MODULE traldf_iso_zps !!============================================================================== !! *** MODULE traldf_iso_zps *** !! Ocean active tracers: horizontal component of the lateral tracer mixing trend !!============================================================================== #if ( defined key_ldfslp && defined key_partial_steps ) || defined key_esopa !!---------------------------------------------------------------------- !! 'key_ldfslp' slope of the lateral diffusive direction !!---------------------------------------------------------------------- !! tra_ldf_iso_zps : update the tracer trend with the horizontal !! component of a iso-neutral laplacian operator !!---------------------------------------------------------------------- !! * Modules used USE oce ! ocean dynamics and active tracers USE dom_oce ! ocean space and time domain USE ldftra_oce ! ocean active tracers: lateral physics USE trdmod ! ocean active tracers trends USE trdmod_oce ! ocean variables trends USE zdf_oce ! ocean vertical physics USE in_out_manager ! I/O manager USE ldfslp ! iso-neutral slopes USE diaptr ! poleward transport diagnostics USE prtctl ! Print control IMPLICIT NONE PRIVATE !! * Accessibility PUBLIC tra_ldf_iso_zps ! routine called by step.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "ldftra_substitute.h90" # include "ldfeiv_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! OPA 9.0 , LOCEAN-IPSL (2005) !! $Header$ !! This software is governed by the CeCILL licence see modipsl/doc/NEMO_CeCILL.txt !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso_zps( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_ldf_iso_zps *** !! !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive !! trend and add it to the general trend of tracer equation. !! !! ** Method : The horizontal component of the lateral diffusive trends !! is provided by a 2nd order operator rotated along neural or geopo- !! tential surfaces to which an eddy induced advection can be added !! It is computed using before fields (forward in time) and isopyc- !! nal or geopotential slopes computed in routine ldfslp. !! !! horizontal fluxes associated with the rotated lateral mixing: !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ] !! - aht e2u*uslp dk[ mi(mk(tb)) ] !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ] !! - aht e2u*vslp dk[ mj(mk(tb)) ] !! add horizontal Eddy Induced advective fluxes (lk_traldf_eiv=T): !! zftu = zftu - dk-1[ aht e2u mi(wslpi) ] mi( tb ) !! zftv = zftv - dk-1[ aht e1v mj(wslpj) ] mj( tb ) !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] } !! Add this trend to the general trend (ta,sa): !! ta = ta + difft !! !! 'key_trdtra' defined: the trend is saved for diagnostics. !! !! macro-tasked on horizontal slab (jk-loop). !! !! ** Action : !! Update (ta,sa) arrays with the before along level biharmonic !! mixing trend. !! Save in (ztdta,ztdsa) arrays the trends if 'key_trdtra' defined !! !! History : !! ! 94-08 (G. Madec, M. Imbard) !! ! 97-05 (G. Madec) split into traldf and trazdf !! 8.5 ! 02-08 (G. Madec) Free form, F90 !! 9.0 ! 04-08 (C. Talandier) New trends organization !!---------------------------------------------------------------------- !! * Modules used USE oce , zftu => ua, & ! use ua as workspace & zfsu => va ! use va as workspace !! * Arguments INTEGER, INTENT( in ) :: kt ! ocean time-step index !! * Local declarations INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: iku, ikv ! temporary integer REAL(wp) :: & zabe1, zabe2, zcof1, zcof2, & ! temporary scalars zmsku, zmskv, zbtr, zta, zsa ! " " REAL(wp), DIMENSION(jpi,jpj) :: & ! temporary workspace zdkt , zdk1t, zdks , zdk1s ! " " REAL(wp), DIMENSION(jpi,jpj,jpk) :: & zftv, zgtbu, zgtbv, & ! temporary workspace zfsv, zgsbu, zgsbv, & ! " " ztdta, ztdsa #if defined key_traldf_eiv REAL(wp) :: & zcg1, zcg2, zuwk, zvwk, & ! temporary scalars zuwk1, zvwk1 ! " " REAL(wp), DIMENSION(jpi,jpj) :: & ! temporary workspace zftug, zftvg, zfsug, zfsvg ! " " #endif !!