New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_B.tex in trunk/NEMO/DOC/BETA/Chapters – NEMO

source: trunk/NEMO/DOC/BETA/Chapters/Annex_B.tex @ 707

Last change on this file since 707 was 707, checked in by smasson, 17 years ago

error during changeset:705... related to ticket:1

  • Property svn:executable set to *
File size: 17.8 KB
Line 
1% ================================================================
2% Chapter Ñ Appendix B : Diffusive Operators
3% ================================================================
4\chapter{Appendix B : Diffusive Operators}
5\label{Apdx_B}
6\minitoc
7
8% ================================================================
9% Horizontal/Vertical 2nd Order Tracer Diffusive Operators
10% ================================================================
11\section{Horizontal/Vertical 2nd Order Tracer Diffusive Operators}
12\label{Apdx_B_1}
13
14
15In $z$-coordinates, the horizontal/vertical second order tracer diffusive
16operator is given by:
17
18
19
20\begin{equation} \label{Apdx_B1}
21\begin{split}
22 D^T&=D^{lT}+D^{vT} \\ 
23 &=\frac{1}{e_1 e_2 }\left[ {\left. {\frac{\partial }{\partial i}\left(
24{\frac{e_2 }{e_1 }A^{lT} \;\left. {\frac{\partial T}{\partial i}} \right|_z
25} \right)} \right|_z +\left. {\frac{\partial }{\partial j}\left( {\frac{e_1
26}{e_2 }A^{lT} \;\left. {\frac{\partial T}{\partial j}} \right|_z } \right)} 
27\right|_z } \right] +\frac{\partial }{\partial z}\left( {A^{vT} \;\frac{\partial T}{\partial 
28z}} \right) \\ 
29\end{split}
30\end{equation}
31
32
33In $s$-coordinates, we defined the slopes of $s-$surfaces, $\sigma_1$ and $\sigma_2$ by (A.1), the vertical/horizontal ratio of diffusive coefficient by $\epsilon = A^{vT} / A^{lT}$. The diffusive operator is given by:
34
35\begin{equation} \label{Apdx_B2}
36\begin{aligned} 
37&D^T=D^{lT}+D^{vT} =\left. \nabla \right|_s \cdot \left[ {A^{lT} \;\Re \cdot \left. \nabla 
38\right|_s \left( T \right)} \right] \\
39&\text{where} \;\Re =\left( {{\begin{array}{*{20}c}
40 1 \hfill & 0 \hfill & {-\sigma _1 } \hfill \\
41 0 \hfill & 1 \hfill & {-\sigma _2 } \hfill \\
42 {-\sigma _1 } \hfill & {-\sigma _2 } \hfill & {\varepsilon +\sigma _1
43^2+\sigma _2 ^2} \hfill \\
44\end{array} }} \right)
45\end{aligned}
46\end{equation}
47
48or in expended form:
49
50\begin{multline} \label{Apdx_B3}
51D^T=\frac{1}{e_1 e_2 e_3 }\;\left[ {\;\,e_2 e_3 A^{lT} \;\left.
