------------------------------------------------------------------------------------------------------
543\subsection{Meter Bathymetry}
544\label{DOM_bathy}
545
546Three options are possible for defining the bathymetry, according to the
547namelist variable \np{ntopo}:
548\begin{description}
549\item[\np{ntopo} = 0] a flat-bottom domain is defined. The total depth $z_w (jpk)$ 
550is given by the coordinate transformation. The domain can either be a closed
551basin or a periodic channel depending on the parameter \jp{jperio}.
552\item[\np{ntopo} = -1] a domain with a bump of topography one third of the
553domain width at the central latitude. This is meant for the "EEL-R5" configuration,
554a periodic or open boundary channel with a seamount.
555\item[\np{ntopo} = 1] read a bathymetry. The bathymetry file (Netcdf format)
556provides the ocean depth (positive, in meters) at each grid point of the model grid.
557The bathymetry is usually built by interpolating a standard bathymetry product
558($e.g.$ ETOPO2) onto the horizontal ocean mesh. Defining the bathymetry also
559defines the coastline: where the bathymetry is zero, no model levels are defined
560(all levels are masked).
561\end{description}
562
563When using the rigid lid approximation (\key{dynspg\_rl} is defined) isolated land
564masses (islands) must be identified by negative integers in the input bathymetry file
565(see \S\ref{MISC_solisl}).
566
567When a global ocean is coupled to an atmospheric model it is better to represent
568all large water bodies (e.g, great lakes, Caspian sea...) even if the model
569resolution does not allow their communication with the rest of the ocean.
570This is unnecessary when the ocean is forced by fixed atmospheric conditions,
571so these seas can be removed from the ocean domain. The user has the option
572to set the bathymetry in closed seas to zero (see \S\ref{MISC_closea}), but the
573code has to be adapted to the user's configuration.
574
575% -------------------------------------------------------------------------------------------------------------
576%        z-coordinate  and reference coordinate transformation
577% -------------------------------------------------------------------------------------------------------------
578\subsection[$z$-coordinate (\np{ln\_zco} or \key{zco})]
579        {$z$-coordinate (\np{ln\_zco}=.true. or \key{zco}) and reference coordinate}
580\label{DOM_zco}
581
582%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
583\begin{figure}[!tb] \label{Fig_zgr}  \begin{center}
584\includegraphics[width=0.90\textwidth]{./Figures/Fig_zgr.pdf}
585\caption{Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level
586functions for (a) T-point depth and (b) the associated scale factor as computed
587from \eqref{DOM_zgr_ana} using \eqref{DOM_zgr_coef} in $z$-coordinate.}
588\end{center}   \end{figure}
589%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
590
591The reference coordinate transformation $z_0 (k)$ defines the arrays $gdept_0$ 
592and $gdepw_0$ for $T$- and $w$-points, respectively. As indicated on
593Fig.\ref{Fig_index_vert} \jp{jpk} is the number of $w$-levels. $gdepw_0(1)$ is the
594ocean surface. There are at most \jp{jpk}-1 $T$-points inside the ocean, the
595additional $T$-point at $jk=jpk$ is below the sea floor and is not used.
596The vertical location of $w$- and $T$-levels is defined from the analytic expression
597of the depth $z_0(k)$ whose analytical derivative with respect to $k$ provides the
598vertical scale factors. The user must provide the analytical expression of both
599$z_0$ and its first derivative with respect to $k$. This is done in routine \mdl{domzgr} 
600through statement functions, using parameters provided in the \textit{par\_oce.h90} file.
601
602It is possible to define a simple regular vertical grid by giving zero stretching (\pp{ppacr=0}). In that case, the parameters \jp{jpk} (number of $w$-levels) and \pp{pphmax} (total ocean depth in meters) fully define the grid.
603
604For climate-related studies it is often desirable to concentrate the vertical resolution
605near the ocean surface. The following function is proposed as a standard for a $z$-coordinate (with either full or partial steps):
606\begin{equation} \label{DOM_zgr_ana}
607\begin{split}
608 z_0 (k)    &= h_{sur} -h_0 \;k-\;h_1 \;\log \left[ {\,\cosh \left( {{(k-h_{th} )} / {h_{cr} }} \right)\,} \right] \\ 
609 e_3^0 (k)  &= \left| -h_0 -h_1 \;\tanh \left( {{(k-h_{th} )} / {h_{cr} }} \right) \right|
610\end{split}
611\end{equation}
612where $k=1$ to \jp{jpk} for $w$-levels and $k=1$ to $k=1$ for $T-$levels. Such an
613expression allows us to define a nearly uniform vertical location of levels at the
614ocean top and bottom with a smooth hyperbolic tangent transition in between
615(Fig.~\ref{Fig_zgr}).
