New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_A.tex in trunk/NEMO/DOC/BETA/Chapters – NEMO

source: trunk/NEMO/DOC/BETA/Chapters/Annex_A.tex @ 705

Last change on this file since 705 was 705, checked in by smasson, 17 years ago

Historical date: first beta version of the documentation, see ticket:1

  • Property svn:executable set to *
File size: 9.3 KB
Line 
1
2% ================================================================
3% Chapter Ñ Appendix A : Curvilinear s-Coordinate Equations
4% ================================================================
5\chapter{Appendix A : Curvilinear $s$-Coordinate Equations}
6\label{Apdx_A}
7\minitoc
8
9In order to establish the set of Primitive Equation in curvilinear
10$s$-coordinates (i.e. orthogonal curvilinear coordinates in the horizontal and
11$s$-coordinates in the vertical), we start from the set of equation established
12in {\S}~I.3 for the special case $k = z$ and thus $e_3 = 1$, and we introduce an arbitrary
13vertical coordinate $s = s(i,j,z)$. Let us define a new vertical scale factor by $e_3 = \partial z / \partial s$ (which now depends on $(i,j,z)$) and the horizontal slope of $s$-surfaces by :
14\begin{equation} \label{Apdx_A_A1}
15\sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s
16\quad \text{and}
17\sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s
18\end{equation}
19
20The chain rule to establish the model equations in the curvilinear
21s-coordinate system is:
22\begin{equation} \label{Apdx_A_A2}
23\begin{aligned}
24&\left. {\frac{\partial \bullet }{\partial i}} \right|_z  =\left.
25{\frac{\partial \bullet }{\partial i}} \right|_s +\frac{\partial \bullet 
26}{\partial s}\;\frac{\partial s}{\partial i}=\left. {\frac{\partial \bullet 
27}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial \bullet 
28}{\partial s} \\
29&\left. {\frac{\partial \bullet }{\partial j}} \right|_z  =\left.
30{\frac{\partial \bullet }{\partial j}} \right|_s +\frac{\partial \bullet 
31}{\partial s}\;\frac{\partial s}{\partial j}=\left. {\frac{\partial \bullet 
32}{\partial j}} \right|_s -\frac{e_2 }{e_3 }\sigma _2 \frac{\partial \bullet 
33}{\partial s} \\
34&\;\frac{\partial \bullet }{\partial z}  =\frac{1}{e_3 }\frac{\partial \bullet 
35}{\partial s} \\
36\end{aligned}
37\end{equation}
38
39Using (\ref{Apdx_A_A2}), the divergence of the velocity is transformed as follows:
40
41
42\begin{equation*}
43\nabla \cdot {\rm {\bf U}}=\frac{1}{e_1 \,e_2 }\left[ {\left.
44{\frac{\partial (e_2 \,u)}{\partial i}} \right|_z +\left. {\frac{\partial 
45(e_1 \,v)}{\partial j}} \right|_z } \right]+\frac{\partial w}{\partial z} \\
46\end{equation*}
47
48%\begin{equation} \label{   }
49\begin{multline*}
50=\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,u)}{\partial i}} 
51\right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (e_2 \,u)}{\partial s}} 
52\right. \\ 
53\shoveright { \left. { +\left. {\frac{\partial (e_1 \,v)}{\partial j}} \right|_s -\frac{e_2 }{e_3 }\sigma _2 \frac{\partial (e_1 v)}{\partial s}} \right]+\frac{\partial w}{\partial s}\frac{\partial s}{\partial z} }\\ 
54\end{multline*}
55%\end{equation}
56
57\begin{equation*}
58%\begin{multline}
59=\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,u)}{\partial i}} 
60\right|_s +\left. {\frac{\partial (e_1 \,v)}{\partial j}} \right|_s } 
61\right]+\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-\sigma _1
62\frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} 
63\right]
64%\end{multline}
65\end{equation*}
66
67%\begin{equation} \label{   }
68\begin{multline*}
69 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\frac{\partial (e_2 \,e_3
70\,u)}{\partial i}} \right|_s -\left. {e_2 \,u\frac{\partial e_3 }{\partial 
71i}} \right|_s +\left. {\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} 
72\right|_s -\left. {e_1 v\frac{\partial e_3 }{\partial j}} \right|_s } 
73\right] \\ 
74\shoveright{ +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-\sigma _1
75\frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} 
76\right]} \\ 
77\end{multline*}
78%\end{equation}
79
80
81Noting that $\frac{1}{e_1 }\left. {\frac{\partial e_3 }{\partial i}}
82\right|_s =\frac{1}{e_1 }\left. {\frac{\partial ^2z}{\partial i\,\partial 
83s}} \right|_s =\frac{\partial }{\partial s}\left( {\frac{1}{e_1 }\left.
