MODULE diafwb !!====================================================================== !! *** MODULE diafwb *** !! Ocean diagnostics: freshwater budget !!====================================================================== #if ( defined key_orca_r2 || defined key_orca_r4 ) && ! defined key_dynspg_rl && ! defined key_coupled !!---------------------------------------------------------------------- !! NOT "key_dynspg_rl" and "key_orca_r2 or 4" !!---------------------------------------------------------------------- !! dia_fwb : freshwater budget for global ocean configurations !!---------------------------------------------------------------------- !! * Modules used USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE phycst ! physical constants USE zdf_oce ! ocean vertical physics USE in_out_manager ! I/O manager USE flxrnf ! ??? USE ocesbc ! ??? USE blk_oce ! ??? USE flxblk ! atmospheric surface quantity USE lib_mpp ! distributed memory computing library IMPLICIT NONE PRIVATE !! * Routine accessibility PUBLIC dia_fwb ! routine called by step.F90 !! * Shared module variables LOGICAL, PUBLIC, PARAMETER :: lk_diafwb = .TRUE. !: fresh water budget flag !! * Module variables REAL(wp) :: & a_emp , a_precip, a_rnf, & a_sshb, a_sshn, a_salb, a_saln, & a_aminus, a_aplus REAL(wp), DIMENSION(4) :: & a_flxi, a_flxo, a_temi, a_temo, a_sali, a_salo !! * Substitutions # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! OPA 9.0 , LOCEAN-IPSL (2005) !! $Header$ !! This software is governed by the CeCILL licence see modipsl/doc/NEMO_CeCILL.txt !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dia_fwb( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_fwb *** !! !! ** Purpose : !! !! ** Method : !! !! History : !! 8.2 ! 01-02 (E. Durand) Original code !! 8.5 ! 02-06 (G. Madec) F90: Free form and module !! 9.0 ! 05-11 (V. Garnier) Surface pressure gradient organization !!---------------------------------------------------------------------- !! * Arguments INTEGER, INTENT( in ) :: kt ! ocean time-step index !! * Local declarations INTEGER :: ji, jj, jk, jt ! dummy loop indices REAL(wp) :: zarea, zvol, zwei REAL(wp) :: ztemi(4), ztemo(4), zsali(4), zsalo(4), zflxi(4), zflxo(4) REAL(wp) :: zt, zs, zu REAL(wp) :: zsm0, zempnew !!---------------------------------------------------------------------- ! Mean global salinity zsm0 = 34.72654 ! To compute emp mean value mean emp IF( kt == nit000 ) THEN a_emp = 0.e0 a_precip = 0.e0 a_rnf = 0.e0 a_sshb = 0.e0 ! valeur de ssh au debut de la simulation a_salb = 0.e0 ! valeur de sal au debut de la simulation a_aminus = 0.e0 a_aplus = 0.e0 ! sshb used because diafwb called after tranxt (i.e. after the swap) a_sshb = SUM( e1t(:,:) * e2t(:,:) * sshb(:,:) * tmask_i(:,:) ) IF( lk_mpp ) CALL mpp_sum( a_sshb ) ! sum over the global domain DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zwei = e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) a_salb = a_salb + ( sb(ji,jj,jk) - zsm0 ) * zwei END DO END DO END DO IF( lk_mpp ) CALL mpp_sum( a_salb ) ! sum over the global domain ENDIF a_emp = SUM( e1t(:,:) * e2t(:,:) * emp (:,:) * tmask_i(:,:) ) IF( lk_mpp ) CALL mpp_sum( a_emp ) ! sum over the global domain #if defined key_flx_bulk_monthly || defined