616
617The most used vertical grid for ORCA2 has $10~m$ ($500~m)$ resolution in the
618surface (bottom) layers and a depth which varies from 0 at the sea surface to a
619minimum of $-5000~m$. This leads to the following conditions:
620\begin{equation} \label{DOM_zgr_coef}
621\begin{split}
622 e_3 (1+1/2)      &=10. \\ 
623 e_3 (jpk-1/2) &=500. \\ 
624 z(1)       &=0. \\ 
625 z(jpk)        &=-5000. \\ 
626\end{split}
627\end{equation}
628
629With the choice of the stretching $h_{cr} =3$ and the number of levels
630\jp{jpk}=$31$, the four coefficients $h_{sur}$, $h_{0}$, $h_{1}$, and $h_{th}$ in
631\eqref{DOM_zgr_ana} have been determined such that \eqref{DOM_zgr_coef} is
632satisfied, through an optimisation procedure using a bisection method. For the first
633standard ORCA2 vertical grid this led to the following values: $h_{sur} =4762.96$,
634$h_0 =255.58, h_1 =245.5813$, and $h_{th} =21.43336$. The resulting depths and
635scale factors as a function of the model levels are shown in Fig.~\ref{Fig_zgr} and
636given in Table \ref{Tab_orca_zgr}. Those values correspond to the parameters
637\pp{ppsur}, \pp{ppa0}, \pp{ppa1}, \pp{ppkth} in the parameter file \mdl{par\_oce}.
638
639Rather than entering parameters $h_{sur}$, $h_{0}$, and $h_{1}$ directly, it is
640possible to recalculate them. In that case the user sets
641\pp{ppsur}=\pp{ppa0}=\pp{ppa1}=\pp{pp\_to\_be\_computed}, in \mdl{par\_oce},
642and specifies instead the four following parameters:
643\begin{itemize}
644\item    \pp{ppacr}=$h_{cr} $: stretching factor (nondimensional). The larger
645\pp{ppacr}, the smaller the stretching. Values from $3$ to $10$ are usual.
646\item    \pp{ppkth}=$h_{th} $: is approximately the model level at which maximum
647stretching occurs (nondimensional, usually of order 1/2 or 2/3 of \jp{jpk})
648\item    \pp{ppdzmin}: minimum thickness for the top layer (in meters)
649\item    \pp{pphmax}: total depth of the ocean (meters).
650\end{itemize}
651As an example, for the $45$ layers used in the DRAKKAR configuration those
652parameters are: \jp{jpk}=46, \pp{ppacr}=9, \pp{ppkth}=23.563, \pp{ppdzmin}=6m,
653\pp{pphmax}=5750m.
654
655%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
656\begin{table} \label{Tab_orca_zgr}
657\begin{center} \begin{tabular}{c||r|r|r|r}
658\hline
659\textbf{LEVEL}& \textbf{GDEPT}& \textbf{GDEPW}& \textbf{E3T }& \textbf{E3W  } \\ \hline
660&  \textbf{  5.00}   &       0.00 & \textbf{ 10.00} &  10.00 \\   \hline
661&  \textbf{15.00} &    10.00 &   \textbf{ 10.00} &  10.00 \\   \hline
662&  \textbf{25.00} &    20.00 &   \textbf{ 10.00} &     10.00 \\   \hline
663&  \textbf{35.01} &    30.00 &   \textbf{ 10.01} &     10.00 \\   \hline
664&  \textbf{45.01} &    40.01 &   \textbf{ 10.01} &  10.01 \\   \hline
665&  \textbf{55.03} &    50.02 &   \textbf{ 10.02} &     10.02 \\   \hline
666&  \textbf{65.06} &    60.04 &   \textbf{ 10.04} &  10.03 \\   \hline
667&  \textbf{75.13} &    70.09 &   \textbf{ 10.09} &  10.06 \\   \hline
668&  \textbf{85.25} &    80.18 &   \textbf{ 10.17} &  10.12 \\   \hline
66910 &  \textbf{95.49} &    90.35 &   \textbf{ 10.33} &  10.24 \\   \hline
67011 &  \textbf{105.97}   &   100.69 &   \textbf{ 10.65} &  10.47 \\   \hline
67112 &  \textbf{116.90}   &   111.36 &   \textbf{ 11.27} &  10.91 \\   \hline
67213 &  \textbf{128.70}   &   122.65 &   \textbf{ 12.47} &  11.77 \\   \hline
67314 &  \textbf{142.20}   &   135.16 &   \textbf{ 14.78} &  13.43 \\   \hline
67415 &  \textbf{158.96}   &   150.03 &   \textbf{ 19.23} &  16.65 \\   \hline
67516 &  \textbf{181.96}   &   169.42 &   \textbf{ 27.66} &  22.78 \\   \hline
