New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Chap_DOM.tex in trunk/DOC/TexFiles/Chapters – NEMO

source: trunk/DOC/TexFiles/Chapters/Chap_DOM.tex @ 998

Last change on this file since 998 was 998, checked in by gm, 16 years ago

trunk - DOC - update .tex due to the change in position of NEMO_book

  • Property svn:executable set to *
File size: 61.9 KB
Line 
1
2% ================================================================
3% Chapter 2 Ñ Space and Time Domain (DOM)
4% ================================================================
5\chapter{Space and Time Domain (DOM) }
6\label{DOM}
7\minitoc
8
9% Missing things:
10%  - istate: description of the initial state   ==> this has to be put elsewhere..
11%                  perhaps in MISC ?  By the way the initialisation of T S and dynamics
12%                  should be put outside of DOM routine (better with TRC staff and off-line
13%                  tracers)
14%  - daymod: definition of the time domain (nit000, nitend andd the calendar)
15%  -geo2ocean:  how to switch from geographic to mesh coordinate
16%  - domclo:  closed sea and lakes.... management of closea sea area : specific to global configuration, both forced and coupled
17
18\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction
19which could be referred to here, would help  ==> to be added}
20%%%%
21
22
23\newpage
24$\ $\newline    % force a new ligne
25
26
27Having defined the continuous equations in Chap.~\ref{PE}, we need to choose a
28discretization on a grid, and numerical algorithms. In the present chapter, we
29provide a general description of the staggered grid used in \NEMO, and other
30information relevant to the main directory routines (time stepping, main program)
31as well as the DOM (DOMain) directory.
32
33% ================================================================
34% Fundamentals of the Discretisation
35% ================================================================
36\section{Fundamentals of the Discretisation}
37\label{DOM_basics}
38
39% -------------------------------------------------------------------------------------------------------------
40%        Arrangement of Variables
41% -------------------------------------------------------------------------------------------------------------
42\subsection{Arrangement of Variables}
43\label{DOM_cell}
44
45%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
46\begin{figure}[!tb] \label{Fig_cell}  \begin{center}
47\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_cell.pdf}
48\caption{Arrangement of variables. $T$ indicates scalar points where temperature,
49salinity, density, pressure and horizontal divergence are defined. ($u$,$v$,$w$)
50indicates vector points, and $f$ indicates vorticity points where both relative and
51planetary vorticities are defined}
52\end{center}   \end{figure}
53%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
54
55The numerical techniques used to solve the Primitive Equations in this model are
56based on the traditional, centred second-order finite difference approximation.
57Special attention has been given to the homogeneity of the solution in the three
58space directions. The arrangement of variables is the same in all directions.
59It consists of cells centred on scalar points ($T$, $S$, $p$, $\rho$) with vector
60points $(u, v, w)$ defined in the centre of each face of the cells (Fig. \ref{Fig_cell}).
61This is the generalisation to three dimensions of the well-known ``C'' grid in
62Arakawa's classification \citep{Mesinger_Arakawa_Bk76}. The relative and
63planetary vorticity, $\zeta$ and $f$, are defined in the centre of each vertical edge
64and the barotropic stream function $\psi$ is defined at horizontal points overlying
65the $\zeta$ and $f$-points.
66
67The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
68by the transformation that gives ($\lambda$ ,$\varphi$ ,$z$) as a function of $(i,j,k)$.
69The grid-points are located at integer or integer and a half value of $(i,j,k)$ as
70indicated on Table \ref{Tab_cell}. In all the following, subscripts $u$, $v$, $w$,
71$f$, $uw$, $vw$ or $fw$ indicate the position of the grid-point where the scale
72factors are defined. Each scale factor is defined as the local analytical value
73provided by \eqref{Eq_scale_factors}. As a result, the mesh on which partial
74derivatives $\frac{\partial}{\partial \lambda}, \frac{\partial}{\partial \varphi}$, and
75$\frac{\partial}{\partial z} $ are evaluated is a uniform mesh with a grid size of unity. Discrete partial derivatives are formulated by the traditional, centred second order
76finite difference approximation while the scale factors are chosen equal to their
77local analytical value. An important point here is that the partial derivative of the
78scale factors must be evaluated by centred finite difference approximation, not
79from their analytical expression. This preserves the symmetry of the discrete set
80of equations and therefore satisfies many of the continuous properties (see
81Appendix~\ref{Apdx_C}). A similar, related remark can be made about the domain
82size: when needed, an area, volume, or the total ocean depth must be evaluated
83as the sum of the relevant scale factors (see \eqref{DOM_bar}) in the next section).
84
85\begin{table}[!tb] \label{Tab_cell}
86\begin{center} \begin{tabular}{|p{46pt}|p{56pt}|p{56pt}|p{56pt}|}
87\hline
88&$i$     & $j$    & $k$     \\ \hline
89& $i+1/2$   & $j$    & $k$    \\ \hline
90& $i$    & $j+1/2$   & $k$    \\ \hline
91& $i$    & $j$    & $k+1/2$   \\ \hline
92& $i+1/2$   & $j+1/2$   & $k$    \\ \hline
93uw & $i+1/2$   & $j$    & $k+1/2$   \\ \hline
94vw & $i$    & $j+1/2$   & $k+1/2$   \\ \hline
95fw & $i+1/2$   & $j+1/2$   & $k+1/2$   \\ \hline
96\end{tabular}
97\caption{Location of grid-points as a function of integer or integer and a half value
98of the column, line or level. This indexing is only used for the writing of the semi-
99discrete equation. In the code, the indexing uses integer values only and has a
100reverse direction in the vertical (see \S\ref{DOM_Num_Index})}
101\end{center}
102\end{table}
103
104% -------------------------------------------------------------------------------------------------------------
105%        Vector Invariant Formulation
106% -------------------------------------------------------------------------------------------------------------
107\subsection{Discrete Operators}
108\label{DOM_operators}
109
110Given the values of a variable $q$ at adjacent points, the differencing and
111averaging operators at the midpoint between them are:
112\begin{subequations} \label{Eq_di_mi}
113\begin{align}
114 \delta _i [q]       &\  \    q(i+1/2)  - q(i-1/2)    \\
115 \overline q^{\,i} &= \left\{ q(i+1/2) + q(i-1/2) \right\} \; / \; 2
116\end{align}
117\end{subequations}
118
119Similar operators are defined with respect to $i+1/2$, $j$, $j+1/2$, $k$, and
120$k+1/2$. Following \eqref{Eq_PE_grad} and \eqref{Eq_PE_lap}, the gradient of a
121variable $q$ defined at a $T$-point has its three components defined at $u$-, $v$-
122and $w$-points while its Laplacien is defined at $T$-point. These operators have
123the following discrete forms in the curvilinear $s$-coordinate system:
124\begin{equation} \label{Eq_DOM_grad}
125\nabla q\equiv    \frac{1}{e_{1u} }\delta _{i+1/2} \left[ q \right]\;\,{\rm {\bf i}}
126         +  \frac{1}{e_{2v} }\delta _{j+1/2} \left[ q \right]\;\,{\rm {\bf j}}
127         +  \frac{1}{e_{3w} }\delta _{k+1/2} \left[ q \right]\;\,{\rm {\bf k}}
128\end{equation}
129\begin{multline} \label{Eq_DOM_lap}
130\Delta q\equiv \frac{1}{e_{1T} {\kern 1pt}e_{2T} {\kern 1pt}e_{3T} }\;\left(
131{\delta _i \left[ {\frac{e_{2u} e_{3u} }{e_{1u} }\;\delta _{i+1/2} 
132\left[ q \right]} \right]
133+\delta _j \left[ {\frac{e_{1v} e_{3v} }{e_{2v} 
134}\;\delta _{j+1/2} \left[ q \right]} \right]\;} \right)     \\
135+\frac{1}{e_{3T} }\delta _k \left[ {\frac{1}{e_{3w} }\;\delta _{k+1/2} 
136\left[ q \right]} \right]
137\end{multline}
138
139Following \eqref{Eq_PE_curl} and \eqref{Eq_PE_div}, a vector ${\rm {\bf A}}=\left( a_1,a_2,a_3\right)$ defined at vector points $(u,v,w)$ has its three curl
140components defined at $vw$-, $uw$, and $f$-points, and its divergence defined
141at $T$-points:
142\begin{equation} \label{Eq_DOM_curl}
143\begin{split}
144 \nabla \times {\rm {\bf A}}\equiv \frac{1}{e_{2v} {\kern 1pt}e_{3vw} 
145}{\kern 1pt}\,\;\left( {\delta _{j+1/2} \left[ {e_{3w} a_3 } \right]-\delta 
146_{k+1/2} \left[ {e_{2v} a_2 } \right]} \right&\;\;{\rm {\bf i}} \\ 
