New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Annex_E.tex in trunk/NEMO/DOC/BETA/Chapters – NEMO

source: trunk/NEMO/DOC/BETA/Chapters/Annex_E.tex @ 707

Last change on this file since 707 was 707, checked in by smasson, 17 years ago

error during changeset:705... related to ticket:1

  • Property svn:executable set to *
File size: 11.3 KB
Line 
1% ================================================================
2% Appendix E : UBS scheme
3% ================================================================
4\chapter{UBS scheme}
5\label{AN_E}
6\minitoc
7
8
9% -------------------------------------------------------------------------------------------------------------
10%        UBS scheme 
11% -------------------------------------------------------------------------------------------------------------
12\section{Upstream Biased Scheme (UBS) (\np{ln\_traadv\_ubs}=T)}
13\label{TRA_adv_ubs}
14
15The UBS advection scheme is an upstream biased third order scheme based on
16an upstream-biased parabolic interpolation. It is also known as Cell
17Averaged QUICK scheme (Quadratic Upstream Interpolation for Convective
18Kinematics). For example, in the $i$-direction :
19\begin{equation} \label{Eq_tra_adv_ubs2}
20\tau _u^{ubs} = \left\{  \begin{aligned}
21  & \tau _u^{cen4} + \frac{1}{12} \,\tau"_i     & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
22  & \tau _u^{cen4} - \frac{1}{12} \,\tau"_{i+1} & \quad \text{if }\ u_{i+1/2}       <       0
23                   \end{aligned}    \right.
24\end{equation}
25or equivalently, the advective flux is
26\begin{equation} \label{Eq_tra_adv_ubs2}
27U_{i+1/2} \ \tau _u^{ubs} 
28=U_{i+1/2} \ \overline{ T_i - \frac{1}{6}\,\tau"_i }^{\,i+1/2}
29- \frac{1}{2}\, |U|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
30\end{equation}
31where $U_{i+1/2} = e_{1u}\,e_{3u}\,u_{i+1/2}$ and $\tau "_i =\delta _i \left[ {\delta _{i+1/2} \left[ \tau \right]} \right]$. By choosing this expression for $\tau "$ we consider a fourth order approximation of $\partial_i^2$ with a constant i-grid spacing ($\Delta i=1$).
32
33Alternative choice: introduce the scale factors:  $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} }\delta _{i+1/2}[\tau] \right]$.
34
35
36This results in a dissipatively dominant (i.e. hyper-diffusive) truncation
37error \citep{Sacha2005}. The overall performance of the
38advection scheme is similar to that reported in \cite{Farrow1995}.
39It is a relatively good compromise between accuracy and smoothness. It is
40not a \emph{positive} scheme meaning false extrema are permitted but the
41amplitude of such are significantly reduced over the centred second order
42method. Nevertheless it is not recommended to apply it to a passive tracer
43that requires positivity.
44
45The intrinsic diffusion of UBS makes its use risky in the vertical direction
46where the control of artificial diapycnal fluxes is of paramount importance.
47It has therefore been preferred to evaluate the vertical flux using the TVD
48scheme when \np{ln\_traadv\_ubs}=T.
49
50For stability reasons, in \eqref{Eq_tra_adv_ubs}, the first term which corresponds to a
51second order centred scheme is evaluated using the \textit{now} velocity (centred in
52time) while the second term which is the diffusive part of the scheme, is
53evaluated using the \textit{before} velocity (forward in time. This is discussed by \citet{Webb1998} in the context of the Quick advection scheme. UBS and QUICK
54schemes only differ by one coefficient. Substituting 1/6 with 1/8 in
55(\ref{Eq_tra_adv_ubs}) leads to the QUICK advection scheme \citep{Webb1998}. This
56option is not available through a namelist parameter, since the 1/6
57coefficient is hard coded. Nevertheless it is quite easy to make the
58substitution in \mdl{traadv\_ubs} module and obtain a QUICK scheme
59
60NB 1: When a high vertical resolution $O(1m)$ is used, the model stability can
61be controlled by vertical advection (not vertical diffusion which is usually
62solved using an implicit scheme). Computer time can be saved by using a
63time-splitting technique on vertical advection. This possibility have been
64implemented and validated in ORCA05-L301. It is not currently offered in the
65current reference version.
66
67NB 2 : In a forthcoming release four options will be proposed for the
68vertical component used in the UBS scheme. $\tau _w^{ubs}$ will be
69evaluated using either \textit{(a)} a centred $2^{nd}$ order scheme , or  \textit{(b)} a TVD
70scheme, or  \textit{(c)} an interpolation based on conservative parabolic splines
71following \citet{Sacha2005} implementation of UBS in ROMS,
72or  \textit{(d)} an UBS. The $3^{rd}$ case has dispersion properties similar to an
73eight-order accurate conventional scheme.