84{\frac{\partial z}{\partial i}} \right|_s } \right)=\frac{\partial \sigma _1 
85}{\partial s}$ and $\frac{1}{e_2 }\left. {\frac{\partial e_3 }{\partial j}}
86\right|_s =\frac{\partial \sigma _2 }{\partial s}$, it becomes:
87
88\begin{multline*}
89 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\frac{\partial (e_2 \,e_3
90\,u)}{\partial i}} \right|_s +\left. {\frac{\partial (e_1 \,e_3
91\,v)}{\partial j}} \right|_s } \right] \\ 
92\shoveright{ +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial s}-u\frac{\partial \sigma _1 }{\partial s}-v\frac{\partial \sigma _2 }{\partial s}-\sigma _1 \frac{\partial u}{\partial s}-\sigma _2 \frac{\partial v}{\partial s}} \right]} \\ 
93 \end{multline*}
94 
95\begin{multline*}
96 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\frac{\partial (e_2 \,e_3
97\,u)}{\partial i}} \right|_s +\left. {\frac{\partial (e_1 \,e_3
98\,v)}{\partial j}} \right|_s } \right] \\ 
99\shoveright{ +\frac{1}{e_3 }\left[ {\frac{\partial w}{\partial 
100s}-\frac{\partial (u\;\sigma _1 )}{\partial s}-\frac{\partial (v\;\sigma _2
101)}{\partial s}} \right]} \\ 
102 \end{multline*}
103 
104Introducing a "vertical" velocity $\omega $ as the velocity normal to $s$-surfaces:
105
106\begin{equation} \label{Apdx_A_A3}
107\omega =w-\sigma _1 \,u-\sigma _2 \,v
108\end{equation}
109
110the divergence of the velocity is given in curvilinear $s$-coordinates by:
111\begin{equation} \label{Apdx_A_A4}
112\nabla \cdot {\rm {\bf U}}=\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left.
113{\frac{\partial (e_2 \,e_3 \,u)}{\partial i}} \right|_s +\left.
114{\frac{\partial (e_1 \,e_3 \,v)}{\partial j}} \right|_s } 
115\right]+\frac{1}{e_3 }\frac{\partial \omega }{\partial s}
116\end{equation}
117
118
119As a result, the continuity equation (I.1.3) in $s$-coordinates becomes:
120\begin{equation} \label{Apdx_A_A5}
121\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\frac{\partial (e_2 \,e_3
122\,u)}{\partial i}} \right|_s +\left. {\frac{\partial (e_1 \,e_3
123\,v)}{\partial j}} \right|_s } \right]+\frac{1}{e_3 }\frac{\partial \omega 
124}{\partial s}=0
125\end{equation}
126
127
128\textbf{Momentum equation:}
129
130As an example let us consider (I.3.10), the first component of the momentum
131equation. Its non linear term can be transformed as follows:
132
133\begin{equation*}
134\begin{aligned}
135&+\left. \zeta \right|_z v-\frac{1}{2e_1 }\left. {\frac{\partial 
136(u^2+v^2)}{\partial i}} \right|_z -w\frac{\partial u}{\partial z} \\
137&=\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
138\right|_z -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_z } 
139\right]\;v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} 
140\right|_z -w\frac{\partial u}{\partial z}
141\end{aligned}
142\end{equation*}
143\begin{multline*}
144 =\frac{1}{e_1 \,e_2 }\left[ {\left. {\frac{\partial (e_2 \,v)}{\partial i}} 
145\right|_s -\left. {\frac{\partial (e_1 \,u)}{\partial j}} \right|_s } 
146\right. \\ 
