MODULE traldf_iso !!============================================================================== !! *** MODULE traldf_iso *** !! Ocean active tracers: horizontal component of the lateral tracer mixing trend !!============================================================================== #if defined key_ldfslp || defined key_esopa !!---------------------------------------------------------------------- !! 'key_ldfslp' rotation of the lateral mixing tensor !!---------------------------------------------------------------------- !! tra_ldf_iso : update the tracer trend with the horizontal component !! of iso neutral laplacian operator or horizontal !! laplacian operator in s-coordinate !!---------------------------------------------------------------------- !! * Modules used USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain variables USE ldftra_oce ! ocean active tracers: lateral physics USE trdtra_oce ! ocean active tracers: trend variables USE in_out_manager ! I/O manager USE ldfslp ! iso-neutral slopes USE lbclnk IMPLICIT NONE PRIVATE !! * Routine accessibility PUBLIC tra_ldf_iso ! routine called by step.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "ldftra_substitute.h90" # include "ldfeiv_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_ldf_iso *** !! !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive !! trend and add it to the general trend of tracer equation. !! !! ** Method : The horizontal component of the lateral diffusive trends !! is provided by a 2nd order operator rotated along neural or geopo- !! tential surfaces to which an eddy induced advection can be added !! It is computed using before fields (forward in time) and isopyc- !! nal or geopotential slopes computed in routine ldfslp. !! !! horizontal fluxes associated with the rotated lateral mixing: !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ] !! - aht e2u*uslp dk[ mi(mk(tb)) ] !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ] !! - aht e2u*vslp dk[ mj(mk(tb)) ] !! add horizontal Eddy Induced advective fluxes (lk_traldf_eiv=T): !! zftu = zftu - dk-1[ aht e2u mi(wslpi) ] mi( tb ) !! zftv = zftv - dk-1[ aht e1v mj(wslpj) ] mj( tb ) !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] } !! Add this trend to the general trend (ta,sa): !! ta = ta + difft !! !! ** Action : - Update (ta,sa) arrays with the before isopycnal or !! geopotential s-coord harmonic mixing trend. !! - Save the trends in (ttrd,strd) ('key_diatrends') !! !! History : !! ! 94-08 (G. Madec, M. Imbard) !! ! 97-05 (G. Madec) split into traldf and trazdf !! 8.5 ! 02-08 (G. Madec) Free form, F90 !!---------------------------------------------------------------------- !! * Modules used USE oce , zftu => ua, & ! use ua as workspace & zfsu => va ! use va as workspace !! * Arguments INTEGER, INTENT( in ) :: kt ! ocean time-step index !! * Local declarations INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: & zabe1, zabe2, zcof1, zcof2, & ! temporary scalars zmsku, zmskv, zbtr, zta, zsa, & zcg1, zcg2, zuwk, zvwk, & zuwk1, zvwk1, & ztagu, ztagv, zsagu, zsagv REAL(wp), DIMENSION(jpi,jpj) :: & zdkt, zdk1t, & ! workspace zdks, zdk1s, & zftug, zftvg, & zfsug, zfsvg REAL(wp), DIMENSION(jpi,jpj,jpk) :: & zftv, zfsv ! workspace !!