147 +\frac{1}{e_{2u} {\kern 1pt}e_{3uw} }\;\left( {\delta _{k+1/2} \left[ {e_{1u} a_1 } 
148\right]-\delta _{i+1/2} \left[ {e_{3w} a_3 } \right]} \right&\;\;{\rm{\bf j}} \\ 
149 +\frac{e_{3f} }{e_{1f} {\kern 1pt}e_{2f} }\,{\kern 1pt}\;\left( {\delta 
150_{i+1/2} \left[ {e_{2v} a_2 } \right]-\delta _{j+12} \left[ {e_{1u} a_1 } \right]} 
151\right&\;\;{\rm {\bf k}}
152 \end{split}
153\end{equation}
154\begin{equation} \label{Eq_DOM_div}
155\nabla \cdot {\rm {\bf A}}=\frac{1}{e_{1T} e_{2T} e_{3T} }\left( {\delta 
156_i \left[ {e_{2u} e_{3u} a_1 } \right]+\delta _j \left[ {e_{1v} e_{3v} a_2 } 
157\right]} \right)+\frac{1}{e_{3T} }\delta _k \left[ {a_3 } \right]
158\end{equation}
159
160In the special case of a pure $z$-coordinate system, \eqref{Eq_DOM_lap} and
161\eqref{Eq_DOM_div} can be simplified. In this case, the vertical scale factor
162becomes a function of the single variable $k$ and thus does not depend on the
163horizontal location of a grid point. For example \eqref{Eq_DOM_div} reduces to:
164\begin{equation*}
165\nabla \cdot {\rm {\bf A}}=\frac{1}{e_{1T} e_{2T} }\left( {\delta 
166_i \left[ {e_{2u} a_1 } \right]+\delta _j \left[ {e_{1v}  a_2 } 
167\right]} \right)+\frac{1}{e_{3T} }\delta _k \left[ {a_3 } \right]
168\end{equation*}
169
170The vertical average over the whole water column denoted by an overbar becomes
171for a quantity $q$ which is a masked field (i.e. equal to zero inside solid area):
172\begin{equation} \label{DOM_bar}
173\bar q   = \frac{1}{H}\int_{k^b}^{k^o} {q\;e_{3q} \,dk} 
174      \equiv \frac{1}{H_q }\sum\limits_k {q\;e_{3q} }
175\end{equation}
176where $H_q$  is the ocean depth, which is the masked sum of the vertical scale
177factors at $q$ points, $k^b$ and $k^o$ are the bottom and surface $k$-indices,
178and the symbol $k^o$ refers to a summation over all grid points of the same type
179in the direction indicated by the subscript (here $k$).
180
181In continuous form, the following properties are satisfied:
182\begin{equation} \label{Eq_DOM_curl_grad}
183\nabla \times \nabla q ={\rm {\bf {0}}}
184\end{equation}
185\begin{equation} \label{Eq_DOM_div_curl}
186\nabla \cdot \left( {\nabla \times {\rm {\bf A}}} \right)=0
187\end{equation}
188
189It is straightforward to demonstrate that these properties are verified locally in
190discrete form as soon as the scalar $q$ is taken at $T$-points and the vector
191\textbf{A} has its components defined at vector points $(u,v,w)$.
192
193Let $a$ and $b$ be two fields defined on the mesh, with value zero inside
194continental area. Using integration by parts it can be shown that the differencing
195operators ($\delta_i$, $\delta_j$ and $\delta_k$) are anti-symmetric linear
196operators, and further that the averaging operators $\overline{\,\cdot\,}^{\,i}$,
197$\overline{\,\cdot\,}^{\,k}$ and $\overline{\,\cdot\,}^{\,k}$) are symmetric linear
198operators, $i.e.$
199\begin{align} 
200\label{DOM_di_adj}
201\sum\limits_i { a_i \;\delta _i \left[ b \right]} 
202   &\equiv -\sum\limits_i {\delta _{i+1/2} \left[ a \right]\;b_{i+1/2} }      \\
203\label{DOM_mi_adj}
204\sum\limits_i { a_i \;\overline b^{\,i}} 
205   & \equiv \quad \sum\limits_i {\overline a ^{\,i+1/2}\;b_{i+1/2} } 
206\end{align}
207
208In other words, the adjoint of the differencing and averaging operators are
209$\delta_i^*=\delta_{i+1/2}$ and
210${(\overline{\,\cdot \,}^{\,i})}^*= \overline{\,\cdot\,}^{\,i+1/2}$, respectively.
211These two properties will be used extensively in the Appendix~\ref{Apdx_C} to
212demonstrate integral conservative properties of the discrete formulation chosen.
213
214% -------------------------------------------------------------------------------------------------------------
215%        Numerical Indexing
216% -------------------------------------------------------------------------------------------------------------
217\subsection{Numerical Indexing}
218\label{DOM_Num_Index}
219
220%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
221\begin{figure}[!tb] \label{Fig_index_hor}  \begin{center}
222\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_index_hor.pdf}
223\caption{Horizontal integer indexing used in the \textsc{Fortran} code. The dashed
224area indicates the cell in which variables contained in arrays have the same
225$i$- and $j$-indices}
226\end{center}   \end{figure}
227%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
228
229The array representation used in the \textsc{Fortran} code requires an integer
230indexing while the analytical definition of the mesh (see \S\ref{DOM_cell}) is
231associated with the use of integer values for $T$-points and both integer and
232integer and a half values for all the other points. Therefore a specific integer
233indexing must be defined for points other than $T$-points ($i.e.$ velocity and
234vorticity grid-points). Furthermore, the direction of the vertical indexing has
235been changed so that the surface level is at $k=1$.
236
237% -----------------------------------
238%        Horizontal Indexing
239% -----------------------------------
240\subsubsection{Horizontal Indexing}
241\label{DOM_Num_Index_hor}
242
243The indexing in the horizontal plane has been chosen as shown in Fig.\ref{Fig_index_hor}. For an increasing $i$ index ($j$ index), the $T$-point
244and the eastward $u$-point (northward $v$-point) have the same index
245(see the dashed area in Fig.\ref{Fig_index_hor}). A $T$-point and its
246nearest northeast $f$-point have the same $i$-and $j$-indices.
247
248% -----------------------------------
249%        Vertical indexing
250% -----------------------------------
251\subsubsection{Vertical Indexing}
252\label{DOM_Num_Index_vertical}
253
254In the vertical, the chosen indexing requires special attention since the
255$k$-axis is re-orientated downward in the \textsc{Fortran} code compared
256to the indexing used in the semi-discrete equations and given in \S\ref{DOM_cell}.
257The sea surface corresponds to the $w$-level $k=1$ which is the same index
258as $T$-level just below (Fig.\ref{Fig_index_vert}). The last $w$-level ($k=jpk$)
259either corresponds to the ocean floor or is inside the bathymetry while the last
260$T$-level is always inside the bathymetry (Fig.\ref{Fig_index_vert}). Note that
261for an increasing $k$ index, a $w$-point and the $T$-point just below have the
262same $k$ index, in opposition to what is done in the horizontal plane where
263it is the $T$-point and the nearest velocity points in the direction of the horizontal
264axis that have the same $i$ or $j$ index (compare the dashed area in Fig.\ref{Fig_index_hor} and \ref{Fig_index_vert}). Since the scale factors are chosen
265to be strictly positive, a \emph{minus sign} appears in the \textsc{Fortran} code
266\emph{before all the vertical derivatives} of the discrete equations given in this
267documentation.
268
269%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
270\begin{figure}[!pt] \label{Fig_index_vert}  \begin{center}
271\includegraphics[width=.90\textwidth]{./TexFiles/Figures/Fig_index_vert.pdf}
272\caption{Vertical integer indexing used in the \textsc{Fortran } code. Note that
273the $k$-axis is orientated downward. The dashed area indicates the cell in
274which variables contained in arrays have the same $k$-index.}
275\end{center}   \end{figure}
276%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
277
278% -----------------------------------
279%        Domain Size
280% -----------------------------------
281\subsubsection{Domain Size}
282\label{DOM_size}
283
284The total size of the computational domain is set by the parameters \jp{jpiglo},
285\jp{jpjglo} and \jp{jpk} in the $i$, $j$ and $k$ directions respectively. They are
286given as parameters in the \mdl{par\_oce} module\footnote{When a specific
287configuration is used (ORCA2 global ocean, etc...) the parameter are actually
288defined in additional files introduced by \mdl{par\_oce} module via CPP
289\textit{include} command. For example, ORCA2 parameters are set in
290\textit{par\_ORCA\_R2.h90} file}. The use of parameters rather than variables
291(together with dynamic allocation of arrays) was chosen because it ensured that
292the compiler would optimize the executable code efficiently, especially on vector
293machines (optimization may be less efficient when the problem size is unknown
294at the time of compilation). Nevertheless, it is possible to set up the code with full
295dynamical allocation by using the AGRIF packaged \citep{Debreu_al_CG2008}.