67617 &  \textbf{216.65}   &   197.37 &   \textbf{ 43.26} &  34.30 \\ \hline
67718 &  \textbf{272.48}   &   241.13 &   \textbf{ 70.88} &  55.21 \\ \hline
67819 &  \textbf{364.30}   &   312.74 &   \textbf{116.11} &  90.99 \\ \hline
67920 &  \textbf{511.53}   &   429.72 &   \textbf{181.55} &    146.43 \\ \hline
68021 &  \textbf{732.20}   &   611.89 &   \textbf{261.03} &    220.35 \\ \hline
68122 &  \textbf{1033.22}&  872.87 &   \textbf{339.39} &    301.42 \\ \hline
68223 &  \textbf{1405.70}& 1211.59 & \textbf{402.26} &   373.31 \\ \hline
68324 &  \textbf{1830.89}& 1612.98 & \textbf{444.87} &   426.00 \\ \hline
68425 &  \textbf{2289.77}& 2057.13 & \textbf{470.55} &   459.47 \\ \hline
68526 &  \textbf{2768.24}& 2527.22 & \textbf{484.95} &   478.83 \\ \hline
68627 &  \textbf{3257.48}& 3011.90 & \textbf{492.70} &   489.44 \\ \hline
68728 &  \textbf{3752.44}& 3504.46 & \textbf{496.78} &   495.07 \\ \hline
68829 &  \textbf{4250.40}& 4001.16 & \textbf{498.90} &   498.02 \\ \hline
68930 &  \textbf{4749.91}& 4500.02 & \textbf{500.00} &   499.54 \\ \hline
69031 &  \textbf{5250.23}& 5000.00 &   \textbf{500.56} & 500.33 \\ \hline
691\end{tabular} \end{center} 
692\caption{Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration
693as computed from \eqref{DOM_zgr_ana} using the coefficients given in
694\eqref{DOM_zgr_coef}}
695\end{table}
696%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
697
698% -------------------------------------------------------------------------------------------------------------
699%        z-coordinate with partial step
700% -------------------------------------------------------------------------------------------------------------
701\subsection   [$z$-coordinate with partial step (\np{ln\_zps})]
702         {$z$-coordinate with partial step (\np{ln\_zps}=.true.)}
703\label{DOM_zps}
704%--------------------------------------------namdom-------------------------------------------------------
705\namdisplay{namdom} 
706%--------------------------------------------------------------------------------------------------------------
707
708In $z$-coordinate partial step, the depths of the model levels are defined by the
709reference analytical function $z_0 (k)$ as described in the previous
710section, \emph{except} in the bottom layer. The thickness of the bottom layer is
711allowed to vary as a function of geographical location $(\lambda,\varphi)$ to allow a
712better representation of the bathymetry, especially in the case of small
713slopes (where the bathymetry varies by less than one level thickness from
714one grid point to the next). The reference layer thicknesses $e_{3t}^0$ have been
715defined in the absence of bathymetry. With partial steps, layers from 1 to
716\jp{jpk}-2 can have a thickness smaller than $e_{3t}(jk)$. The model deepest layer (\jp{jpk}-1) is
717allowed to have either a smaller or larger thickness than $e_{3t}(jpk)$: the
718maximum thickness allowed is $2*e_{3t}(jpk-1)$. This has to be kept in mind when
719specifying the maximum depth \pp{pphmax} in partial steps: for example, with
720\pp{pphmax}$=5750~m$ for the DRAKKAR 45 layer grid, the maximum ocean depth allowed is actually $6000~m$ (the default thickness $e_{3t}(jpk-1)$ being $250~m$). Two
721variables in the namdom namelist are used to define the partial step
722vertical grid. The mimimum water thickness (in meters) allowed for a cell
723partially filled with bathymetry at level jk is the minimum of \np{e3zpsmin} 
724(thickness in meters, usually $20~m$) or $e_{3t}(jk)*\np{e3zps\_rat}$ (a fraction,
725usually 10\%, of the default thickness $e_{3t}(jk)$).