52{\frac{\partial }{\partial i}\left( {\frac{1}{e_1 }\;\left. {\frac{\partial 
53T}{\partial i}} \right|_s -\frac{\sigma _1 }{e_3 }\;\frac{\partial 
54T}{\partial s}} \right)} \right|_s } \right\\
55\;\;+e_1 e_3 A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma _2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\
56 \;\;+e_1 e_2 A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma _1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma _2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. \\
57\shoveright{\;\;\left. {\left. {+\left( {\varepsilon +\sigma _1^2+\sigma _2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;\,} \right]} \\ 
58\end{multline}
59
60
61Equation (\ref{Apdx_B2}) (or equivalently (\ref{Apdx_B3})~) is obtained from (\ref{Apdx_B1}) without any additional assumption. Indeed, for the special case $k=z$ and thus $e_3 =1$,
62we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in Appendix A
63\newline
64\newline
65and use (A.1) and (A.2). Since no cross horizontal derivate $\partial _i \,\partial _j $ appears neither in (B.1) nor in (A.2), there is a decoupling between $(i,z)$ and $(j,z)$ plans as well as
66$(i,s)$ and $(j,s)$ plans. The demonstration can then be done for the $(i,s)\;\to \;(j,s)$ transformation without loss of generality:
67
68\begin{equation*}
69D^T=\frac{1}{e_1 \,e_2 }\left. {\frac{\partial }{\partial i}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_z } \right)} \right|_z +\frac{\partial }{\partial z}\left( {A^{vT}\;\frac{\partial T}{\partial z}} \right)
70\end{equation*}
71
72\begin{multline*}
73 =\frac{1}{e_1 \,e_2 }\left[ {\left. {\;\frac{\partial }{\partial i}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right)} \right|_s } \right. \\ 
74 \left. { -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\left( {\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{e_1 \,\sigma _1 }{e_3 }\frac{\partial T}{\partial s}} \right)} \right|_s } \right)\;} \right] \\ 
75\shoveright{ +\frac{1}{e_3 }\frac{\partial }{\partial s}\left[ {\frac{A^{vT}}{e_3 }\;\frac{\partial T}{\partial s}} \right]} \\ 
76\end{multline*}
77
78
79\begin{multline*}
80 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s -\left. {\frac{e_2 }{e_1
81}A^{lT}\;\frac{\partial e_3 }{\partial i}} \right|_s \left. {\frac{\partial T}{\partial i}} \right|_s } \right. \\ 
82 \left. {-e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left(
83{\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\
84 \shoveright{ -e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {-\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)\;\,\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;} \right] }\\ 
85\end{multline*}
86
87
88Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma _1 }{\partial s}$, it becomes:
89
90\begin{multline*}
91 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-e_3 \frac{\partial }{\partial 
92i}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
93 -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
94\shoveright{ \left. { +e_1 \,\sigma _1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 
95\end{multline*}
96
97\begin{multline*}
98 =\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial 
99i}\left( {e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
100 \left. {+\frac{e_2 \,\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 
101-e_2 \,\sigma _1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 
102\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s} \left( {\frac{\sigma _1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
103\end{multline*}
104using the same remark as just above, it becomes:
105\begin{multline*}
106= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 
107+\frac{e_1 \,e_2 \,\sigma _1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma _1 }{\partial s} - \frac {\sigma _1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma _1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 
108-e_2 \left( {A^{lT}\;\frac{\partial \sigma _1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma _1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma _1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
109\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma _1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\ 
110\end{multline*}
111
112Since the horizontal scale factor do not depend on the vertical coordinates, the last term of the first line and the first term of the last line cancel, while the second line reduces to a single vertical derivative, so it becomes:
113\begin{multline*}
114 =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma _1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