296%
297\gmcomment{  add the following ref
298\colorbox{yellow}{(ref part of the doc)} } 
299%
300Note that are other parameters in \mdl{par\_oce} that refer to the domain size.
301The two parameters $jpidta$ and $jpjdta$ may be larger than $jpiglo$, $jpjglo$ 
302when the user wants to use only a sub-region of a given configuration. This is
303the "zoom" capability described in \S\ref{MISC_zoom}. In most applications of
304the model, $jpidta=jpiglo$, $jpjdta=jpjglo$, and $jpizoom=jpjzoom=1$. Parameters
305$jpi$ and $jpj$ refer to the size of each processor subdomain when the code is
306run in parallel using domain decomposition (\key{mpp\_mpi} defined, see
307\S\ref{LBC_mpp}).
308
309% ================================================================
310% Domain: Horizontal Grid (mesh)
311% ================================================================
312\section  [Domain: Horizontal Grid (mesh) (\textit{domhgr})]               
313      {Domain: Horizontal Grid (mesh) \small{(\mdl{domhgr} module)} }
314\label{DOM_hgr}
315
316% -------------------------------------------------------------------------------------------------------------
317%        Coordinates and scale factors
318% -------------------------------------------------------------------------------------------------------------
319\subsection{Coordinates and scale factors}
320\label{DOM_hgr_coord_e}
321
322The ocean mesh ($i.e.$ the position of all the scalar and vector points) is defined
323by the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$.
324The grid-points are located at integer or integer and a half values of as indicated
325in Table~\ref{Tab_cell}. The associated scale factors are defined using the
326analytical first derivative of the transformation \eqref{Eq_scale_factors}. These
327definitions are done in two modules, \mdl{domhgr} and \mdl{domzgr}, which
328provide the horizontal and vertical meshes, respectively. This section deals with
329the horizontal mesh parameters.
330
331In a horizontal plane, the location of all the model grid points is defined from the
332analytical expressions of the longitude $\lambda$ and  latitude $\varphi$ as a
333function of  $(i,j)$. The horizontal scale factors are calculated using
334\eqref{Eq_scale_factors}. For example, when the longitude and latitude are
335function of a single value ($i$ and $j$, respectively) (geographical configuration
336of the mesh), the horizontal mesh definition reduces to define the wanted
337$\lambda(i)$, $\varphi(j)$, and their derivatives $\lambda'(i)$ $\varphi'(j)$ in the
338\mdl{domhgr} module. The model computes the grid-point positions and scale
339factors in the horizontal plane as follows:
340\begin{flalign*}
341\lambda_T &\equiv \text{glamt}= \lambda(i)     & \varphi_T &\equiv \text{gphit} = \varphi(j)\\
342\lambda_u &\equiv \text{glamu}= \lambda(i+1/2)& \varphi_u &\equiv \text{gphiu}= \varphi(j)\\
343\lambda_v &\equiv \text{glamv}= \lambda(i)       & \varphi_v &\equiv \text{gphiv} = \varphi(j+1/2)\\
344\lambda_f &\equiv \text{glamf }= \lambda(i+1/2)& \varphi_f &\equiv \text{gphif }= \varphi(j+1/2)
345\end{flalign*}
346\begin{flalign*}
347e_{1T} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j)  |&
348e_{2T} &\equiv \text{e2t} = r_a |\varphi'(j)|  \\
349e_{1u} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)   \; \cos\varphi(j)  |&
350e_{2u} &\equiv \text{e2t} = r_a |\varphi'(j)|\\
351e_{1v} &\equiv \text{e1t} = r_a |\lambda'(i)    \; \cos\varphi(j+1/2)  |&
352e_{2v} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|\\
353e_{1f} &\equiv \text{e1t} = r_a |\lambda'(i+1/2)\; \cos\varphi(j+1/2)  |&
354e_{2f} &\equiv \text{e2t} = r_a |\varphi'(j+1/2)|
355\end{flalign*}
356where the last letter of each computational name indicates the grid point
357considered and $r_a$ is the earth radius (defined in \mdl{phycst} along with
358all universal constants). Note that the horizontal position of and scale factors
359at $w$-points are exactly equal to those of $T$-points, thus no specific arrays
360are defined at $w$-points.
361
362Note that the definition of the scale factors ($i.e.$ as the analytical first derivative
363of the transformation that gives $(\lambda,\varphi,z)$ as a function of $(i,j,k)$) is
364specific to the \NEMO model \citep{Marti1992}. As an example, $e_{1T}$ is defined
365locally at a $T$-point, whereas many other models on a C grid choose to define
366such a scale factor as the distance between the $U$-points on each side of the
367$T$-point. Relying on an analytical transformation has two advantages: firstly, there
368is no ambiguity in the scale factors appearing in the discrete equations, since they
369are first introduced in the continuous equations; secondly, analytical transformations
370encourage good practice by the definition of smoothly varying grids (rather than
371allowing the user to set arbitrary jumps in thickness between adjacent layers)
372\citep{Treguier1996}. An example of the effect of such a choice is shown in
373Fig.~\ref{Fig_zgr_e3}.
374%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
375\begin{figure}[!t] \label{Fig_zgr_e3}  \begin{center}
376\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_zgr_e3.pdf}
377\caption{Comparison of (a) traditional definitions of grid-point position and grid-size
378in the vertical, and (b) analytically derived grid-point position and scale factors. For
379both grids here,  the same $w$-point depth has been chosen but in (a) the
380$T$-points are set half way between $w$-points while in (b) they are defined from
381an analytical function: $z(k)=5\,(i-1/2)^3 - 45\,(i-1/2)^2 + 140\,(i-1/2) - 150$.
382Note the resulting difference between the value of the grid-size $\Delta_k$ and
383those of the scale factor $e_k$. }
384\end{center}   \end{figure}
385%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
386
387% -------------------------------------------------------------------------------------------------------------
388%        Choice of horizontal grid
389% -------------------------------------------------------------------------------------------------------------
390\subsection{Choice of horizontal grid}
391\label{DOM_hgr_msh_choice}
392
393The user has three options available in defining a horizontal grid, which involve
394the parameter $jphgr\_mesh$ of the \mdl{par\_oce} module.
395\begin{description}
396\item[\jp{jphgr\_mesh}=0]  The most general curvilinear orthogonal grids.
397The coordinates and their first derivatives with respect to $i$ and $j$ are
398provided in a file, read in \rou{hgr\_read} subroutine of the domhgr module.
399\item[\jp{jphgr\_mesh}=1 to 5] A few simple analytical grids are provided (see below).
400For other analytical grids, the \mdl{domhgr} module must be modified by the user.
401\end{description}
402
403There are two simple cases of geographical grids on the sphere. With
404\jp{jphgr\_mesh}=1, the grid (expressed in degrees) is regular in space,
405with grid sizes specified by parameters \pp{ppe1\_deg} and \pp{ppe2\_deg},
406respectively. Such a geographical grid can be very anisotropic at high latitudes
407because of the convergence of meridians (the zonal scale factors $e_1$ 
408become much smaller than the meridional scale factors $e_2$). The Mercator
409grid (\jp{jphgr\_mesh}=4) avoids this anisotropy by refining the meridional scale
410factors in the same way as the zonal ones. In this case, meridional scale factors
411and latitudes are calculated analytically using the formulae appropriate for
412a Mercator projection, based on \pp{ppe1\_deg} which is a reference grid spacing
413at the equator (this applies even when the geographical equator is situated outside
414the model domain).
415%%%
416\gmcomment{ give here the analytical expression of the Mercator mesh}
417%%%
418In these two cases (\jp{jphgr\_mesh}=1 or 4), the grid position is defined by the
419longitude and latitude of the south-westernmost point (\pp{ppglamt0} 
420and \pp{ppgphi0}). Note that for the Mercator grid the user need only provide
421an approximate starting latitude: the real latitude will be recalculated analytically,
422in order to ensure that the equator corresponds to line passing through $T$-
423and $u$-points. 