726
727 \colorbox{yellow}{Add a figure here of pstep especially at last ocean level }
728
729% -------------------------------------------------------------------------------------------------------------
730%        s-coordinate
731% -------------------------------------------------------------------------------------------------------------
732\subsection   [$s$-coordinate (\np{ln\_sco})]
733         {$s$-coordinate (\np{ln\_sco}=true)}
734\label{DOM_sco}
735%------------------------------------------nam_zgr_sco---------------------------------------------------
736\namdisplay{nam_zgr_sco} 
737%--------------------------------------------------------------------------------------------------------------
738In $s$-coordinate (\key{sco} is defined), the depth and thickness of the model
739levels are defined from the product of a depth field and either a stretching
740function or its derivative, respectively:
741\begin{equation} \label{DOM_sco_ana}
742\begin{split}
743 z(k)       &= h(i,j) \; z_0(k)  \\
744 e_3(k)  &= h(i,j) \; z_0'(k)
745\end{split}
746\end{equation}
747where $h$ is the depth of the last $w$-level ($z_0(k)$) defined at the $T$-point
748location in the horizontal and $z_0(k)$ is a function which varies from $0$ at the sea
749surface to $1$ at the ocean bottom. The depth field $h$ is not necessary the ocean
750depth, since a mixed step-like and bottom-following representation of the
751topography can be used (Fig.~\ref{Fig_z_zps_s_sps}d-e). In the example provided (\hf{zgr\_s} file) $h$ is a smooth envelope bathymetry and steps are used to represent sharp bathymetric gradients.
752
753A new flexible stretching function, modified from \citet{Song1994} is provided as an example:
754\begin{equation} \label{DOM_sco_function}
755\begin{split}
756&= h_c +( h-h_c)\;c s)  \\
757c(s)  &\frac{ \left[   \tanh{ \left( \theta \, (s+b) \right)} 
758               - \tanh{ \left\theta \, b      \right)}  \right]}
759            {2\;\sinh \left( \theta \right)}
760\end{split}
761\end{equation}
762where $h_c$ is the thermocline depth and $\theta$ and $b$ are the surface and
763bottom control parameters such that $0\leqslant \theta \leqslant 20$, and
764$0\leqslant b\leqslant 1$. $b$ has been designed to allow surface and/or bottom increase of the vertical resolution (Fig.~\ref{Fig_sco_function}).
765
766%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
767\begin{figure}[!tb] \label{Fig_sco_function}  \begin{center}
768\includegraphics[width=1.0\textwidth]{./Figures/Fig_sco_function.pdf}
769\caption{Examples of the stretching function applied to a sea mont; from left to right: surface, surface and bottom, and bottom intensified resolutions}
770\end{center}   \end{figure}
771%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
772
773% -------------------------------------------------------------------------------------------------------------
774%        z*- or s*-coordinate
775% -------------------------------------------------------------------------------------------------------------
776\subsection{$z^*$- or $s^*$-coordinate (add \key{vvl}) }
777\label{DOM_zgr_vvl}
778
779This option is described in the Report by Levier \textit{et al.} (2007), available on
780the \NEMO web site.
781
782%gm% key advantage: minimise the diffusion/dispertion associated with advection in response to high frequency surface disturbances
783
784% -------------------------------------------------------------------------------------------------------------
785%        level bathymetry and mask
786% -------------------------------------------------------------------------------------------------------------
787\subsection{level bathymetry and mask}
788\label{DOM_msk}
789
790Whatever the vertical coordinate used, the model offers the possibility of
791representing the bottom topography with steps that follow the face of the
792model cells (step like topography) \citep{Madec1996}. The distribution of
793the steps in the horizontal is defined in a 2D integer array, mbathy, which
794gives the number of ocean levels ($i.e.$ those that are not masked) at each
795$T$-point. mbathy is computed from the meter bathymetry using the definiton of
796gdept as the number of $T$-points which gdept $\leq$ bathy. Note that in version
797NEMO v2.3, the user still has to provide the "level" bathymetry in a NetCDF
798file when using the full step option (\np{ln\_zco}), rather than the bathymetry
799in meters: both will be allowed in future versions.