115 \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma _1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma _1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
116\end{multline*}
117
118in other words:
119
120\begin{equation*}
121D^T = {\frac{1}{e_1\,e_2\,e_3}}
122\left( {{\begin{array}{*{20}c}
123{\left. {\frac{\partial \left( {e_2 e_3 \bullet } \right)}{\partial i}} \right|_s } \hfill \\
124{\frac{\partial \left( {e_1 e_2 \bullet } \right)}{\partial s}} \hfill \\
125\end{array}}}\right)
126\cdot \left[ {A^{lT}
127\left( {{\begin{array}{*{20}c}
128 {1} \hfill & {-\sigma_1 } \hfill \\
129 {-\sigma_1} \hfill & {\varepsilon_1^2} \hfill \\
130\end{array} }} \right)
131\cdot 
132\left( {{\begin{array}{*{20}c}
133{\frac{1}{e_1 }\;\left. {\frac{\partial \bullet }{\partial i}} \right|_s } \hfill \\
134{\frac{1}{e_3 }\;\frac{\partial \bullet }{\partial s}} \hfill \\
135\end{array}}}
136\right) \left( T \right)} \right]
137\end{equation*}
138
139
140% ================================================================
141% Isopycnal/Vertical Second Order Tracer Diffusive Operators
142% ================================================================
143\section{Isopycnal/Vertical Second Order Tracer Diffusive Operators}
144\label{Apdx_B_2}
145
146
147The isopycnal diffusive tensor $\textbf {A}_{\textbf I}$ expressed in the curvilinear coordinate system $(i,j,k)$, in which the equations of the ocean circulation model are formulated, takes the following expression [Redi 1982]:
148
149\begin{equation*}
150\textbf {A}_{\textbf I} = \frac{A^{lT}}{\left( {1+a_1 ^2+a_2 ^2} \right)}
151\left[ {{\begin{array}{*{20}c}
152 {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\
153 {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\
154 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
155\end{array} }} \right]
156\end{equation*}
157where$(a_1$, $a_2)$ are the isopycnal slopes in $(\textbf{i}$, $\textbf{j})$ directions:
158\begin{equation*}
159a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
160\end{equation*}
161\begin{equation*}
162a_2 =\frac{e_3 }{e_2 }\left( {\frac{\partial \rho }{\partial j}} 
163\right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1}
164\end{equation*}
165In practice, the isopycnal slopes are generally less than $10${\small $^{-2}$ in the ocean, so $\textbf {A}_{\textbf I}$ can be simplified appreciably (Cox, 1987) :
166\begin{equation*}
167{\textbf{A}_{\textbf{I}}} =A^{lT}
168\left[ {{\begin{array}{*{20}c}
169 1 \hfill & 0 \hfill & {-a_1 } \hfill \\
170 0 \hfill & 1 \hfill & {-a_2 } \hfill \\
171 {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\
172\end{array} }} \right]
173\end{equation*}
174The resulting isopycnal operator conserves the quantity it diffuses, and dissipates the square of this quantity. The demonstration of the first property is trivial. Let us demonstrate the second one:
175\begin{equation*}
176\iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv = -\iiint\limits_D \nabla T\;.\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv
177\end{equation*}
178since
179\begin{multline*}
180 \nabla T\;.\left( {{\rm {\bf A}}_{\rm {\bf I}} \nabla T} 
181\right)=A^{lT}\left[ {\left( {\frac{\partial T}{\partial i}} \right)^2-2a_1
182\frac{\partial T}{\partial i}\frac{\partial T}{\partial k}+\left(
183{\frac{\partial T}{\partial j}} \right)^2} \right. \\ 
184\shoveright{ \left. {-2a_2 \frac{\partial T}{\partial j}\frac{\partial T}{\partial 
185k}+\left( {a_1 ^2+a_2 ^2} \right)\left( {\frac{\partial T}{\partial k}} 
186\right)^2} \right]} \\
187\end{multline*}
188
189\begin{equation*}
190=A_h \left[ {\left( {\frac{\partial T}{\partial i}-a_1 \frac{\partial T}{\partial k}} \right)^2+\left( {\frac{\partial T}{\partial j}-a_2 \frac{\partial T}{\partial k}} \right)^2} \right]\quad \geq 0
191\end{equation*}
192the property becomes obvious.
193\\
194Note that the resulting tensor is similar to those obtained for geopotential diffusion in $s$-coordinates. The simplification leads to a decoupling between $(i,z)$ and $(j,z)$ plans.
195
196The resulting diffusive operator in $z$-coordinates has the following
197expression :
198\begin{multline*}
199 D^T=\frac{1}{e_1 e_2 }\left\{ {\;\frac{\partial }{\partial i}\left[ {A_h \left( {\frac{e_2 }{e_1 }\frac{\partial T}{\partial i}-a_1 \frac{e_2}{e_3}\frac{\partial T}{\partial k}} \right)} \right]\;} \right.\;\; \\ 
200 \;\left. {\;\;\;+\frac{\partial}{\partial j}\left[ {A_h \left( {\frac{e_1 }{e_2 }\frac{\partial T}{\partial j}-a_2 \frac{e_1 }{e_3 }\frac{\partial T}{\partial k}} \right)} \right]\;} \right\} \\