424
425Rectangular grids ignoring the spherical geometry are defined with
426\jp{jphgr\_mesh} = 2, 3, 5. The domain is either an $f$-plane (\jp{jphgr\_mesh} = 2,
427Coriolis factor is constant) or a beta-plane (\jp{jphgr\_mesh} = 3, the Coriolis factor
428is linear in the $j$-direction). The grid size is uniform in meter in each direction,
429and given by the parameters \pp{ppe1\_m} and \pp{ppe2\_m} respectively.
430The zonal grid coordinate (\textit{glam} arrays) is in kilometers, starting at zero
431with the first $T$-point. The meridional coordinate (gphi. arrays) is in kilometers,
432and the second $T$-point corresponds to coordinate $gphit=0$. The input
433parameter \pp{ppglam0} is ignored. \pp{ppgphi0} is used to set the reference
434latitude for computation of the Coriolis parameter. In the case of the beta plane,
435\pp{ppgphi0} corresponds to the center of the domain. Finally, the special case
436\jp{jphgr\_mesh}=5 corresponds to a beta plane in a rotated domain for the
437GYRE configuration, representing a classical mid-latitude double gyre system.
438The rotation allows us to maximize the jet length relative to the gyre areas
439(and the number of grid points).
440
441The choice of the grid must be consistent with the boundary conditions specified
442by the parameter \jp{jperio} (see {\S\ref{LBC}).
443
444% -------------------------------------------------------------------------------------------------------------
445%        Grid files
446% -------------------------------------------------------------------------------------------------------------
447\subsection{Grid files}
448\label{DOM_hgr_files}
449
450All the arrays relating to a particular ocean model configuration (grid-point
451position, scale factors, masks) can be saved in files if $\np{nmsh} \not= 0$ 
452(namelist parameter). This can be particularly useful for plots and off-line
453diagnostics. In some cases, the user may choose to make a local modification
454of a scale factor in the code. This is the case in global configurations when
455restricting the width of a specific strait (usually a one-grid-point strait that
456happens to be too wide due to insufficient model resolution). An example
457is Gibraltar Strait in the ORCA2 configuration. When such modifications are done,
458the output grid written when $\np{nmsh} \not=0$ is no more equal to the input grid.
459
460% ================================================================
461% Domain: Vertical Grid (domzgr)
462% ================================================================
463\section  [Domain: Vertical Grid (\textit{domzgr})]
464      {Domain: Vertical Grid \small{(\mdl{domzgr} module)} }
465\label{DOM_zgr}
466%-----------------------------------------nam_zgr & namdom-------------------------------------------
467\namdisplay{nam_zgr} 
468\namdisplay{namdom} 
469%-------------------------------------------------------------------------------------------------------------
470
471In the vertical, the model mesh is determined by four things:
472(1) the bathymetry given in meters ;
473(2) the number of levels of the model (\jp{jpk}) ;
474(3) the analytical transformation $z(i,j,k)$ and the vertical scale factors
475(derivatives of the transformation) ;
476and (4) the masking system, $i.e.$ the number of wet model levels at each
477$(i,j)$ column of points.
478
479%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
480\begin{figure}[!tb] \label{Fig_z_zps_s_sps}  \begin{center}
481\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_z_zps_s_sps.pdf}
482\caption{The ocean bottom as seen by the model:
483(a) $z$-coordinate with full step,
484(b) $z$-coordinate with partial step,
485(c) $s$-coordinate: terrain following representation,
486(d) hybrid $s-z$ coordinate,
487(e) hybrid $s-z$ coordinate with partial step, and
488(f) same as (e) but with variable volume associated with the non-linear free surface.
489Note that the variable volume option (\key{vvl}) can be used with any of the
4905 coordinates (a) to (e).}
491\end{center}   \end{figure}
492%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
493
494The choice of a vertical coordinate, even if it is made through a namelist parameter,
495must be done once of all at the beginning of an experiment. It is not intended as an
496option which can be enabled or disabled in the middle of an experiment. Three main
497choices are offered (Fig.~\ref{Fig_z_zps_s_sps}a to c): $z$-coordinate with full step
498bathymetry (\np{ln\_zco}=true), $z$-coordinate with partial step bathymetry
499(\np{ln\_zps}=true), or generalized, $s$-coordinate (\np{ln\_sco}=true).
500Hybridation of the three main coordinates are available: $s-z$ or $s-zps$ coordinate
501(Fig.~\ref{Fig_z_zps_s_sps}d and \ref{Fig_z_zps_s_sps}e). When using the variable
502volume option \key{vvl}) ($i.e.$ non-linear free surface), the coordinate follow the
503time-variation of the free surface so that the transformation is time dependent:
504$z(i,j,k,t)$ (Fig.~\ref{Fig_z_zps_s_sps}f). This option can be used with full step
505bathymetry or $s$-coordinate (hybride and partial step coordinates have not
506yet been tested in NEMO v2.3).
507
508Contrary to the horizontal grid, the vertical grid is computed in the code and no
509provision is made for reading it from a file. The only input file is the bathymetry
510(in meters)\footnote{N.B. in full step $z$-coordinate, a \textit{bathy\_level} file can
511replace the \textit{bathy\_meter} file, so that the computation of the number of
512wet ocean point in each water column is by-passed}. After reading the bathymetry,
513the algorithm for vertical grid definition differs between the different options:
514\begin{description}
515\item[\textit{zco}] set a reference coordinate transformation $z_0 (k)$, and set $z(i,j,k,t)=z_0 (k)$.
516\item[\textit{zps}] set a reference coordinate transformation $z_0 (k)$, and
517calculate the thickness of the deepest level at each $(i,j)$ point using the
518bathymetry, to obtain the final three-dimensional depth and scale factor arrays.
519\item[\textit{sco}] smooth the bathymetry to fulfil the hydrostatic consistency
520criteria and set the three-dimensional transformation.
521\item[\textit{s-z} and \textit{s-zps}] smooth the bathymetry to fulfil the hydrostatic
522consistency criteria and set the three-dimensional transformation $z(i,j,k)$, and
523possibly introduce masking of extra land points to better fit the original bathymetry file
524\end{description}
525%%%
526\gmcomment{   add the description of the smoothing:  envelop topography...}
527%%%
528
529Generally, the arrays describing the grid point depths and vertical scale factors
530are three dimensional arrays $(i,j,k)$. In the special case of $z$-coordinates with
531full step bottom topography, it is possible to define those arrays as one-dimensional,
532in order to save memory. This is performed by defining the \key{zco} 
533C-Pre-Processor (CPP) key. To improve the code readability while providing this
534flexibility, the vertical coordinate and scale factors are defined as functions of
535$(i,j,k)$ with "fs" as prefix (examples: \textit{fsdeptht, fse3t,} etc) that can be either
536three-dimensional arrays, or a one dimensional array when \key{zco} is defined.
537These functions are defined in the file \hf{domzgr\_substitute} of the DOM directory.
538They are used throughout the code, and replaced by the corresponding arrays at
539the time of pre-processing (CPP capability).
540
541% -------------------------------------------------------------------------------------------------------------
542%        Meter Bathymetry
543% -------------------------------------------------------------------------------------------------------------
544\subsection{Meter Bathymetry}
545\label{DOM_bathy}
546
547Three options are possible for defining the bathymetry, according to the
548namelist variable \np{ntopo}:
549\begin{description}
550\item[\np{ntopo} = 0] a flat-bottom domain is defined. The total depth $z_w (jpk)$ 
551is given by the coordinate transformation. The domain can either be a closed
552basin or a periodic channel depending on the parameter \jp{jperio}.
553\item[\np{ntopo} = -1] a domain with a bump of topography one third of the
554domain width at the central latitude. This is meant for the "EEL-R5" configuration,
555a periodic or open boundary channel with a seamount.
556\item[\np{ntopo} = 1] read a bathymetry. The bathymetry file (Netcdf format)
557provides the ocean depth (positive, in meters) at each grid point of the model grid.
558The bathymetry is usually built by interpolating a standard bathymetry product
559($e.g.$ ETOPO2) onto the horizontal ocean mesh. Defining the bathymetry also
560defines the coastline: where the bathymetry is zero, no model levels are defined
561(all levels are masked).