800
801Modifications of the model bathymetry are performed in the \textit{bat\_ctl} 
802routine (see \mdl{domzgr} module) after mbathy is computed. Isolated grid points
803that do not communicate with another ocean point at the same level are eliminated.
804
805In the case of the rigid-lid approximation when islands occur in the computational
806domain (\np{ln\_dynspg\_rl}=.true. and \key{island} is defined), the \textit{mbathy} 
807array must be provided and takes values from $-N$ to \jp{jpk}-1. It provides the
808following information: $mbathy(i,j) = -n, \ n \in \left] 0,N \right]$, $T$-points are
809land points on the $n^{th}$ island ; $mbathy(i,j) =0$, $T$-points are land points
810on the main land (continent) ; $mbathy(i,j) =k$, the first $k$ $T$- and $w$-points
811are ocean points, the others are points below the ocean floor.
812
813This is used to compute the island barotropic stream function used in the rigid lid
814computation (see \S\ref{MISC_solisl}).
815
816From the \textit{mbathy} array, the mask fields are defined as follows:
817\begin{align*}
818tmask(i,j,k) &= \begin{cases}   \; 1&   \text{ if $k\leq mbathy(i,j)$  }    \\
819                                                \; 0&   \text{ if $k\leq mbathy(i,j)$  }    \end{cases}     \\
820umask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
821vmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i,j+1,k)   \\
822fmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
823                   & \ \ \, * tmask(i,j,k) \ * \ tmask(i+1,j,k)
824\end{align*}
825
826\gmcomment{ STEVEN: are the dots multiplications?}     
827
828Note that \textit{wmask} is not defined as it is exactly equal to \textit{tmask} with
829the numerical indexing used (\S~\ref{DOM_Num_Index}). Moreover, the
830specification of closed lateral boundaries requires that at least the first and last
831rows and columns of the \textit{mbathy} array are set to zero. In the particular
832case of an east-west cyclical boundary condition, \textit{mbathy} has its last
833column equal to the second one and its first column equal to the last but one
834(and so too the mask arrays) (see \S~\ref{LBC_jperio}).
835
836%%%
837\gmcomment{   \colorbox{yellow}{Add one word on tricky trick !} mbathy in further modified in zdfbfr{\ldots}}
838%%%
839
840% ================================================================
841% Time Discretisation
842% ================================================================
843\section{Time Discretisation}
844\label{DOM_nxt}
845
846The time stepping used in \NEMO is a three level scheme that can be
847represented as follows:
848\begin{equation} \label{Eq_DOM_nxt}
849   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \  \text{RHS}_x^{t-\Delta t,t,t+\Delta t}
850\end{equation} 
851where $x$ stands for $u$, $v$, $T$ or $S$; RHS is the Right-Hand-Side of the
852corresponding time evolution equation; $\Delta t$ is the time step; and the
853superscripts indicate the time at which a quantity is evaluated. Each term of the
854RHS is evaluated at a specific time step(s) depending on the physics with which
855it is associated.
856
857The choice of the time step used for this evaluation is discussed below as
858well as the implications in terms of starting or restarting a model
859simulation. Note that the time stepping is generally performed in a one step
860operation. With such a complex and nonlinear system of equations it would be dangerous to let a prognostic variable evolve in time for each term separately.
861%%%
862\gmcomment{ STEVEN  suggest separately instead of successively...  wrong?}
863%%%
864
865The three level scheme requires three arrays for each prognostic variables.
866For each variable $x$ there is $x_b$ (before) and $x_n$ (now). The third array,
867although referred to as $x_a$ (after) in the code, is usually not the variable at
868the next time step; but rather it is used to store the time derivative (RHS in
869\eqref{Eq_DOM_nxt}) prior to time-stepping the equation. Generally, the time
870stepping is performed once at each time step in \mdl{tranxt} and \mdl{dynnxt} 
871modules, except for implicit vertical diffusion or sea surface height when
872time-splitting options are used.
