MODULE closea !!====================================================================== !! *** MODULE closea *** !! Closed Seas : !!====================================================================== !!---------------------------------------------------------------------- !! dom_clo : modification of the ocean domain for closed seas cases !! flx_clo : Special handling of closed seas !!---------------------------------------------------------------------- !! * Modules used USE oce ! dynamics and tracers USE dom_oce ! ocean space and time domain USE in_out_manager ! I/O manager USE ocesbc ! ocean surface boundary conditions (fluxes) USE flxrnf ! runoffs USE lib_mpp ! distributed memory computing library USE lbclnk ! ??? IMPLICIT NONE PRIVATE !! * Accessibility PUBLIC dom_clo ! routine called by dom_init PUBLIC flx_clo ! routine called by step !! * Share module variables INTEGER, PUBLIC, PARAMETER :: & !: jpncs = 4 !: number of closed sea INTEGER, PUBLIC :: & !!: namclo : closed seas and lakes nclosea = 0 !: = 0 no closed sea or lake ! ! = 1 closed sea or lake in the domain INTEGER, PUBLIC, DIMENSION (jpncs) :: & !: ncstt, & !: Type of closed sea ncsi1, ncsj1, & !: closed sea limits ncsi2, ncsj2, & !: ncsnr !: number of point where run-off pours INTEGER, PUBLIC, DIMENSION (jpncs,4) :: & ncsir, ncsjr !: Location of run-off !! * Module variable REAL(wp), DIMENSION (jpncs+1) :: & surf ! closed sea surface !! * Substitutions # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! OPA 9.0 , LOCEAN-IPSL (2005) !! $Header$ !! This software is governed by the CeCILL licence see modipsl/doc/NEMO_CeCILL.txt !!---------------------------------------------------------------------- CONTAINS SUBROUTINE dom_clo !!--------------------------------------------------------------------- !! *** ROUTINE dom_clo *** !! !! ** Purpose : Closed sea domain initialization !! !! ** Method : if a closed sea is located only in a model grid point !! just the thermodynamic processes are applied. !! !! ** Action : ncsi1(), ncsj1() : south-west closed sea limits (i,j) !! ncsi2(), ncsj2() : north-east Closed sea limits (i,j) !! ncsir(), ncsjr() : Location of runoff !! ncsnr : number of point where run-off pours !! ncstt : Type of closed sea !! =0 spread over the world ocean !! =2 put at location runoff !! !! History : !! ! 01-04 (E. Durand) Original code !! 8.5 ! 02-06 (G. Madec) F90: Free form and module !!---------------------------------------------------------------------- !! * Local variables INTEGER :: jc ! dummy loop indices !!---------------------------------------------------------------------- IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)'dom_clo : closed seas ' IF(lwp) WRITE(numout,*)'~~~~~~~' ! initial values ncsnr(:) = 1 ; ncsi1(:) = 1 ; ncsi2(:) = 1 ; ncsir(:,:) = 1 ncstt(:) = 0 ; ncsj1(:) = 1 ; ncsj2(:) = 1 ; ncsjr(:,:) = 1 ! set the closed seas (in data domain indices) ! ------------------- IF( cp_cfg == "orca" ) THEN SELECT CASE ( jp_cfg ) ! ! ======================= CASE ( 2 ) ! ORCA_R2 