74
75NB 3 : It is straight forward to rewrite \eqref{Eq_tra_adv_ubs} as follows:
76\begin{equation} \label{Eq_tra_adv_ubs2}
77\tau _u^{ubs} = \left\{  \begin{aligned}
78   & \tau _u^{cen4} + \frac{1}{12} \tau"_i      & \quad \text{if }\ u_{i+1/2} \geqslant 0 \\
79   & \tau _u^{cen4} - \frac{1}{12} \tau"_{i+1}  & \quad \text{if }\ u_{i+1/2}       <       0
80                   \end{aligned}    \right.
81\end{equation}
82or equivalently
83\begin{equation} \label{Eq_tra_adv_ubs2}
84\begin{split}
85e_{2u} e_{3u}\,u_{i+1/2} \ \tau _u^{ubs} 
86&= e_{2u} e_{3u}\,u_{i+1/2} \ \overline{ T - \frac{1}{6}\,\tau"_i }^{\,i+1/2} \\
87& - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
88\end{split}
89\end{equation}
90\eqref{Eq_tra_adv_ubs2} has several advantages. First it clearly evidence that the UBS scheme is based on the fourth order scheme to which is added an upstream biased diffusive term. Second, this emphasises that the $4^{th}$ order part have to be evaluated at \emph{now} time step, not only the $2^{th}$ order part as stated above using \eqref{Eq_tra_adv_ubs}. Third, the diffusive term is in fact a biharmonic operator with a eddy coefficient with is simply proportional to the velocity.
91
92
93laplacian diffusion:
94\begin{equation} \label{Eq_tra_ldf_lap}
95\begin{split}
96D_T^{lT} =\frac{1}{e_{1T} \; e_{2T}\;  e_{3T} } &\left[ {\quad \delta _i
97\left[ {A_u^{lT} \frac{e_{2u} e_{3u} }{e_{1u} }\;\delta _{i+1/2} 
98\left[ T \right]} \right]} \right.
99\\
100&\ \left. {+\; \delta _j \left[
101{A_v^{lT} \left( {\frac{e_{1v} e_{3v} }{e_{2v} }\;\delta _{j+1/2} \left[ T
102\right]} \right)} \right]\quad } \right]
103\end{split}
104\end{equation}
105
106bilaplacian:
107\begin{equation} \label{Eq_tra_ldf_lap}
108\begin{split}
109D_T^{lT} =&-\frac{1}{e_{1T} \; e_{2T}\;  e_{3T}} \\
110& \delta _i \left\sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 
111        \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}}
112    \delta _i \left[ \sqrt{A_u^{lT}}\ \frac{e_{2u}\,e_{3u}}{e_{1u}}\;\delta _{i+1/2} 
113           [T] \right] \right] \right]
114\end{split}
115\end{equation}
116with ${A_u^{lT}}^2 = \frac{1}{12} {e_{1u}}^3\ |u|$,
117$i.e.$ $A_u^{lT} = \frac{1}{\sqrt{12}} \,e_{1u}\ \sqrt{ e_{1u}\,|u|\,}$
118it comes :
119\begin{equation} \label{Eq_tra_ldf_lap}
120\begin{split}
121D_T^{lT} =&-\frac{1}{12}\,\frac{1}{e_{1T} \; e_{2T}\;  e_{3T}} \\
122& \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 
123       \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 
124    \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}\,|u|\,}\;\delta _{i+1/2} 
125         [T] \right] \right] \right]
126\end{split}
127\end{equation}
128if the velocity is uniform ($i.e.$ $|u|=cst$) then the diffusive flux is
129\begin{equation} \label{Eq_tra_ldf_lap}
130\begin{split}
131F_u^{lT} = - \frac{1}{12}
132 e_{2u}\,e_{3u}\,|u| \;\sqrt{ e_{1u}}\,\delta _{i+1/2} 
133       \left[ \frac{1}{e_{1T}\,e_{2T}\, e_{3T}} 
134    \delta _i \left[ e_{2u}\,e_{3u}\,\sqrt{ e_{1u}}\:\delta _{i+1/2} 
135         [T] \right] \right]
136\end{split}
137\end{equation}
138beurk....  reverte the logic: starting from the diffusive part of the advective flux it comes:
139
140\begin{equation} \label{Eq_tra_adv_ubs2}
141\begin{split}
142F_u^{lT}
143&= - \frac{1}{2} e_{2u} e_{3u}\,|u|_{i+1/2} \;\frac{1}{6} \;\delta_{i+1/2}[\tau"_i]
144\end{split}
145\end{equation}
146if the velocity is uniform ($i.e.$ $|u|=cst$) and choosing $\tau "_i =\frac{e_{1T}}{e_{2T}\,e_{3T}}\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right]$
147
148sol 1 coefficient at T-point ( add $e_{1u}$ and $e_{1T}$ on both side of first $\delta$):
149\begin{equation} \label{Eq_tra_adv_ubs2}
150\begin{split}
151F_u^{lT}
152&= - \frac{1}{12} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{e_{1T}^3\,|u|}{e_{1T}e_{2T}\,e_{3T}}\,\delta _i \left[ \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right] \right]