873
874% -------------------------------------------------------------------------------------------------------------
875%        Non-Diffusive Part---Leapfrog Scheme
876% -------------------------------------------------------------------------------------------------------------
877\subsection{Non-Diffusive Part --- Leapfrog Scheme}
878\label{DOM_nxt_leap_frog}
879
880The time stepping used for non-diffusive processes is the well-known
881leapfrog scheme. It is a time centred scheme, i.e. the RHS is evaluated at
882time step $t$, the now time step. It is only used for non-diffusive terms,
883that is momentum and tracer advection, pressure gradient, and Coriolis
884terms. This scheme is widely used for advective processes in low-viscosity
885fluids. It is an efficient method that achieves second-order accuracy with
886just one right hand side evaluation per time step. Moreover, it does not
887artificially damp linear oscillatory motion nor does it produce instability
888by amplifying the oscillations. These advantages are somewhat diminished by
889the large phase-speed error of the leapfrog scheme, and the unsuitability of
890leapfrog differencing for the representation of diffusive and Rayleigh
891damping processes. However, the most serious problem associated with the
892leapfrog scheme is a high-frequency computational noise called
893"time-splitting" \citep{Haltiner1980} that develops when the method
894is used to model non linear fluid dynamics: the even and odd time steps tend
895to diverge into a physical and a computational mode. Time splitting can
896be controlled through the use of an Asselin time filter (first designed by
897\citep{Robert1966} and more comprehensively studied by \citet{Asselin1972}), or by
898periodically reinitialising the leapfrog solution through a single
899integration step with a two-level scheme. In \NEMO we follow the first
900strategy:
901\begin{equation} \label{Eq_DOM_nxt_asselin}
902x_F^t  = x^t + \gamma \, \left[ x_f^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right]
903\end{equation} 
904where the subscript $f$ denotes filtered values and $\gamma$ is the Asselin
905coefficient. $\gamma$ is initialized as \np{atfp} (namelist parameter).
906Its default value is \np{atfp}=0.1.  This default value causes a significant dissipation
907of high frequency motions. Recommended values in idealized studies of shallow
908water turbulence are two orders of magnitude smaller (\citep{Farge1987}).
909Both strategies do, nevertheless, degrade the accuracy of the calculation from
910second to first order. The leapfrog scheme combined with a Robert-Asselin
911time filter has been preferred to other time differencing schemes such as
912predictor corrector or trapezoidal schemes, because the user has an explicit
913and simple control of the magnitude of the time diffusion of the scheme.
914In association with the 2nd order centred space discretisation of the
915advective terms in the momentum and tracer equations, it avoids implicit
916numerical diffusion in both the time and space discretisations of the
917advective term: they are both set explicitly by the user through the Robert-Asselin
918filter parameter and the viscous and diffusive coefficients.
919
920\gmcomment{
921%gm - reflexion about leapfrog: ongoing work with Matthieu Leclair
922% to be updated latter with addition of new time stepping strategy
923\colorbox{yellow}{Note}:
924The Robert-Asselin time filter slightly departs from a simple second order time
925diffusive operator computed with a forward time stepping due to the presence of
926$x_f^{t-\Delta t}$ in the right hand side of  \ref{Eq_DOM_nxt_asselin}. The original
927willing of Robert1966 and Asselin1972 was to design a time filter that allow much
928larger parameter than 0.5.   is due to computer saving consideration. In the original
929asselin filter, $x^{t-\Delta t}$ is used instead:
930 \begin{equation} \label{Eq_DOM_nxt_asselin_true}
931x_f^t  = x^t + \gamma \, \left[ x^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right]
932\end{equation} 
933Applying a "true" Asselin time filter is nothing more than adding a harmonic
934diffusive operator in time. Indeed, equations \ref{Eq_DOM_nxt} and
935\ref{Eq_DOM_nxt_asselin_true} can be rewritten together as:
936\begin{equation} \label{Eq_DOM_nxt2}
937\begin{split}
938  \frac{ x^{t+\Delta t} - x^{t-\Delta t} } { 2 \,\Delta t } 
939  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} + \frac{ x_f^t  - x^t }{2 \,\Delta t} \\
940  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} 
941    + \gamma\ \frac{  \, \left[ x^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right] }{2 \,\Delta t}  \\
942  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} 
943  + 2 \Delta t \ \gamma \ \frac{1}{{2 \Delta t}^2} 
944   \,\delta_{t-1}\,\left[ \delta_{t+1/2}\left[ x^t \right] \right]
945  \end{split}
946\end{equation} 
947expressing this again in a continuous form, one finds that the Asselin filter leads to :
948\begin{equation} \label{Eq_DOM_nxt3}
949  \frac{ \partial x} { \partial t } =  \text{RHS} + 2 \,\Delta t \ \gamma \ \frac{ {\partial}^2 x}{ \partial t ^2 }
950\end{equation} 
951
952Equations  \ref{Eq_DOM_nxt2} and \ref{Eq_DOM_nxt3} suggest several remarks.