147 \left. {-\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (e_2 \,v)}{\partial s}+\frac{e_2 }{e_3 }\sigma _2 \frac{\partial (e_1 \,u)}{\partial s}} \right]\;v \\ 
148\shoveright{ -\frac{1}{2e_1 }\left( {\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial (u^2+v^2)}{\partial s}} \right)-\frac{w}{e_3 }\frac{\partial u}{\partial s} }\\
149 \end{multline*}
150
151\begin{equation*}
152 =\left. \zeta \right|_s \;v-\frac{1}{2e_1 }\left. {\frac{\partial 
153(u^2+v^2)}{\partial i}} \right|_s -\frac{w}{e_3 }\frac{\partial u}{\partial 
154s}-\left[ {\frac{\sigma _1 }{e_3 }\frac{\partial v}{\partial s}-\frac{\sigma 
155_2 }{e_3 }\frac{\partial u}{\partial s}} \right]\;v \\ 
156 +\frac{\sigma _1 }{2e_3 }\frac{\partial (u^2+v^2)}{\partial s} 
157\end{equation*}
158
159
160\begin{multline*}
161 =\left. \zeta \right|_s \;v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s \\ 
162\shoveright{ -\frac{1}{e_3 }\left[ {w\frac{\partial u}{\partial s}+\sigma _1 v\frac{\partial v}{\partial s}-\sigma _2 v\frac{\partial u}{\partial s}-\sigma _1 u\frac{\partial u}{\partial s}-\sigma _1 v\frac{\partial v}{\partial s}} \right] }\\ 
163 \end{multline*}
164
165\begin{equation} \label{Apdx_A_A6}
166=\left. \zeta \right|_s \;v-\frac{1}{2e_1 }\left. {\frac{\partial (u^2+v^2)}{\partial i}} \right|_s -\frac{1}{e_3 }\omega \frac{\partial u}{\partial s} 
167\end{equation}
168
169Therefore, the non-linear terms of the momentum equation have the same form
170in $z- $and $s-$coordinates
171
172The pressure gradient term can be transformed as follows:
173\begin{equation} \label{Apdx_A_A7}
174\begin{split}
175 -\frac{1}{\rho _o e_1 }\left. {\frac{\partial p}{\partial i}} \right|_z& =-\frac{1}{\rho _o e_1 }\left[ {\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{e_1 }{e_3 }\sigma _1 \frac{\partial p}{\partial s}} \right] \\
176& =-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s +\frac{\sigma _1 }{\rho _o \,e_3 }\left( {-g\;\rho \;e_3 } \right) \\
177&=-\frac{1}{\rho _o \,e_1 }\left. {\frac{\partial p}{\partial i}} \right|_s -\frac{g\;\rho }{\rho _o }\sigma _1
178\end{split}
179\end{equation}
180
181An additional term appears in (\ref{Apdx_A_A7}) which accounts for the tilt of model
182levels.
183
184\textbf{Tracer equation:}
185
186The tracer equation is obtained using the same calculation as for the
187continuity equation:
188
189%\begin{equation} \label{Eq_   }
190\begin{multline} \label{Apdx_A_A8}
191 \frac{\partial T}{\partial t} = -\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\frac{\partial }{\partial i}} \left( {e_2 \,e_3 \;Tu} \right) + \frac{\partial }{\partial j} \left( {e_1 \,e_3 \;Tv} \right) \;\right .\\
192 \shoveright{\left . +\frac{\partial }{\partial k} \left( {e_1 \,e_2 \;T\omega } \right) \right] +D^{lT} +D^{vT} }\\
193\end{multline}
194%\end{equation}
195
196
197The expression of the advection term is a straight consequence of (A.4), the
198expression of the 3D divergence in $s$-coordinates established above.
199
Note: See TracBrowser for help on using the repository browser.