201\shoveright{+\frac{1}{e_3 }\frac{\partial }{\partial k}\left[ {A_h \left( {-\frac{a_1 }{e_1 }\frac{\partial T}{\partial i}-\frac{a_2 }{e_2 }\frac{\partial T}{\partial j}+\frac{\left( {a_1 ^2+a_2 ^2} \right)}{e_3 }\frac{\partial T}{\partial k}} \right)} \right]} \\ 
202\end{multline*}
203
204
205% ================================================================
206% Lateral/Vertical Momentum Diffusive Operators
207% ================================================================
208\section{Lateral/Vertical Momentum Diffusive Operators}
209\label{Apdx_B_3}
210
211
212*{\footnotesize }lateral/vertical{\footnotesize }2{\small nd}{\footnotesize 
213}order{\footnotesize }momentum diffusive operator
214
215Following (I.3.6), the Laplacian of the horizontal velocity can be expressed
216in $z$-coordinates:
217\begin{equation*}
218\Delta {\textbf{U}}_h =\nabla \left( {\nabla \cdot {\textbf{U}}_h } \right)-
219\nabla \times \left( {\nabla \times {\textbf{U}}_h } \right)
220\end{equation*}
221
222\begin{equation*}
223=\left( {{\begin{array}{*{20}c}
224 {\frac{1}{e_1 }\frac{\partial \chi }{\partial i}} \hfill \\
225 {\frac{1}{e_2 }\frac{\partial \chi }{\partial j}} \hfill \\
226 {\frac{1}{e_3 }\frac{\partial \chi }{\partial k}} \hfill \\
227\end{array} }} \right)-\left( {{\begin{array}{*{20}c}
228 {\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}-\frac{1}{e_3
229}\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial 
230u}{\partial k}} \right)} \hfill \\
231 {\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {-\frac{1}{e_3
232}\frac{\partial v}{\partial k}} \right)-\frac{1}{e_1 }\frac{\partial \zeta 
233}{\partial i}} \hfill \\
234 {\frac{1}{e_1 e_2 }\left[ {\frac{\partial }{\partial i}\left( {\frac{e_2
235}{e_3 }\frac{\partial u}{\partial k}} \right)-\frac{\partial }{\partial 
236j}\left( {-\frac{e_1 }{e_3 }\frac{\partial v}{\partial k}} \right)} \right]} 
237\hfill \\
238\end{array} }} \right)
239\end{equation*}
240\begin{equation*}
241=\left( {{\begin{array}{*{20}c}
242{\frac{1}{e_1 }\frac{\partial \chi }{\partial i}-\frac{1}{e_2 }\frac{\partial \zeta }{\partial j}} \\
243{\frac{1}{e_2 }\frac{\partial \chi }{\partial j}+\frac{1}{e_1 }\frac{\partial \zeta }{\partial i}} \\
2440 \\
245\end{array} }} \right)
246+\frac{1}{e_3 }
247\left( {{\begin{array}{*{20}c}
248{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial u}{\partial k}} \right)} \\
249{\frac{\partial }{\partial k}\left( {\frac{1}{e_3 }\frac{\partial v}{\partial k}} \right)} \\
250{\frac{\partial \chi }{\partial k}-\frac{1}{e_1 e_2 }\left( {\frac{\partial ^2\left( {e_2 \,u} \right)}{\partial i\partial k}+\frac{\partial ^2\left( {e_1 \,v} \right)}{\partial j\partial k}} \right)} \\
251\end{array} }} \right)
252\end{equation*}
253Using (I.3.8), the definition of the horizontal divergence, the third componant of the second vector is obviously zero and thus :
254\begin{equation*}
255\Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right)
256\end{equation*}
257
258
259The lateral/vertical second order (Laplacian type) operator used to diffuse
260horizontal momentum in $z$-coordinates therefore takes the following expression :
261\begin{equation*}
262\begin{split}
263 {\textbf{D}}^{\textbf{U}}&={\textbf{D}}^{lm}+{\textbf{D}}^{vm} \\ 
264&=\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right)+\frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} \right) \\ 
265\end{split}
266\end{equation*}
267
268\begin{equation*}
269{\textbf{D}}^{\textbf{U}}=
270\left( {{\begin{array}{*{20}c}
271{\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\chi } \right)}{\partial i}-\frac{1}{e_2 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j}} \\
272{\frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi } \right)}{\partial j}+\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i}} \\
273\end{array} }} \right)
274+\frac{1}{e_3 }\frac{\partial }{\partial k}
275\left( {{\begin{array}{*{20}c}
276{\frac{A^{vm}}{e_3 }\frac{\partial u}{\partial k}} \\
277{\frac{A^{vm}}{e_3 }\frac{\partial v}{\partial k}} \\
278\end{array} }} \right)
279\end{equation*}
280
281% ================================================================
282% References
283% ================================================================
284\section{References}
285
286
287{\small Cox, M. D., 1987 : Isopycnal diffusion in a z-coordinate ocean
288model. }{\small \textit{Ocean Modelling}}{\small , 74, 1-9.}
289
290{\small Redi, M. H., 1982 : oceanic isopycnal mixing by coordinate rotation.
291}{\small \textit{J. Phys. Oceanogr., 13}}{\small , 1154-1158.}
Note: See TracBrowser for help on using the repository browser.