953First the Asselin filter is definitively a second order time diffusive operator which is
954evaluated at centered time step. The magnitude of this diffusion is proportional to
955the time step (with $\gamma$ usually taken between $10^{-1}$ to $10^{-3}$).
956Second, this term has to be taken into account in all budgets of the equations
957(mass, heat content, salt content, kinetic energy...). Nevertheless,we stress here
958that it is small and does not create systematic biases. Indeed let us evaluate how
959it contributes to the time evolution of $x$ between $t_o$ and $t_1$:
960\begin{equation} \label{Eq_DOM_nxt4}
961\begin{split}
962 t_1-t_o &= \int_{t_o}^{t_1} \frac{ \partial x} { \partial t } dt \\
963      &= \int_{t_o}^{t_1} \text{RHS} dt + 2 \,\Delta t \ \gamma \left(
964        \left. \frac{ \partial x}{ \partial t } \right|_1
965      - \left. \frac{ \partial x}{ \partial t } \right|_\right)
966 \end{split}
967\end{equation} 
968}
969
970Alternative time stepping schemes are currently under investigation.
971
972% -------------------------------------------------------------------------------------------------------------
973%        Diffusive Part---Forward or Backward Scheme
974% -------------------------------------------------------------------------------------------------------------
975\subsection{Diffusive Part --- Forward or Backward Scheme}
976\label{DOM_nxt_forward_imp}
977
978The leapfrog differencing scheme is unsuitable for the representation of
979diffusive and damping processes. For a tendancy $D_x$, representing a
980diffusive term or a restoring term to a tracer climatology
981(when present, see \S~\ref{TRA_dmp}), a forward time differencing scheme
982 is used :
983\begin{equation} \label{Eq_DOM_nxt_euler}
984   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \ {D_x}^{t-\Delta t}
985\end{equation} 
986
987This is diffusive in time and conditionally stable. For example, the
988conditions for stability of second and fourth order horizontal diffusion schemes are \citep{Griffies2004}:
989\begin{equation} \label{Eq_DOM_nxt_euler_stability}
990A^h < \left\{
991\begin{aligned}
992                    &\frac{e^2}{  8 \; \Delta t }  &&\quad \text{laplacian diffusion}  \\
993                    &\frac{e^4}{64 \; \Delta t }   &&\quad \text{bilaplacian diffusion} 
994            \end{aligned}
995\right.
996\end{equation}
997where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is the mixing coefficient. The linear constraint \eqref{Eq_DOM_nxt_euler_stability} is a necessary condition, but not sufficient. If it is not satisfied, even mildly, then the model soon becomes wildly unstable. The instability can be removed by either reducing the length of the time steps or reducing the mixing coefficient.
998
999For the vertical diffusion terms, a forward time differencing scheme can be
1000used, but usually the numerical stability condition implies a strong
1001constraint on the time step. Two solutions are available in \NEMO to overcome
1002the stability constraint: $(a)$ a forward time differencing scheme using a
1003time splitting technique (\np{ln\_zdfexp}=.true.) or $(b)$ a backward (or implicit)
1004time differencing scheme by \np{ln\_zdfexp}=.false.). In $(a)$, the master
1005time step $\Delta $t is cut into $N$ fractional time steps so that the
1006stability criterion is reduced by a factor of $N$. The computation is done as
1007follows:
1008\begin{equation} \label{Eq_DOM_nxt_ts}
1009\begin{split}
1010& u_\ast ^{t-\Delta t} = u^{t-\Delta t}   \\
1011& u_\ast ^{t-\Delta t+L\frac{2\Delta t}{N}}=u_\ast ^{t-\Delta t+\left( {L-1} 
1012\right)\frac{2\Delta t}{N}}+\frac{2\Delta t}{N}\;\text{DF}^{t-\Delta t+\left( {L-1} \right)\frac{2\Delta t}{N}}
1013        \quad \text{for $L=1$ to $N$}      \\
1014& u^{t+\Delta t} = u_\ast^{t+\Delta t}
1015\end{split}
1016\end{equation}
1017with DF a vertical diffusion term. The number of fractional time steps, $N$, is given
1018by setting \np{n\_zdfexp}, (namelist parameter). The scheme $(b)$ is unconditionally
1019stable but diffusive. It can be written as follows:
1020\begin{equation} \label{Eq_DOM_nxt_imp}