562\end{description}
563
564When using the rigid lid approximation (\key{dynspg\_rl} is defined) isolated land
565masses (islands) must be identified by negative integers in the input bathymetry file
566(see \S\ref{MISC_solisl}).
567
568When a global ocean is coupled to an atmospheric model it is better to represent
569all large water bodies (e.g, great lakes, Caspian sea...) even if the model
570resolution does not allow their communication with the rest of the ocean.
571This is unnecessary when the ocean is forced by fixed atmospheric conditions,
572so these seas can be removed from the ocean domain. The user has the option
573to set the bathymetry in closed seas to zero (see \S\ref{MISC_closea}), but the
574code has to be adapted to the user's configuration.
575
576% -------------------------------------------------------------------------------------------------------------
577%        z-coordinate  and reference coordinate transformation
578% -------------------------------------------------------------------------------------------------------------
579\subsection[$z$-coordinate (\np{ln\_zco} or \key{zco})]
580        {$z$-coordinate (\np{ln\_zco}=.true. or \key{zco}) and reference coordinate}
581\label{DOM_zco}
582
583%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
584\begin{figure}[!tb] \label{Fig_zgr}  \begin{center}
585\includegraphics[width=0.90\textwidth]{./TexFiles/Figures/Fig_zgr.pdf}
586\caption{Default vertical mesh for ORCA2: 30 ocean levels (L30). Vertical level
587functions for (a) T-point depth and (b) the associated scale factor as computed
588from \eqref{DOM_zgr_ana} using \eqref{DOM_zgr_coef} in $z$-coordinate.}
589\end{center}   \end{figure}
590%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
591
592The reference coordinate transformation $z_0 (k)$ defines the arrays $gdept_0$ 
593and $gdepw_0$ for $T$- and $w$-points, respectively. As indicated on
594Fig.\ref{Fig_index_vert} \jp{jpk} is the number of $w$-levels. $gdepw_0(1)$ is the
595ocean surface. There are at most \jp{jpk}-1 $T$-points inside the ocean, the
596additional $T$-point at $jk=jpk$ is below the sea floor and is not used.
597The vertical location of $w$- and $T$-levels is defined from the analytic expression
598of the depth $z_0(k)$ whose analytical derivative with respect to $k$ provides the
599vertical scale factors. The user must provide the analytical expression of both
600$z_0$ and its first derivative with respect to $k$. This is done in routine \mdl{domzgr} 
601through statement functions, using parameters provided in the \textit{par\_oce.h90} file.
602
603It is possible to define a simple regular vertical grid by giving zero stretching (\pp{ppacr=0}). In that case, the parameters \jp{jpk} (number of $w$-levels) and \pp{pphmax} (total ocean depth in meters) fully define the grid.
604
605For climate-related studies it is often desirable to concentrate the vertical resolution
606near the ocean surface. The following function is proposed as a standard for a $z$-coordinate (with either full or partial steps):
607\begin{equation} \label{DOM_zgr_ana}
608\begin{split}
609 z_0 (k)    &= h_{sur} -h_0 \;k-\;h_1 \;\log \left[ {\,\cosh \left( {{(k-h_{th} )} / {h_{cr} }} \right)\,} \right] \\ 
610 e_3^0 (k)  &= \left| -h_0 -h_1 \;\tanh \left( {{(k-h_{th} )} / {h_{cr} }} \right) \right|
611\end{split}
612\end{equation}
613where $k=1$ to \jp{jpk} for $w$-levels and $k=1$ to $k=1$ for $T-$levels. Such an
614expression allows us to define a nearly uniform vertical location of levels at the
615ocean top and bottom with a smooth hyperbolic tangent transition in between
616(Fig.~\ref{Fig_zgr}).
617
618The most used vertical grid for ORCA2 has $10~m$ ($500~m)$ resolution in the
619surface (bottom) layers and a depth which varies from 0 at the sea surface to a
620minimum of $-5000~m$. This leads to the following conditions:
621\begin{equation} \label{DOM_zgr_coef}
622\begin{split}
623 e_3 (1+1/2)      &=10. \\ 
624 e_3 (jpk-1/2) &=500. \\ 
625 z(1)       &=0. \\ 
626 z(jpk)        &=-5000. \\ 
627\end{split}
628\end{equation}
629
630With the choice of the stretching $h_{cr} =3$ and the number of levels
631\jp{jpk}=$31$, the four coefficients $h_{sur}$, $h_{0}$, $h_{1}$, and $h_{th}$ in
632\eqref{DOM_zgr_ana} have been determined such that \eqref{DOM_zgr_coef} is
633satisfied, through an optimisation procedure using a bisection method. For the first
634standard ORCA2 vertical grid this led to the following values: $h_{sur} =4762.96$,
635$h_0 =255.58, h_1 =245.5813$, and $h_{th} =21.43336$. The resulting depths and
636scale factors as a function of the model levels are shown in Fig.~\ref{Fig_zgr} and
637given in Table \ref{Tab_orca_zgr}. Those values correspond to the parameters
638\pp{ppsur}, \pp{ppa0}, \pp{ppa1}, \pp{ppkth} in the parameter file \mdl{par\_oce}.
639
640Rather than entering parameters $h_{sur}$, $h_{0}$, and $h_{1}$ directly, it is
641possible to recalculate them. In that case the user sets
642\pp{ppsur}=\pp{ppa0}=\pp{ppa1}=\pp{pp\_to\_be\_computed}, in \mdl{par\_oce},
643and specifies instead the four following parameters:
644\begin{itemize}
645\item    \pp{ppacr}=$h_{cr} $: stretching factor (nondimensional). The larger
646\pp{ppacr}, the smaller the stretching. Values from $3$ to $10$ are usual.
647\item    \pp{ppkth}=$h_{th} $: is approximately the model level at which maximum
648stretching occurs (nondimensional, usually of order 1/2 or 2/3 of \jp{jpk})
649\item    \pp{ppdzmin}: minimum thickness for the top layer (in meters)
650\item    \pp{pphmax}: total depth of the ocean (meters).
651\end{itemize}
652As an example, for the $45$ layers used in the DRAKKAR configuration those
653parameters are: \jp{jpk}=46, \pp{ppacr}=9, \pp{ppkth}=23.563, \pp{ppdzmin}=6m,
654\pp{pphmax}=5750m.