configuration ! ! ======================= ! ! Caspian Sea ncsnr(1) = 1 ; ncstt(1) = 0 ! spread over the globe ncsi1(1) = 11 ; ncsj1(1) = 103 ncsi2(1) = 17 ; ncsj2(1) = 112 ncsir(1,1) = 1 ; ncsjr(1,1) = 1 ! ! Great North American Lakes ncsnr(2) = 1 ; ncstt(2) = 2 ! put at St Laurent mouth ncsi1(2) = 97 ; ncsj1(2) = 107 ncsi2(2) = 103 ; ncsj2(2) = 111 ncsir(2,1) = 110 ; ncsjr(2,1) = 111 ! ! Black Sea 1 : west part of the Black Sea ncsnr(3) = 1 ; ncstt(3) = 2 ! (ie west of the cyclic b.c.) ncsi1(3) = 174 ; ncsj1(3) = 107 ! put in Med Sea ncsi2(3) = 181 ; ncsj2(3) = 112 ncsir(3,1) = 171 ; ncsjr(3,1) = 106 ! ! Black Sea 2 : est part of the Black Sea ncsnr(4) = 1 ; ncstt(4) = 2 ! (ie est of the cyclic b.c.) ncsi1(4) = 2 ; ncsj1(4) = 107 ! put in Med Sea ncsi2(4) = 6 ; ncsj2(4) = 112 ncsir(4,1) = 171 ; ncsjr(4,1) = 106 ! ! ======================= CASE ( 4 ) ! ORCA_R4 configuration ! ! ======================= ! ! Caspian Sea ncsnr(1) = 1 ; ncstt(1) = 0 ncsi1(1) = 4 ; ncsj1(1) = 53 ncsi2(1) = 4 ; ncsj2(1) = 56 ncsir(1,1) = 1 ; ncsjr(1,1) = 1 ! ! Great North American Lakes ncsnr(2) = 1 ; ncstt(2) = 2 ncsi1(2) = 49 ; ncsj1(2) = 55 ncsi2(2) = 51 ; ncsj2(2) = 56 ncsir(2,1) = 57 ; ncsjr(2,1) = 55 ! ! Black Sea ncsnr(3) = 4 ; ncstt(3) = 2 ncsi1(3) = 88 ; ncsj1(3) = 55 ncsi2(3) = 91 ; ncsj2(3) = 56 ncsir(3,1) = 86 ; ncsjr(3,1) = 53 ncsir(3,2) = 87 ; ncsjr(3,2) = 53 ncsir(3,3) = 86 ; ncsjr(3,3) = 52 ncsir(3,4) = 87 ; ncsjr(3,4) = 52 ! ! Baltic Sea ncsnr(4) = 1 ; ncstt(4) = 2 ncsi1(4) = 75 ; ncsj1(4) = 59 ncsi2(4) = 76 ; ncsj2(4) = 61 ncsir(4,1) = 84 ; ncsjr(4,1) = 59 ! ! ======================= CASE ( 025 ) ! ORCA_R025 configuration ! ! ======================= ncsnr(1) = 1 ; ncstt(1) = 0 ! Caspian + Aral sea ncsi1(1) = 1330 ; ncsj1(1) = 645 ncsi2(1) = 1400 ; ncsj2(1) = 795 ncsir(1,1) = 1 ; ncsjr(1,1) = 1 ! ncsnr(2) = 1 ; ncstt(2) = 0 ! Azov Sea ncsi1(2) = 1284 ; ncsj1(2) = 722 ncsi2(2) = 1304 ; ncsj2(2) = 747 ncsir(2,1) = 1 ; ncsjr(2,1) = 1 END SELECT ENDIF ! convert the position in local domain indices ! -------------------------------------------- DO jc = 1, jpncs ncsi1(jc) = mi0( ncsi1(jc) ) ncsj1(jc) = mj0( ncsj1(jc) ) ncsi2(jc) = mi1( ncsi2(jc) ) ncsj2(jc) = mj1( ncsj2(jc) ) END DO END SUBROUTINE dom_clo SUBROUTINE flx_clo( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE flx_clo *** !! !! ** Purpose : Special handling of closed seas !! !! ** Method : Water flux is forced to zero over closed sea !! Excess is shared between remaining ocean, or !! put as run-off in open ocean. !! !! ** Action : !! !! History : !! 8.2 ! 00-05 (O. Marti) Original code !! 8.5 ! 02-07 (G. Madec) Free form, F90 !!---------------------------------------------------------------------- !! * Arguments INTEGER, INTENT (in) :: kt !! * Local declarations REAL(wp), DIMENSION (jpncs) :: zemp INTEGER :: ji, jj, jc, jn REAL(wp) :: zze2 !!---------------------------------------------------------------------- ! 