1021   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \  \text{RHS}_x^{t+\Delta t}
1022\end{equation} 
1023
1024This scheme is rather time consuming since it requires a matrix inversion,
1025but it becomes attractive since a splitting factor of 3 or more is needed
1026for the forward time differencing scheme. For example, the finite difference
1027approximation of the temperature equation is:
1028\begin{equation} \label{Eq_DOM_nxt_imp_zdf}
1029\frac{T(k)^{t+1}-T(k)^{t-1}}{2\;\Delta t}\equiv \text{RHS}+\frac{1}{e_{3T} }\delta 
1030_k \left[ {\frac{A_w^{vT} }{e_{3w} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
1031\right]
1032\end{equation}
1033where RHS is the right hand side of the equation except for the vertical diffusion term. We rewrite \eqref{Eq_DOM_nxt_imp} as:
1034\begin{equation} \label{Eq_DOM_nxt_imp_mat}
1035-c(k+1)\;u^{t+1}(k+1)+d(k)\;u^{t+1}(k)-\;c(k)\;u^{t+1}(k-1) \equiv b(k)
1036\end{equation}
1037where
1038\begin{align*} 
1039 c(k) &= A_w^{vm} (k) \, / \, e_{3uw} (k)     \\
1040 d(k) &= e_{3u} (k)       \, / \, (2\Delta t) + c_k + c_{k+1}    \\
1041 b(k) &= e_{3u} (k) \; \left( u^{t-1}(k) \, / \, (2\Delta t) + \text{RHS} \right)   
1042\end{align*}
1043
1044\eqref{Eq_DOM_nxt_imp_mat} is a linear system of equations which associated
1045matrix is tridiagonal. Moreover, $c(k)$ and $d(k)$ are positive and the diagonal
1046term is greater than the sum of the two extra-diagonal terms, therefore a special
1047adaptation of the Gauss elimination procedure is used to find the solution
1048(see for example \citet{Richtmyer1967}).
1049
1050% -------------------------------------------------------------------------------------------------------------
1051%        Start/Restart strategy
1052% -------------------------------------------------------------------------------------------------------------
1053\subsection{Start/Restart strategy}
1054\label{DOM_nxt_rst}
1055%--------------------------------------------namrun-------------------------------------------
1056\namdisplay{namrun}         
1057%--------------------------------------------------------------------------------------------------------------
1058
1059The first time step of this three level scheme when starting from initial conditions
1060is a forward step (Euler time integration):
1061\begin{equation} \label{Eq_DOM_euler}
1062   x^1 = x^0 + \Delta t \ \text{RHS}^0
1063\end{equation}
1064
1065It is also possible to restart from a previous computation, by using a
1066restart file. The restart strategy is designed to ensure perfect
1067restartability of the code: the user should obtain the same results to
1068machine precision either by running the model for $2N$ time steps in one go,
1069or by performing two consecutive experiments of $N$ steps with a restart.
1070This requires saving two time levels and many auxiliary data in the restart
1071files in machine precision.
1072
1073Note that when a semi-implicit scheme is used to evaluate the hydrostatic pressure
1074gradient (see \S\ref{DYN_hpg_imp}), an extra three-dimensional field has to be
1075added in the restart file to ensure an exact restartability. This is done only optionally
1076via the namelist parameter \np{nn\_dynhpg\_rst}, so that a reduction of the size of restart file can be obtained when the restartability is not a key issue (operational oceanography or ensemble simulation for seasonal forcast).
1077%%%
1078\gmcomment{add here how to force the restart to contain only one time step for operational purposes}
1079%%%
1080
1081\gmcomment{       % add a subsection here 
1082
1083%-------------------------------------------------------------------------------------------------------------
1084%        Time Domain
1085% -------------------------------------------------------------------------------------------------------------
1086\subsection{Time domain}
1087\label{DOM_nxt_time}
1088
1089 \colorbox{yellow}{add here a few word on nit000 and nitend}
1090
1091 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
1092
1093}        %% end add
1094
Note: See TracBrowser for help on using the repository browser.