---------------------------------------------------------------------- IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_ldf_iso : iso neutral lateral diffusion or' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ horizontal laplacian diffusion in s-coordinate' #if defined key_diaeiv u_eiv(:,:,:) = 0.e0 v_eiv(:,:,:) = 0.e0 #endif ENDIF ztagu = 0.e0 ztagv = 0.e0 zsagu = 0.e0 zsagv = 0.e0 ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== ! 1. Vertical tracer gradient at level jk and jk+1 ! ------------------------------------------------ ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) zdk1t(:,:) = ( tb(:,:,jk) - tb(:,:,jk+1) ) * tmask(:,:,jk+1) zdk1s(:,:) = ( sb(:,:,jk) - sb(:,:,jk+1) ) * tmask(:,:,jk+1) IF( jk == 1 ) THEN zdkt(:,:) = zdk1t(:,:) zdks(:,:) = zdk1s(:,:) ELSE zdkt(:,:) = ( tb(:,:,jk-1) - tb(:,:,jk) ) * tmask(:,:,jk) zdks(:,:) = ( sb(:,:,jk-1) - sb(:,:,jk) ) * tmask(:,:,jk) ENDIF ! 2. Horizontal fluxes ! -------------------- DO jj = 1 , jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zabe1 = ( fsahtu(ji,jj,jk) + ahtb0 ) * e2u(ji,jj) * fse3u(ji,jj,jk) / e1u(ji,jj) zabe2 = ( fsahtv(ji,jj,jk) + ahtb0 ) * e1v(ji,jj) * fse3v(ji,jj,jk) / e2v(ji,jj) zmsku = 1. / MAX( tmask(ji+1,jj,jk ) + tmask(ji,jj,jk+1) & + tmask(ji+1,jj,jk+1) + tmask(ji,jj,jk ), 1. ) zmskv = 1. / MAX( tmask(ji,jj+1,jk ) + tmask(ji,jj,jk+1) & + tmask(ji,jj+1,jk+1) + tmask(ji,jj,jk ), 1. ) zcof1 = -fsahtu(ji,jj,jk) * e2u(ji,jj) * uslp(ji,jj,jk) * zmsku zcof2 = -fsahtv(ji,jj,jk) * e1v(ji,jj) * vslp(ji,jj,jk) * zmskv zftu(ji,jj,jk) = umask(ji,jj,jk) * ( zabe1 * ( tb(ji+1,jj,jk) - tb(ji,jj,jk) ) & & + zcof1 * ( zdkt (ji+1,jj) + zdk1t(ji,jj) & & + zdk1t(ji+1,jj) + zdkt (ji,jj) ) ) zftv(ji,jj,jk) = vmask(ji,jj,jk) * ( zabe2 * ( tb(ji,jj+1,jk) - tb(ji,jj,jk) ) & & + zcof2 * ( zdkt (ji,jj+1) + zdk1t(ji,jj) & & + zdk1t(ji,jj+1) + zdkt (ji,jj) ) ) zfsu(ji,jj,jk) = umask(ji,jj,jk) * ( zabe1 * ( sb(ji+1,jj,jk) - sb(ji,jj,jk) ) & & + zcof1 * ( zdks (ji+1,jj) + zdk1s(ji,jj) & & + zdk1s(ji+1,jj) + zdks (ji,jj) ) ) zfsv(ji,jj,jk) = vmask(ji,jj,jk) * ( zabe2 * ( sb(ji,jj+1,jk) - sb(ji,jj,jk) ) & & + zcof2 * ( zdks (ji,jj+1) + zdk1s(ji,jj) & & + zdk1s(ji,jj+1) + zdks (ji,jj) ) ) END DO END DO ! ! ---------------------------------------! IF( lk_traldf_eiv ) THEN ! Eddy induced vertical advective fluxes ! ! ! ---------------------------------------! DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zuwk = ( wslpi(ji,jj,jk ) + wslpi(ji+1,jj,jk ) ) * fsaeiu(ji,jj,jk ) * umask(ji,jj,jk ) zuwk1= ( wslpi(ji,jj,jk+1) + wslpi(ji+1,jj,jk+1) ) * fsaeiu(ji,jj,jk+1) * umask(ji,jj,jk+1) zvwk = ( wslpj(ji,jj,jk ) + wslpj(ji,jj+1,jk ) ) * fsaeiv(ji,jj,jk ) * vmask(ji,jj,jk ) zvwk1= ( wslpj(ji,jj,jk+1) + wslpj(ji,jj+1,jk+1) ) * fsaeiv(ji,jj,jk+1) * vmask(ji,jj,jk+1) zcg1= -0.25 * e2u(ji,jj) * umask(ji,jj,jk) * ( zuwk-zuwk1 ) zcg2= -0.25 * e1v(ji,jj) * vmask(ji,jj,jk) * ( zvwk-zvwk1 ) zftug(ji,jj) = zcg1 * ( tb(ji+1,jj,jk) + tb(ji,jj,jk) ) zftvg(ji,jj) = zcg2 * ( tb(ji,jj+1,jk) + tb(ji,jj,jk) ) zfsug(ji,jj) = zcg1 * ( sb(ji+1,jj,jk) + sb(ji,jj,jk) ) zfsvg(ji,jj) = zcg2 * ( sb(ji,jj+1,jk) + sb(ji,jj,jk) ) zftu(ji,jj,jk) = zftu(ji,jj,jk) + zftug(ji,jj) zftv(ji,jj,jk) = zftv(ji,jj,jk) + zftvg(ji,jj) zfsu(ji,jj,jk) = zfsu(ji,jj,jk) + zfsug(ji,jj) zfsv(ji,jj,jk) = zfsv(ji,jj,jk) + zfsvg(ji,jj) # if defined key_diaeiv u_eiv(ji,jj,jk) = -2. * zcg1 / ( e2u(ji,jj) * fse3u(ji,jj,jk) ) v_eiv(ji,jj,jk) = -2. * zcg2 / ( e1v(ji,jj) * fse3v(ji,jj,jk) ) # endif END DO END DO ENDIF ! II.4 Second derivative (divergence) and add to the general trend ! ---------------------------------------------------------------- DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr= 1. / ( e1t(ji,jj)*e2t(ji,jj)*fse3t(ji,jj,jk) ) zta = zbtr * ( zftu(ji,jj,jk) - zftu(ji-1,jj ,jk) & & + zftv(ji,jj,jk) - zftv(ji ,jj-1,jk) ) zsa = zbtr * ( zfsu(ji,jj,jk) - zfsu(ji-1,jj ,jk) & & + zfsv(ji,jj,jk) - zfsv(ji ,jj-1,jk) ) ta (ji,jj,jk) = ta (ji,jj,jk) + zta sa (ji,jj,jk) = sa (ji,jj,jk) + zsa #if defined key_trdtra || defined key_trdmld # if defined key_traldf_eiv ztagu = ( zftug(ji,jj) - zftug(ji-1,jj ) ) * zbtr ztagv = ( zftvg(ji,jj) - zftvg(ji ,jj-1) ) * zbtr zsagu = ( zfsug(ji,jj) - zfsug(ji-1,jj ) ) * zbtr zsagv = ( zfsvg(ji,jj) - zfsvg(ji ,jj-1) ) * zbtr ttrdh(ji,jj,jk,3) = ztagu ttrdh(ji,jj,jk,4) = ztagv strdh(ji,jj,jk,3) = zsagu strdh(ji,jj,jk,4) = zsagv # endif ttrd (ji,jj,jk,3) = zta - ztagu - ztagv strd (ji,jj,jk,3) = zsa - zsagu - zsagv #endif END DO END DO ! ! =============== END DO ! End of slab ! ! =============== IF( l_ctl .AND. lwp ) THEN ! print mean trends (used for debugging) zta = SUM( ta(2:jpim1,2:jpjm1,1:jpkm1) * tmask(2:jpim1,2:jpjm1,1:jpkm1) ) zsa = SUM( sa(2:jpim1,2:jpjm1,1:jpkm1) * tmask(2:jpim1,2:jpjm1,1:jpkm1) ) WRITE(numout,*) ' ldf - Ta: ', zta-t_ctl, ' Sa: ', zsa-s_ctl t_ctl = zta ; s_ctl = zsa ENDIF #if defined key_diaptr !!bug no separation of diff iso and eiv IF( MOD( kt, nf_ptr ) == 0 ) THEN ! "zonal" mean lateral diffusive heat and salt transports pht_ldf(:,:) = prt_vj( zftv(:,:,:) ) pst_ldf(:,:) = prt_vj( zfsv(:,:,:) ) ! "zonal" mean lateral eddy induced velocity heat and salt transports pht_eiv(:,:) = prt_vj( zftv(:,:,:) ) pst_eiv(:,:) = prt_vj( zfsv(:,:,:) ) ENDIF #endif END SUBROUTINE tra_ldf_iso #else !!---------------------------------------------------------------------- !! Dummy module : No rotation of the lateral mixing tensor !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso( kt ) ! Empty routine WRITE(*,*) 'tra_ldf_iso: You should not have seen this print! error?', kt END SUBROUTINE tra_ldf_iso #endif !!============================================================================== END MODULE traldf_iso