655
656%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
657\begin{table} \label{Tab_orca_zgr}
658\begin{center} \begin{tabular}{c||r|r|r|r}
659\hline
660\textbf{LEVEL}& \textbf{GDEPT}& \textbf{GDEPW}& \textbf{E3T }& \textbf{E3W  } \\ \hline
661&  \textbf{  5.00}   &       0.00 & \textbf{ 10.00} &  10.00 \\   \hline
662&  \textbf{15.00} &    10.00 &   \textbf{ 10.00} &  10.00 \\   \hline
663&  \textbf{25.00} &    20.00 &   \textbf{ 10.00} &     10.00 \\   \hline
664&  \textbf{35.01} &    30.00 &   \textbf{ 10.01} &     10.00 \\   \hline
665&  \textbf{45.01} &    40.01 &   \textbf{ 10.01} &  10.01 \\   \hline
666&  \textbf{55.03} &    50.02 &   \textbf{ 10.02} &     10.02 \\   \hline
667&  \textbf{65.06} &    60.04 &   \textbf{ 10.04} &  10.03 \\   \hline
668&  \textbf{75.13} &    70.09 &   \textbf{ 10.09} &  10.06 \\   \hline
669&  \textbf{85.25} &    80.18 &   \textbf{ 10.17} &  10.12 \\   \hline
67010 &  \textbf{95.49} &    90.35 &   \textbf{ 10.33} &  10.24 \\   \hline
67111 &  \textbf{105.97}   &   100.69 &   \textbf{ 10.65} &  10.47 \\   \hline
67212 &  \textbf{116.90}   &   111.36 &   \textbf{ 11.27} &  10.91 \\   \hline
67313 &  \textbf{128.70}   &   122.65 &   \textbf{ 12.47} &  11.77 \\   \hline
67414 &  \textbf{142.20}   &   135.16 &   \textbf{ 14.78} &  13.43 \\   \hline
67515 &  \textbf{158.96}   &   150.03 &   \textbf{ 19.23} &  16.65 \\   \hline
67616 &  \textbf{181.96}   &   169.42 &   \textbf{ 27.66} &  22.78 \\   \hline
67717 &  \textbf{216.65}   &   197.37 &   \textbf{ 43.26} &  34.30 \\ \hline
67818 &  \textbf{272.48}   &   241.13 &   \textbf{ 70.88} &  55.21 \\ \hline
67919 &  \textbf{364.30}   &   312.74 &   \textbf{116.11} &  90.99 \\ \hline
68020 &  \textbf{511.53}   &   429.72 &   \textbf{181.55} &    146.43 \\ \hline
68121 &  \textbf{732.20}   &   611.89 &   \textbf{261.03} &    220.35 \\ \hline
68222 &  \textbf{1033.22}&  872.87 &   \textbf{339.39} &    301.42 \\ \hline
68323 &  \textbf{1405.70}& 1211.59 & \textbf{402.26} &   373.31 \\ \hline
68424 &  \textbf{1830.89}& 1612.98 & \textbf{444.87} &   426.00 \\ \hline
68525 &  \textbf{2289.77}& 2057.13 & \textbf{470.55} &   459.47 \\ \hline
68626 &  \textbf{2768.24}& 2527.22 & \textbf{484.95} &   478.83 \\ \hline
68727 &  \textbf{3257.48}& 3011.90 & \textbf{492.70} &   489.44 \\ \hline
68828 &  \textbf{3752.44}& 3504.46 & \textbf{496.78} &   495.07 \\ \hline
68929 &  \textbf{4250.40}& 4001.16 & \textbf{498.90} &   498.02 \\ \hline
69030 &  \textbf{4749.91}& 4500.02 & \textbf{500.00} &   499.54 \\ \hline
69131 &  \textbf{5250.23}& 5000.00 &   \textbf{500.56} & 500.33 \\ \hline
692\end{tabular} \end{center} 
693\caption{Default vertical mesh in $z$-coordinate for 30 layers ORCA2 configuration
694as computed from \eqref{DOM_zgr_ana} using the coefficients given in
695\eqref{DOM_zgr_coef}}
696\end{table}
697%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
698
699% -------------------------------------------------------------------------------------------------------------
700%        z-coordinate with partial step
701% -------------------------------------------------------------------------------------------------------------
702\subsection   [$z$-coordinate with partial step (\np{ln\_zps})]
703         {$z$-coordinate with partial step (\np{ln\_zps}=.true.)}
704\label{DOM_zps}
705%--------------------------------------------namdom-------------------------------------------------------
706\namdisplay{namdom} 
707%--------------------------------------------------------------------------------------------------------------
708
709In $z$-coordinate partial step, the depths of the model levels are defined by the
710reference analytical function $z_0 (k)$ as described in the previous
711section, \emph{except} in the bottom layer. The thickness of the bottom layer is
712allowed to vary as a function of geographical location $(\lambda,\varphi)$ to allow a
713better representation of the bathymetry, especially in the case of small
714slopes (where the bathymetry varies by less than one level thickness from
715one grid point to the next). The reference layer thicknesses $e_{3t}^0$ have been
716defined in the absence of bathymetry. With partial steps, layers from 1 to
717\jp{jpk}-2 can have a thickness smaller than $e_{3t}(jk)$. The model deepest layer (\jp{jpk}-1) is
718allowed to have either a smaller or larger thickness than $e_{3t}(jpk)$: the
719maximum thickness allowed is $2*e_{3t}(jpk-1)$. This has to be kept in mind when
720specifying the maximum depth \pp{pphmax} in partial steps: for example, with
721\pp{pphmax}$=5750~m$ for the DRAKKAR 45 layer grid, the maximum ocean depth allowed is actually $6000~m$ (the default thickness $e_{3t}(jpk-1)$ being $250~m$). Two
722variables in the namdom namelist are used to define the partial step
723vertical grid. The mimimum water thickness (in meters) allowed for a cell
724partially filled with bathymetry at level jk is the minimum of \np{e3zpsmin} 
725(thickness in meters, usually $20~m$) or $e_{3t}(jk)*\np{e3zps\_rat}$ (a fraction,
726usually 10\%, of the default thickness $e_{3t}(jk)$).
727
728 \colorbox{yellow}{Add a figure here of pstep especially at last ocean level }
729
730% -------------------------------------------------------------------------------------------------------------
731%        s-coordinate
732% -------------------------------------------------------------------------------------------------------------
733\subsection   [$s$-coordinate (\np{ln\_sco})]
734         {$s$-coordinate (\np{ln\_sco}=true)}
735\label{DOM_sco}
736%------------------------------------------nam_zgr_sco---------------------------------------------------
737\namdisplay{nam_zgr_sco} 
738%--------------------------------------------------------------------------------------------------------------
739In $s$-coordinate (\key{sco} is defined), the depth and thickness of the model
740levels are defined from the product of a depth field and either a stretching
741function or its derivative, respectively:
742\begin{equation} \label{DOM_sco_ana}
743\begin{split}
744 z(k)       &= h(i,j) \; z_0(k)  \\
745 e_3(k)  &= h(i,j) \; z_0'(k)
746\end{split}
747\end{equation}
748where $h$ is the depth of the last $w$-level ($z_0(k)$) defined at the $T$-point
749location in the horizontal and $z_0(k)$ is a function which varies from $0$ at the sea
750surface to $1$ at the ocean bottom. The depth field $h$ is not necessary the ocean
751depth, since a mixed step-like and bottom-following representation of the
752topography can be used (Fig.~\ref{Fig_z_zps_s_sps}d-e). In the example provided (\hf{zgr\_s} file) $h$ is a smooth envelope bathymetry and steps are used to represent sharp bathymetric gradients.
753
754A new flexible stretching function, modified from \citet{Song1994} is provided as an example:
755\begin{equation} \label{DOM_sco_function}
756\begin{split}
757&= h_c +( h-h_c)\;c s)  \\
758c(s)  &\frac{ \left[   \tanh{ \left( \theta \, (s+b) \right)} 
759               - \tanh{ \left\theta \, b      \right)}  \right]}
760            {2\;\sinh \left( \theta \right)}
761\end{split}
762\end{equation}
763where $h_c$ is the thermocline depth and $\theta$ and $b$ are the surface and
764bottom control parameters such that $0\leqslant \theta \leqslant 20$, and
765$0\leqslant b\leqslant 1$. $b$ has been designed to allow surface and/or bottom increase of the vertical resolution (Fig.~\ref{Fig_sco_function}).
766
767%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
768\begin{figure}[!tb] \label{Fig_sco_function}  \begin{center}
769\includegraphics[width=1.0\textwidth]{./TexFiles/Figures/Fig_sco_function.pdf}
770\caption{Examples of the stretching function applied to a sea mont; from left to right: surface, surface and bottom, and bottom intensified resolutions}
771\end{center}   \end{figure}
772%>>>>>>>>>>>>>>>>>>>>>>>>>>>>
773
774% -------------------------------------------------------------------------------------------------------------
775%        z*- or s*-coordinate
776% -------------------------------------------------------------------------------------------------------------
777\subsection{$z^*$- or $s^*$-coordinate (add \key{vvl}) }
778\label{DOM_zgr_vvl}
779
780This option is described in the Report by Levier \textit{et al.} (2007), available on
781the \NEMO web site.
782
783%gm% key advantage: minimise the diffusion/dispertion associated with advection in response to high frequency surface disturbances
784
785% -------------------------------------------------------------------------------------------------------------
786%        level bathymetry and mask
787% -------------------------------------------------------------------------------------------------------------
788\subsection{level bathymetry and mask}
789\label{DOM_msk}
790
791Whatever the vertical coordinate used, the model offers the possibility of
792representing the bottom topography with steps that follow the face of the
793model cells (step like topography) \citep{Madec1996}. The distribution of
794the steps in the horizontal is defined in a 2D integer array, mbathy, which
795gives the number of ocean levels ($i.e.$ those that are not masked) at each
796$T$-point. mbathy is computed from the meter bathymetry using the definiton of
797gdept as the number of $T$-points which gdept $\leq$ bathy. Note that in version
798NEMO v2.3, the user still has to provide the "level" bathymetry in a NetCDF
799file when using the full step option (\np{ln\_zco}), rather than the bathymetry
800in meters: both will be allowed in future versions.
801
802Modifications of the model bathymetry are performed in the \textit{bat\_ctl} 
803routine (see \mdl{domzgr} module) after mbathy is computed. Isolated grid points
804that do not communicate with another ocean point at the same level are eliminated.
805
806In the case of the rigid-lid approximation when islands occur in the computational
807domain (\np{ln\_dynspg\_rl}=.true. and \key{island} is defined), the \textit{mbathy} 
808array must be provided and takes values from $-N$ to \jp{jpk}-1. It provides the
809following information: $mbathy(i,j) = -n, \ n \in \left] 0,N \right]$, $T$-points are
810land points on the $n^{th}$ island ; $mbathy(i,j) =0$, $T$-points are land points
811on the main land (continent) ; $mbathy(i,j) =k$, the first $k$ $T$- and $w$-points
812are ocean points, the others are points below the ocean floor.