key_flx_bulk_daily a_precip = SUM( e1t(:,:) * e2t(:,:) * watm (:,:) * tmask_i(:,:) ) IF( lk_mpp ) CALL mpp_sum( a_precip ) ! sum over the global domain #endif a_rnf = SUM( e1t(:,:) * e2t(:,:) * runoff(:,:) * tmask_i(:,:) ) IF( lk_mpp ) CALL mpp_sum( a_rnf ) ! sum over the global domain IF( aminus /= 0.e0 ) a_aminus = a_aminus + ( MIN( aplus, aminus ) / aminus ) IF( aplus /= 0.e0 ) a_aplus = a_aplus + ( MIN( aplus, aminus ) / aplus ) IF( kt == nitend ) THEN a_sshn = 0.e0 a_saln = 0.e0 zarea = 0.e0 zvol = 0.e0 zempnew = 0.e0 ! Mean sea level at nitend a_sshn = SUM( e1t(:,:) * e2t(:,:) * sshn(:,:) * tmask_i(:,:) ) IF( lk_mpp ) CALL mpp_sum( a_sshn ) ! sum over the global domain zarea = SUM( e1t(:,:) * e2t(:,:) * tmask_i(:,:) ) IF( lk_mpp ) CALL mpp_sum( zarea ) ! sum over the global domain DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zwei = e1t(ji,jj) * e2t(ji,jj) * fse3t(ji,jj,jk) * tmask(ji,jj,jk) * tmask_i(ji,jj) a_saln = a_saln + ( sn(ji,jj,jk) - zsm0 ) * zwei zvol = zvol + zwei END DO END DO END DO IF( lk_mpp ) CALL mpp_sum( a_saln ) ! sum over the global domain a_aminus = a_aminus / ( nitend - nit000 + 1 ) a_aplus = a_aplus / ( nitend - nit000 + 1 ) ! Conversion in m3 a_emp = a_emp * rdttra(1) * 1.e-3 a_precip = a_precip * rdttra(1) * 1.e-3 / rday a_rnf = a_rnf * rdttra(1) * 1.e-3 ! Alpha1=Alpha0-Rest/(Precip+runoff) ! C A U T I O N : precipitations are negative !! zempnew = a_sshn / ( ( nitend - nit000 + 1 ) * rdt ) * 1.e3 / zarea ENDIF ! Calcul des termes de transport ! ------------------------------ ! 1 --> Gibraltar ! 2 --> Cadiz ! 3 --> Red Sea ! 4 --> Baltic Sea IF( kt == nit000 ) THEN a_flxi(:) = 0.e0 a_flxo(:) = 0.e0 a_temi(:) = 0.e0 a_temo(:) = 0.e0 a_sali(:) = 0.e0 a_salo(:) = 0.e0 ENDIF zflxi(:) = 0.e0 zflxo(:) = 0.e0 ztemi(:) = 0.e0 ztemo(:) = 0.e0 zsali(:) = 0.e0 zsalo(:) = 0.e0 ! Mean flow at Gibraltar IF( cp_cfg == "orca" ) THEN SELECT CASE ( jp_cfg ) ! ! ======================= CASE ( 4 ) ! ORCA_R4 configuration ! ! ======================= ji = mi1(70) jj = mj1(52) ! ! ======================= CASE ( 2 ) ! ORCA_R2 configuration ! ! ======================= ji = mi1(139) jj = mj1(102) ! ! ======================= CASE DEFAULT ! ORCA R05 or R025 ! ! ======================= IF(lwp) WRITE(numout,cform_err) IF(lwp) WRITE(numout,*)' dia_fwb Not yet implemented in ORCA_R05 or R025' nstop = nstop + 1 ! END SELECT ! ENDIF DO jk = 1, 18 zt = 0.5 * ( tn(ji,jj,jk) + tn(ji+1,jj,jk) ) zs = 0.5 * ( sn(ji,jj,jk) + sn(ji+1,jj,jk) ) zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) IF( un(ji,jj,jk) > 0.e0 ) THEN zflxi(1) = zflxi(1) + zu ztemi(1) = ztemi(1) + zt*zu zsali(1) = zsali(1) + zs*zu ELSE zflxo(1) = zflxo(1) + zu ztemo(1) = ztemo(1) + zt*zu zsalo(1) = zsalo(1) + zs*zu ENDIF END DO ! Mean flow at Cadiz IF( cp_cfg == "orca" ) THEN SELECT CASE ( jp_cfg ) ! ! ======================= CASE ( 4 ) ! ORCA_R4 configuration ! ! ======================= ji = mi1(69 ) jj = mj1(52 ) ! ! ======================= CASE ( 2 ) ! ORCA_R2 configuration ! ! ======================= ji = mi1(137) jj = mj1(102) ! ! ======================= CASE DEFAULT ! ORCA R05 or R025 ! ! ======================= IF(lwp) WRITE(numout,cform_err) IF(lwp) WRITE(numout,*)' dia_fwb Not yet implemented in