153\end{split}
154\end{equation}
155which leads to ${A_T^{lT}}^2 = \frac{1}{12} {e_{1T}}^3\ \overline{|u|}^{\,i+1/2}$
156
157sol 2 coefficient at u-point: split $|u|$ into $\sqrt{|u|}$ and $e_{1T}$ into $\sqrt{e_{1u}}$
158\begin{equation} \label{Eq_tra_adv_ubs2}
159\begin{split}
160F_u^{lT}
161&= - \frac{1}{12} {e_{1u}}^1 \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{2T}\,e_{3T}}\,\delta _i \left[ \sqrt{e_{1u}|u|} \frac{e_{2u} e_{3u} }{e_{1u} } \delta _{i+1/2}[\tau] \right] \right] \\
162&= - \frac{1}{12} e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u}}{e_{1u}}\;\delta_{i+1/2}\left[ \frac{1}{e_{1T}\,e_{2T}\,e_{3T}}\,\delta _i \left[ e_{1u} \sqrt{e_{1u}|u|\,} \frac{e_{2u} e_{3u} }{e_{1u}} \delta _{i+1/2}[\tau] \right] \right]
163\end{split}
164\end{equation}
165which leads to ${A_u^{lT}} = \frac{1}{12} {e_{1u}}^3\ |u|$
166
167
168% -------------------------------------------------------------------------------------------------------------
169%        Leap-Frog energetic 
170% -------------------------------------------------------------------------------------------------------------
171\section{Leap-Frog energetic }
172\label{LF}
173
174We adopt the following semi-discrete notation for time derivative. Given the values of a variable $q$ at successive time step, the time derivation and averaging operators at the mid time step are:
175\begin{subequations} \label{dt_mt}
176\begin{align}
177 \delta _{t+\Delta t/2} [q]     &\  \ \,   q^{t+\Delta t}  - q^{t}      \\
178 \overline q^{\,t+\Delta t/2} &= \left\{ q^{t+\Delta t} + q^{t} \right\} \; / \; 2
179\end{align}
180\end{subequations}
181As for space operator, the adjoint of the derivation and averaging time operators are $\delta_t^*=\delta_{t+\Delta t/2}$ and $\overline{\cdot}^{\,t\,*}= \overline{\cdot}^{\,t+\Delta/2}$, respectively.
182
183The Leap-frog time stepping given by \eqref{Eq_DOM_nxt} can be defined as:
184\begin{equation} \label{LF}
185   \frac{\partial q}{\partial t} 
186         \equiv \frac{1}{\Delta t} \overline{ \delta _{t+\Delta t/2}[q]}^{\,t} 
187      =         \frac{q^{t+\Delta t}-q^{t-\Delta t}}{2\Delta t}
188\end{equation} 
189Note that \eqref{LF} shows that the leapfrog time step is $\Delta t$, not $2\Delta t$ as it can be found sometime in literature.
190The leap-Frog time stepping is a second order centered scheme. As such it respects the quadratic invariant in integral forms, $i.e.$ the following continuous property,
191\begin{equation} \label{Energy}
192\int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 
193   =\int_{t_0}^{t_1} {\frac{1}{2}\, \frac{\partial q^2}{\partial t} \;dt} 
194   =  \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right) ,
195\end{equation}
196is satisfied in discrete form. Indeed,
197\begin{equation} \begin{split}
198\int_{t_0}^{t_1} {q\, \frac{\partial q}{\partial t} \;dt} 
199   &\equiv \sum\limits_{0}^{N} 
200         {\frac{1}{\Delta t} q^t \ \overline{ \delta _{t+\Delta t/2}[q]}^{\,t} \ \Delta t} 
201      \equiv \sum\limits_{0}^{N}  { q^t \ \overline{ \delta _{t+\Delta t/2}[q]}^{\,t} } \\
202   &\equiv \sum\limits_{0}^{N}  { \overline{q}^{\,t+\Delta/2}{ \delta _{t+\Delta t/2}[q]}}
203      \equiv \sum\limits_{0}^{N}  { \frac{1}{2} \delta _{t+\Delta t/2}[q^2] }\\
204   &\equiv \sum\limits_{0}^{N}  { \frac{1}{2} \delta _{t+\Delta t/2}[q^2] }
205      \equiv \frac{1}{2} \left( {q_{t_1}}^2 - {q_{t_0}}^2 \right)
206\end{split} \end{equation}
207NB here pb of boundary condition when applying the adjoin! In space, setting to 0 the quantity in land area is sufficient to get rid of the boundary condition (equivalently of the boundary value of the integration by part). In time this boundary condition is not physical and \textbf{add something here!!!}
208
209
210
Note: See TracBrowser for help on using the repository browser.