813
814This is used to compute the island barotropic stream function used in the rigid lid
815computation (see \S\ref{MISC_solisl}).
816
817From the \textit{mbathy} array, the mask fields are defined as follows:
818\begin{align*}
819tmask(i,j,k) &= \begin{cases}   \; 1&   \text{ if $k\leq mbathy(i,j)$  }    \\
820                                                \; 0&   \text{ if $k\leq mbathy(i,j)$  }    \end{cases}     \\
821umask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
822vmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i,j+1,k)   \\
823fmask(i,j,k) &=         \; tmask(i,j,k) \ * \ tmask(i+1,j,k)   \\
824                   & \ \ \, * tmask(i,j,k) \ * \ tmask(i+1,j,k)
825\end{align*}
826
827\gmcomment{ STEVEN: are the dots multiplications?}     
828
829Note that \textit{wmask} is not defined as it is exactly equal to \textit{tmask} with
830the numerical indexing used (\S~\ref{DOM_Num_Index}). Moreover, the
831specification of closed lateral boundaries requires that at least the first and last
832rows and columns of the \textit{mbathy} array are set to zero. In the particular
833case of an east-west cyclical boundary condition, \textit{mbathy} has its last
834column equal to the second one and its first column equal to the last but one
835(and so too the mask arrays) (see \S~\ref{LBC_jperio}).
836
837%%%
838\gmcomment{   \colorbox{yellow}{Add one word on tricky trick !} mbathy in further modified in zdfbfr{\ldots}}
839%%%
840
841% ================================================================
842% Time Discretisation
843% ================================================================
844\section{Time Discretisation}
845\label{DOM_nxt}
846
847The time stepping used in \NEMO is a three level scheme that can be
848represented as follows:
849\begin{equation} \label{Eq_DOM_nxt}
850   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \  \text{RHS}_x^{t-\Delta t,t,t+\Delta t}
851\end{equation} 
852where $x$ stands for $u$, $v$, $T$ or $S$; RHS is the Right-Hand-Side of the
853corresponding time evolution equation; $\Delta t$ is the time step; and the
854superscripts indicate the time at which a quantity is evaluated. Each term of the
855RHS is evaluated at a specific time step(s) depending on the physics with which
856it is associated.
857
858The choice of the time step used for this evaluation is discussed below as
859well as the implications in terms of starting or restarting a model
860simulation. Note that the time stepping is generally performed in a one step
861operation. With such a complex and nonlinear system of equations it would be dangerous to let a prognostic variable evolve in time for each term separately.
862%%%
863\gmcomment{ STEVEN  suggest separately instead of successively...  wrong?}
864%%%
865
866The three level scheme requires three arrays for each prognostic variables.
867For each variable $x$ there is $x_b$ (before) and $x_n$ (now). The third array,
868although referred to as $x_a$ (after) in the code, is usually not the variable at
869the next time step; but rather it is used to store the time derivative (RHS in
870\eqref{Eq_DOM_nxt}) prior to time-stepping the equation. Generally, the time
871stepping is performed once at each time step in \mdl{tranxt} and \mdl{dynnxt} 
872modules, except for implicit vertical diffusion or sea surface height when
873time-splitting options are used.
874
875% -------------------------------------------------------------------------------------------------------------
876%        Non-Diffusive Part---Leapfrog Scheme
877% -------------------------------------------------------------------------------------------------------------
878\subsection{Non-Diffusive Part --- Leapfrog Scheme}
879\label{DOM_nxt_leap_frog}
880
881The time stepping used for non-diffusive processes is the well-known
882leapfrog scheme. It is a time centred scheme, i.e. the RHS is evaluated at
883time step $t$, the now time step. It is only used for non-diffusive terms,
884that is momentum and tracer advection, pressure gradient, and Coriolis
885terms. This scheme is widely used for advective processes in low-viscosity
886fluids. It is an efficient method that achieves second-order accuracy with
887just one right hand side evaluation per time step. Moreover, it does not
888artificially damp linear oscillatory motion nor does it produce instability
889by amplifying the oscillations. These advantages are somewhat diminished by
890the large phase-speed error of the leapfrog scheme, and the unsuitability of
891leapfrog differencing for the representation of diffusive and Rayleigh
892damping processes. However, the most serious problem associated with the
893leapfrog scheme is a high-frequency computational noise called
894"time-splitting" \citep{Haltiner1980} that develops when the method
895is used to model non linear fluid dynamics: the even and odd time steps tend
896to diverge into a physical and a computational mode. Time splitting can
897be controlled through the use of an Asselin time filter (first designed by
898\citep{Robert1966} and more comprehensively studied by \citet{Asselin1972}), or by
899periodically reinitialising the leapfrog solution through a single
900integration step with a two-level scheme. In \NEMO we follow the first
901strategy:
902\begin{equation} \label{Eq_DOM_nxt_asselin}
903x_F^t  = x^t + \gamma \, \left[ x_f^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right]
904\end{equation} 
905where the subscript $f$ denotes filtered values and $\gamma$ is the Asselin
906coefficient. $\gamma$ is initialized as \np{atfp} (namelist parameter).
907Its default value is \np{atfp}=0.1.  This default value causes a significant dissipation
908of high frequency motions. Recommended values in idealized studies of shallow
909water turbulence are two orders of magnitude smaller (\citep{Farge1987}).
910Both strategies do, nevertheless, degrade the accuracy of the calculation from
911second to first order. The leapfrog scheme combined with a Robert-Asselin
912time filter has been preferred to other time differencing schemes such as
913predictor corrector or trapezoidal schemes, because the user has an explicit
914and simple control of the magnitude of the time diffusion of the scheme.
915In association with the 2nd order centred space discretisation of the
916advective terms in the momentum and tracer equations, it avoids implicit
917numerical diffusion in both the time and space discretisations of the
918advective term: they are both set explicitly by the user through the Robert-Asselin
919filter parameter and the viscous and diffusive coefficients.
920
921\gmcomment{
922%gm - reflexion about leapfrog: ongoing work with Matthieu Leclair
923% to be updated latter with addition of new time stepping strategy
924\colorbox{yellow}{Note}:
925The Robert-Asselin time filter slightly departs from a simple second order time
926diffusive operator computed with a forward time stepping due to the presence of
927$x_f^{t-\Delta t}$ in the right hand side of  \ref{Eq_DOM_nxt_asselin}. The original
928willing of Robert1966 and Asselin1972 was to design a time filter that allow much
929larger parameter than 0.5.   is due to computer saving consideration. In the original
930asselin filter, $x^{t-\Delta t}$ is used instead:
931 \begin{equation} \label{Eq_DOM_nxt_asselin_true}
932x_f^t  = x^t + \gamma \, \left[ x^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right]
933\end{equation} 
934Applying a "true" Asselin time filter is nothing more than adding a harmonic
935diffusive operator in time. Indeed, equations \ref{Eq_DOM_nxt} and
936\ref{Eq_DOM_nxt_asselin_true} can be rewritten together as:
937\begin{equation} \label{Eq_DOM_nxt2}
938\begin{split}
939  \frac{ x^{t+\Delta t} - x^{t-\Delta t} } { 2 \,\Delta t } 
940  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} + \frac{ x_f^t  - x^t }{2 \,\Delta t} \\
941  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} 
942    + \gamma\ \frac{  \, \left[ x^{t-\Delta t} - 2 x^t + x^{t+\Delta t} \right] }{2 \,\Delta t}  \\
943  &\text{RHS}_x^{t-\Delta t,t,t+\Delta t} 
944  + 2 \Delta t \ \gamma \ \frac{1}{{2 \Delta t}^2} 
945   \,\delta_{t-1}\,\left[ \delta_{t+1/2}\left[ x^t \right] \right]
946  \end{split}
947\end{equation} 
948expressing this again in a continuous form, one finds that the Asselin filter leads to :
949\begin{equation} \label{Eq_DOM_nxt3}
950  \frac{ \partial x} { \partial t } =  \text{RHS} + 2 \,\Delta t \ \gamma \ \frac{ {\partial}^2 x}{ \partial t ^2 }
951\end{equation} 
952
953Equations  \ref{Eq_DOM_nxt2} and \ref{Eq_DOM_nxt3} suggest several remarks.