1 - Initialisation ! ------------------ IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*)'flx_clo : closed seas ' IF(lwp) WRITE(numout,*)'~~~~~~~' ! Total surface of ocean surf(jpncs+1) = SUM( e1t(:,:) * e2t(:,:) * tmask_i(:,:) ) DO jc = 1, jpncs surf(jc) =0.e0 DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) ! surface of closed seas surf(jc) = surf(jc) + e1t(ji,jj)*e2t(ji,jj)*tmask_i(ji,jj) ! upstream in closed seas upsadv(ji,jj) = 0.5 END DO END DO ! upstream at closed sea outflow IF( ncstt(jc) >= 1 ) THEN DO jn = 1, 4 ji = mi0( ncsir(jc,jn) ) jj = mj0( ncsjr(jc,jn) ) upsrnfh(ji,jj) = MAX( upsrnfh(ji,jj), 1.0 ) END DO ENDIF END DO IF( lk_mpp ) CALL mpp_sum ( surf, jpncs+1 ) ! mpp: sum over all the global domain IF(lwp) WRITE(numout,*)' Closed sea surfaces' DO jc = 1, jpncs IF(lwp) WRITE(numout,FMT='(1I3,4I4,5X,F16.2)') & jc, ncsi1(jc), ncsi2(jc), ncsj1(jc), ncsj2(jc), surf(jc) END DO ! jpncs+1 : surface of sea, closed seas excluded DO jc = 1, jpncs surf(jpncs+1) = surf(jpncs+1) - surf(jc) END DO ENDIF ! 2 - Computation ! --------------- zemp = 0.e0 DO jc = 1, jpncs DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) zemp(jc) = zemp(jc) + e1t(ji,jj) * e2t(ji,jj) * emp(ji,jj) * tmask_i(ji,jj) END DO END DO END DO IF( lk_mpp ) CALL mpp_sum ( zemp , jpncs ) ! mpp: sum over all the global domain IF( cp_cfg == "orca" .AND. jp_cfg == 2 ) THEN ! Black Sea case for ORCA_R2 configuration zze2 = ( zemp(3) + zemp(4) ) / 2. zemp(3) = zze2 zemp(4) = zze2 ENDIF DO jc = 1, jpncs IF( ncstt(jc) == 0 ) THEN ! water/evap excess is shared by all open ocean emp (:,:) = emp (:,:) + zemp(jc) / surf(jpncs+1) emps(:,:) = emps(:,:) + zemp(jc) / surf(jpncs+1) ELSEIF( ncstt(jc) == 1 ) THEN ! Excess water in open sea, at outflow location, excess evap shared IF ( zemp(jc) <= 0.e0 ) THEN DO jn = 1, ncsnr(jc) ji = mi0(ncsir(jc,jn)) jj = mj0(ncsjr(jc,jn)) ! Location of outflow in open ocean IF ( ji > 1 .AND. ji < jpi & .AND. jj > 1 .AND. jj < jpj ) THEN emp (ji,jj) = emp (ji,jj) + zemp(jc) / & (FLOAT(ncsnr(jc)) * e1t(ji,jj) * e2t(ji,jj)) emps(ji,jj) = emps(ji,jj) + zemp(jc) / & (FLOAT(ncsnr(jc)) * e1t(ji,jj) * e2t(ji,jj)) END IF END DO ELSE emp (:,:) = emp (:,:) + zemp(jc) / surf(jpncs+1) emps(:,:) = emps(:,:) + zemp(jc) / surf(jpncs+1) ENDIF ELSEIF( ncstt(jc) == 2 ) THEN ! Excess e-p+r (either sign) goes to open ocean, at outflow location IF( ji > 1 .AND. ji < jpi & .AND. jj > 1 .AND. jj < jpj ) THEN DO jn = 1, ncsnr(jc) ji = mi0(ncsir(jc,jn)) jj = mj0(ncsjr(jc,jn)) ! Location of outflow in open ocean emp (ji,jj) = emp (ji,jj) + zemp(jc) & / (FLOAT(ncsnr(jc)) * e1t(ji,jj) * e2t(ji,jj) ) emps(ji,jj) = emps(ji,jj) + zemp(jc) & / (FLOAT(ncsnr(jc)) * e1t(ji,jj) * e2t(ji,jj) ) END DO ENDIF ENDIF DO jj = ncsj1(jc), ncsj2(jc) DO ji = ncsi1(jc), ncsi2(jc) emp (ji,jj) = emp (ji,jj) - zemp(jc) / surf(jc) emps(ji,jj) = emps(ji,jj) - zemp(jc) / surf(jc) END DO END DO END DO ! 5. Boundary condition on emp and emps ! ------------------------------------- CALL lbc_lnk( emp , 'T', 1. ) CALL lbc_lnk( emps, 'T', 1. ) END SUBROUTINE flx_clo !!====================================================================== END MODULE closea