ORCA_R05 or R025' nstop = nstop + 1 ! END SELECT ! ENDIF DO jk = 1, 23 zt = 0.5 * ( tn(ji,jj,jk) + tn(ji+1,jj,jk) ) zs = 0.5 * ( sn(ji,jj,jk) + sn(ji+1,jj,jk) ) zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) IF( un(ji,jj,jk) > 0.e0 ) THEN zflxi(2) = zflxi(2) + zu ztemi(2) = ztemi(2) + zt*zu zsali(2) = zsali(2) + zs*zu ELSE zflxo(2) = zflxo(2) + zu ztemo(2) = ztemo(2) + zt*zu zsalo(2) = zsalo(2) + zs*zu ENDIF END DO ! Mean flow at Red Sea entrance IF( cp_cfg == "orca" ) THEN SELECT CASE ( jp_cfg ) ! ! ======================= CASE ( 4 ) ! ORCA_R4 configuration ! ! ======================= ji = mi1(83 ) jj = mj1(45 ) ! ! ======================= CASE ( 2 ) ! ORCA_R2 configuration ! ! ======================= ji = mi1(161) jj = mj1( 88) ! ! ======================= CASE DEFAULT ! ORCA R05 or R025 ! ! ======================= IF(lwp) WRITE(numout,cform_err) IF(lwp) WRITE(numout,*)' dia_fwb Not yet implemented in ORCA_R05 or R025' nstop = nstop + 1 ! END SELECT ! ENDIF DO jk = 1, 15 zt = 0.5 * ( tn(ji,jj,jk) + tn(ji+1,jj,jk) ) zs = 0.5 * ( sn(ji,jj,jk) + sn(ji+1,jj,jk) ) zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) IF( un(ji,jj,jk) > 0.e0 ) THEN zflxi(3) = zflxi(3) + zu ztemi(3) = ztemi(3) + zt*zu zsali(3) = zsali(3) + zs*zu ELSE zflxo(3) = zflxo(3) + zu ztemo(3) = ztemo(3) + zt*zu zsalo(3) = zsalo(3) + zs*zu ENDIF END DO ! Mean flow at Baltic Sea entrance IF( cp_cfg == "orca" ) THEN SELECT CASE ( jp_cfg ) ! ! ======================= CASE ( 4 ) ! ORCA_R4 configuration ! ! ======================= ji = 1 ! Not in the domain jj = 1 ! ! ======================= CASE ( 2 ) ! ORCA_R2 configuration ! ! ======================= ji = mi1(146) jj = mj1(116) ! ! ======================= CASE DEFAULT ! ORCA R05 or R025 ! ! ======================= IF(lwp) WRITE(numout,cform_err) IF(lwp) WRITE(numout,*)' dia_fwb Not yet implemented in ORCA_R05 or R025' nstop = nstop + 1 ! END SELECT ! ENDIF DO jk = 1, 20 zt = 0.5 * ( tn(ji,jj,jk) + tn(ji+1,jj,jk) ) zs = 0.5 * ( sn(ji,jj,jk) + sn(ji+1,jj,jk) ) zu = un(ji,jj,jk) * fse3t(ji,jj,jk) * e2u(ji,jj) IF( un(ji,jj,jk) > 0.e0 ) THEN zflxi(4) = zflxi(4) + zu ztemi(4) = ztemi(4) + zt*zu zsali(4) = zsali(4) + zs*zu ELSE zflxo(4) = zflxo(4) + zu ztemo(4) = ztemo(4) + zt*zu zsalo(4) = zsalo(4) + zs*zu ENDIF END DO ! Sum at each time-step DO jt = 1, 4 IF( zflxi(jt) /= 0.e0 .AND. zflxo(jt) /= 0.e0 ) THEN a_flxi(jt) = a_flxi(jt) + zflxi(jt) a_temi(jt) = a_temi(jt) + ztemi(jt)/zflxi(jt) a_sali(jt) = a_sali(jt) + zsali(jt)/zflxi(jt) a_flxo(jt) = a_flxo(jt) + zflxo(jt) a_temo(jt) = a_temo(jt) + ztemo(jt)/zflxo(jt) a_salo(jt) = a_salo(jt) + zsalo(jt)/zflxo(jt) ENDIF END DO IF( kt == nitend ) THEN DO jt = 1, 4 a_flxi(jt) = a_flxi(jt) / ( FLOAT( nitend - nit000 + 1 ) * 1.e6 ) a_temi(jt) = a_temi(jt) / FLOAT( nitend - nit000 + 1 ) a_sali(jt) = a_sali(jt) / FLOAT( nitend - nit000 + 1 ) a_flxo(jt) = a_flxo(jt) / ( FLOAT( nitend - nit000 + 1 ) * 1.e6 ) a_temo(jt) = a_temo(jt) / FLOAT( nitend - nit000 + 1 ) a_salo(jt) = a_salo(jt) / FLOAT( nitend - nit000 + 1 ) END DO ENDIF ! Ecriture des diagnostiques ! -------------------------- IF ( kt == nitend ) THEN OPEN(111,FILE='STRAIT.dat') WRITE(111,*) WRITE(111,*) 'Net freshwater budget ' WRITE(111,9010) ' emp = ',a_emp, ' m3 =', a_emp /(FLOAT(nitend-nit000+1)*rdttra(1)) * 1.e-6,' Sv' WRITE(111,9010) ' precip = ',a_precip,' m3 =', a_precip/(FLOAT(nitend-nit000+1)*rdttra(1)) * 1.e-6,' Sv' WRITE(111,9010) ' a_rnf = ',a_rnf, ' m3 =', a_rnf /(FLOAT(nitend-nit000+1)*rdttra(1)) * 1.e-6,' Sv' WRITE(111,*) WRITE(111,9010) ' zarea =',zarea WRITE(111,9010) ' zvol =',zvol WRITE(111,*) WRITE(111,*) 'Mean sea level : ' WRITE(111,9010) ' at nit000 = ',a_sshb ,' m3 ' WRITE(111,9010) ' at nitend = ',a_sshn ,' m3 ' WRITE(111,9010) ' diff = ',(a_sshn-a_sshb),' m3 =', (a_sshn-a_sshb)/(FLOAT(nitend-nit000+1)*rdt) * 1.e-6,' Sv' WRITE(111,9020) ' mean sea level elevation =', a_sshn/zarea,' m' WRITE(111,*) WRITE(111,*) 'Anomaly of salinity content : ' WRITE(111,9010) ' at nit000 = ',a_salb ,' psu.m3 ' WRITE(111,9010) ' at nitend = ',a_saln ,' psu.m3 ' WRITE(111,9010) ' diff = ',(a_saln-a_salb),' psu.m3' WRITE(111,*) WRITE(111,*) 'Mean salinity : ' WRITE(111,9020) ' at nit000 =',a_salb/zvol+zsm0 ,' psu ' WRITE(111,9020) ' at nitend =',a_saln/zvol+zsm0 ,' psu ' WRITE(111,9020) ' diff =',(a_saln-a_salb)/zvol,' psu' WRITE(111,9020) ' S-SLevitus=',a_saln/zvol,' psu' WRITE(111,*) WRITE(111,*) 'Coeff : ' WRITE(111,9030) ' Alpha+ = ', a_aplus WRITE(111,9030) ' Alpha- = ', a_aminus WRITE(111,*) WRITE(111,*) WRITE(111,*) 'Gibraltar : ' WRITE(111,9030) ' Flux entrant (Sv) :', a_flxi(1) WRITE(111,9030) ' Flux sortant (Sv) :', a_flxo(1) WRITE(111,9030) ' T entrant (deg) :', a_temi(1) WRITE(111,9030) ' T sortant (deg) :', a_temo(1) WRITE(111,9030) ' S entrant (psu) :', a_sali(1) WRITE(111,9030) ' S sortant (psu) :', a_salo(1) WRITE(111,*) WRITE(111,*) 'Cadiz : ' WRITE(111,9030) ' Flux entrant (Sv) :', a_flxi(2) WRITE(111,9030) ' Flux sortant (Sv) :', a_flxo(2) WRITE(111,9030) ' T entrant (deg) :', a_temi(2) WRITE(111,9030) ' T sortant (deg) :', a_temo(2) WRITE(111,9030) ' S entrant (psu) :', a_sali(2) WRITE(111,9030) ' S sortant (psu) :', a_salo(2) WRITE(111,*) WRITE(111,*) 'Bab el Mandeb : ' WRITE(111,9030) ' Flux entrant (Sv) :', a_flxi(3) WRITE(111,9030) ' Flux sortant (Sv) :', a_flxo(3) WRITE(111,9030) ' T entrant (deg) :', a_temi(3) WRITE(111,9030) ' T sortant (deg) :', a_temo(3) WRITE(111,9030) ' S entrant (psu) :', a_sali(3) WRITE(111,9030) ' S sortant (psu) :', a_salo(3) WRITE(111,*) WRITE(111,*) 'Baltic : ' WRITE(111,9030) ' Flux entrant (Sv) :', a_flxi(4) WRITE(111,9030) ' Flux sortant (Sv) :', a_flxo(4) WRITE(111,9030) ' T entrant (deg) :', a_temi(4) WRITE(111,9030) ' T sortant (deg) :', a_temo(4) WRITE(111,9030) ' S entrant (psu) :', a_sali(4) WRITE(111,9030) ' S sortant (psu) :', a_salo(4) CLOSE(111) ENDIF 9005 FORMAT(1X,A,ES24.16) 9010 FORMAT(1X,A,ES12.5,A,F10.5,A) 9020 FORMAT(1X,A,F10.5,A) 9030 FORMAT(1X,A,F8.2,A) END SUBROUTINE dia_fwb #else !!---------------------------------------------------------------------- !! Default option : Dummy Module !!---------------------------------------------------------------------- LOGICAL, PUBLIC, PARAMETER :: lk_diafwb = .FALSE. !: fresh water budget flag CONTAINS SUBROUTINE dia_fwb( kt ) ! Empty routine WRITE(*,*) 'dia_fwb: : You should not have seen this print! error?', kt END SUBROUTINE dia_fwb #endif !!====================================================================== END MODULE diafwb