954First the Asselin filter is definitively a second order time diffusive operator which is
955evaluated at centered time step. The magnitude of this diffusion is proportional to
956the time step (with $\gamma$ usually taken between $10^{-1}$ to $10^{-3}$).
957Second, this term has to be taken into account in all budgets of the equations
958(mass, heat content, salt content, kinetic energy...). Nevertheless,we stress here
959that it is small and does not create systematic biases. Indeed let us evaluate how
960it contributes to the time evolution of $x$ between $t_o$ and $t_1$:
961\begin{equation} \label{Eq_DOM_nxt4}
962\begin{split}
963 t_1-t_o &= \int_{t_o}^{t_1} \frac{ \partial x} { \partial t } dt \\
964      &= \int_{t_o}^{t_1} \text{RHS} dt + 2 \,\Delta t \ \gamma \left(
965        \left. \frac{ \partial x}{ \partial t } \right|_1
966      - \left. \frac{ \partial x}{ \partial t } \right|_\right)
967 \end{split}
968\end{equation} 
969}
970
971Alternative time stepping schemes are currently under investigation.
972
973% -------------------------------------------------------------------------------------------------------------
974%        Diffusive Part---Forward or Backward Scheme
975% -------------------------------------------------------------------------------------------------------------
976\subsection{Diffusive Part --- Forward or Backward Scheme}
977\label{DOM_nxt_forward_imp}
978
979The leapfrog differencing scheme is unsuitable for the representation of
980diffusive and damping processes. For a tendancy $D_x$, representing a
981diffusive term or a restoring term to a tracer climatology
982(when present, see \S~\ref{TRA_dmp}), a forward time differencing scheme
983 is used :
984\begin{equation} \label{Eq_DOM_nxt_euler}
985   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \ {D_x}^{t-\Delta t}
986\end{equation} 
987
988This is diffusive in time and conditionally stable. For example, the
989conditions for stability of second and fourth order horizontal diffusion schemes are \citep{Griffies2004}:
990\begin{equation} \label{Eq_DOM_nxt_euler_stability}
991A^h < \left\{
992\begin{aligned}
993                    &\frac{e^2}{  8 \; \Delta t }  &&\quad \text{laplacian diffusion}  \\
994                    &\frac{e^4}{64 \; \Delta t }   &&\quad \text{bilaplacian diffusion} 
995            \end{aligned}
996\right.
997\end{equation}
998where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is the mixing coefficient. The linear constraint \eqref{Eq_DOM_nxt_euler_stability} is a necessary condition, but not sufficient. If it is not satisfied, even mildly, then the model soon becomes wildly unstable. The instability can be removed by either reducing the length of the time steps or reducing the mixing coefficient.
999
1000For the vertical diffusion terms, a forward time differencing scheme can be
1001used, but usually the numerical stability condition implies a strong
1002constraint on the time step. Two solutions are available in \NEMO to overcome
1003the stability constraint: $(a)$ a forward time differencing scheme using a
1004time splitting technique (\np{ln\_zdfexp}=.true.) or $(b)$ a backward (or implicit)
1005time differencing scheme by \np{ln\_zdfexp}=.false.). In $(a)$, the master
1006time step $\Delta $t is cut into $N$ fractional time steps so that the
1007stability criterion is reduced by a factor of $N$. The computation is done as
1008follows:
1009\begin{equation} \label{Eq_DOM_nxt_ts}
1010\begin{split}
1011& u_\ast ^{t-\Delta t} = u^{t-\Delta t}   \\
1012& u_\ast ^{t-\Delta t+L\frac{2\Delta t}{N}}=u_\ast ^{t-\Delta t+\left( {L-1} 
1013\right)\frac{2\Delta t}{N}}+\frac{2\Delta t}{N}\;\text{DF}^{t-\Delta t+\left( {L-1} \right)\frac{2\Delta t}{N}}
1014        \quad \text{for $L=1$ to $N$}      \\
1015& u^{t+\Delta t} = u_\ast^{t+\Delta t}
1016\end{split}
1017\end{equation}
1018with DF a vertical diffusion term. The number of fractional time steps, $N$, is given
1019by setting \np{n\_zdfexp}, (namelist parameter). The scheme $(b)$ is unconditionally
1020stable but diffusive. It can be written as follows:
1021\begin{equation} \label{Eq_DOM_nxt_imp}
1022   x^{t+\Delta t} = x^{t-\Delta t} + 2 \, \Delta t \  \text{RHS}_x^{t+\Delta t}
1023\end{equation} 
1024
1025This scheme is rather time consuming since it requires a matrix inversion,
1026but it becomes attractive since a splitting factor of 3 or more is needed
1027for the forward time differencing scheme. For example, the finite difference
1028approximation of the temperature equation is:
1029\begin{equation} \label{Eq_DOM_nxt_imp_zdf}
1030\frac{T(k)^{t+1}-T(k)^{t-1}}{2\;\Delta t}\equiv \text{RHS}+\frac{1}{e_{3T} }\delta 
1031_k \left[ {\frac{A_w^{vT} }{e_{3w} }\delta _{k+1/2} \left[ {T^{t+1}} \right]} 
1032\right]
1033\end{equation}
1034where RHS is the right hand side of the equation except for the vertical diffusion term. We rewrite \eqref{Eq_DOM_nxt_imp} as:
1035\begin{equation} \label{Eq_DOM_nxt_imp_mat}
1036-c(k+1)\;u^{t+1}(k+1)+d(k)\;u^{t+1}(k)-\;c(k)\;u^{t+1}(k-1) \equiv b(k)
1037\end{equation}
1038where
1039\begin{align*} 
1040 c(k) &= A_w^{vm} (k) \, / \, e_{3uw} (k)     \\
1041 d(k) &= e_{3u} (k)       \, / \, (2\Delta t) + c_k + c_{k+1}    \\
1042 b(k) &= e_{3u} (k) \; \left( u^{t-1}(k) \, / \, (2\Delta t) + \text{RHS} \right)   
1043\end{align*}
1044
1045\eqref{Eq_DOM_nxt_imp_mat} is a linear system of equations which associated
1046matrix is tridiagonal. Moreover, $c(k)$ and $d(k)$ are positive and the diagonal
1047term is greater than the sum of the two extra-diagonal terms, therefore a special
1048adaptation of the Gauss elimination procedure is used to find the solution
1049(see for example \citet{Richtmyer1967}).
1050
1051% -------------------------------------------------------------------------------------------------------------
1052%        Start/Restart strategy
1053% -------------------------------------------------------------------------------------------------------------
1054\subsection{Start/Restart strategy}
1055\label{DOM_nxt_rst}
1056%--------------------------------------------namrun-------------------------------------------
1057\namdisplay{namrun}         
1058%--------------------------------------------------------------------------------------------------------------
1059
1060The first time step of this three level scheme when starting from initial conditions
1061is a forward step (Euler time integration):
1062\begin{equation} \label{Eq_DOM_euler}
1063   x^1 = x^0 + \Delta t \ \text{RHS}^0
1064\end{equation}
1065
1066It is also possible to restart from a previous computation, by using a
1067restart file. The restart strategy is designed to ensure perfect
1068restartability of the code: the user should obtain the same results to
1069machine precision either by running the model for $2N$ time steps in one go,
1070or by performing two consecutive experiments of $N$ steps with a restart.
1071This requires saving two time levels and many auxiliary data in the restart
1072files in machine precision.
1073
1074Note that when a semi-implicit scheme is used to evaluate the hydrostatic pressure
1075gradient (see \S\ref{DYN_hpg_imp}), an extra three-dimensional field has to be
1076added in the restart file to ensure an exact restartability. This is done only optionally
1077via the namelist parameter \np{nn\_dynhpg\_rst}, so that a reduction of the size of restart file can be obtained when the restartability is not a key issue (operational oceanography or ensemble simulation for seasonal forcast).
1078%%%
1079\gmcomment{add here how to force the restart to contain only one time step for operational purposes}
1080%%%
1081
1082\gmcomment{       % add a subsection here 
1083
1084%-------------------------------------------------------------------------------------------------------------
1085%        Time Domain
1086% -------------------------------------------------------------------------------------------------------------
1087\subsection{Time domain}
1088\label{DOM_nxt_time}
1089
1090 \colorbox{yellow}{add here a few word on nit000 and nitend}
1091
1092 \colorbox{yellow}{Write documentation on the calendar and the key variable adatrj}
1093
1094}        %% end add
1095
Note: See TracBrowser for help on using the repository browser.