---------------------------------------------------------------------- IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_ldf_iso_zps : iso neutral laplacian diffusion in ' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~~~ z-coordinates with partial steps' #if defined key_diaeiv u_eiv(:,:,:) = 0.e0 v_eiv(:,:,:) = 0.e0 #endif ENDIF ! Save ta and sa trends IF( l_trdtra ) THEN ztdta(:,:,:) = ta(:,:,:) ztdsa(:,:,:) = sa(:,:,:) ENDIF ! Horizontal temperature and salinity gradient DO jk = 1, jpk DO jj = 1, jpj-1 DO ji = 1, fs_jpim1 ! vector opt. zgtbu(ji,jj,jk) = tmask(ji,jj,jk) * ( tb(ji+1,jj ,jk) - tb(ji,jj,jk) ) zgsbu(ji,jj,jk) = tmask(ji,jj,jk) * ( sb(ji+1,jj ,jk) - sb(ji,jj,jk) ) zgtbv(ji,jj,jk) = tmask(ji,jj,jk) * ( tb(ji ,jj+1,jk) - tb(ji,jj,jk) ) zgsbv(ji,jj,jk) = tmask(ji,jj,jk) * ( sb(ji ,jj+1,jk) - sb(ji,jj,jk) ) END DO END DO END DO ! partial steps correction at the last level DO jj = 1, jpj-1 DO ji = 1, jpi-1 ! last level iku = MIN( mbathy(ji,jj), mbathy(ji+1,jj ) ) - 1 ikv = MIN( mbathy(ji,jj), mbathy(ji ,jj+1) ) - 1 zgtbu(ji,jj,iku) = gtu(ji,jj) zgsbu(ji,jj,iku) = gsu(ji,jj) zgtbv(ji,jj,ikv) = gtv(ji,jj) zgsbv(ji,jj,ikv) = gsv(ji,jj) END DO END DO ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== ! 1. Vertical tracer gradient at level jk and jk+1 ! ------------------------------------------------ ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) zdk1t(:,:) = ( tb(:,:,jk) - tb(:,:,jk+1) ) * tmask(:,:,jk+1) zdk1s(:,:) = ( sb(:,:,jk) - sb(:,:,jk+1) ) * tmask(:,:,jk+1) IF( jk == 1 ) THEN zdkt(:,:) = zdk1t(:,:) zdks(:,:) = zdk1s(:,:) ELSE zdkt(:,:) = ( tb(:,:,jk-1) - tb(:,:,jk) ) * tmask(:,:,jk) zdks(:,:) = ( sb(:,:,jk-1) - sb(:,:,jk) ) * tmask(:,:,jk) ENDIF ! 2. Horizontal fluxes ! -------------------- DO jj = 1 , jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zabe1 = ( fsahtu(ji,jj,jk) + ahtb0 ) * e2u(ji,jj) * fse3u(ji,jj,jk) / e1u(ji,jj) zabe2 = ( fsahtv(ji,jj,jk) + ahtb0 ) * e1v(ji,jj) * fse3v(ji,jj,jk) / e2v(ji,jj) zmsku = 1. / MAX( tmask(ji+1,jj,jk ) + tmask(ji,jj,jk+1) & + tmask(ji+1,jj,jk+1) + tmask(ji,jj,jk ), 1. ) zmskv = 1. / MAX( tmask(ji,jj+1,jk ) + tmask(ji,jj,jk+1) & + tmask(ji,jj+1,jk+1) + tmask(ji,jj,jk ), 1. ) zcof1 = -fsahtu(ji,jj,jk) * e2u(ji,jj) * uslp(ji,jj,jk) * zmsku zcof2 = -fsahtv(ji,jj,jk) * e1v(ji,jj) * vslp(ji,jj,jk) * zmskv zftu(ji,jj,jk) = umask(ji,jj,jk) * ( zabe1 * zgtbu(ji,jj,jk) & & + zcof1 * ( zdkt (ji+1,jj) + zdk1t(ji,jj) & & + zdk1t(ji+1,jj) + zdkt (ji,jj) ) ) zftv(ji,jj,jk) = vmask(ji,jj,jk) * ( zabe2 * zgtbv(ji,jj,jk) & & + zcof2 * ( zdkt (ji,jj+1) + zdk1t(ji,jj) & & + zdk1t(ji,jj+1) + zdkt (ji,jj) ) ) zfsu(ji,jj,jk) = umask(ji,jj,jk) * ( zabe1 * zgsbu(ji,jj,jk) & & + zcof1 * ( zdks (ji+1,jj) + zdk1s(ji,jj) & & + zdk1s(ji+1,jj) + zdks (ji,jj) ) ) zfsv(ji,jj,jk) = vmask(ji,jj,jk) * ( zabe2 * zgsbv(ji,jj,jk) & & + zcof2 * ( zdks (ji,jj+1) + zdk1s(ji,jj) & & + zdk1s(ji,jj+1) + zdks (ji,jj) ) ) END DO END DO #if defined key_traldf_eiv ! ---------------------------------------! ! Eddy induced vertical advective fluxes ! ! ---------------------------------------! DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zuwk = ( wslpi(ji,jj,jk ) + wslpi(ji+1,jj ,jk ) ) * fsaeiu(ji,jj,jk ) * umask(ji,jj,jk ) zuwk1= ( wslpi(ji,jj,jk+1) + wslpi(ji+1,jj ,jk+1) ) * fsaeiu(ji,jj,jk+1) * umask(ji,jj,jk+1) zvwk = ( wslpj(ji,jj,jk ) + wslpj(ji ,jj+1,jk ) ) * fsaeiv(ji,jj,jk ) * vmask(ji,jj,jk ) zvwk1= ( wslpj(ji,jj,jk+1) + wslpj(ji ,jj+1,jk+1) ) * fsaeiv(ji,jj,jk+1) * vmask(ji,jj,jk+1) zcg1= -0.25 * e2u(ji,jj) * umask(ji,jj,jk) * ( zuwk-zuwk1 ) zcg2= -0.25 * e1v(ji,jj) * vmask(ji,jj,jk) * ( zvwk-zvwk1 ) zftug(ji,jj) = zcg1 * ( tb(ji+1,jj,jk) + tb(ji,jj,jk) ) zftvg(ji,jj) = zcg2 * ( tb(ji,jj+1,jk) + tb(ji,jj,jk) ) zfsug(ji,jj) = zcg1 * ( sb(ji+1,jj,jk) + sb(ji,jj,jk) ) zfsvg(ji,jj) = zcg2 * ( sb(ji,jj+1,jk) + sb(ji,jj,jk) ) zftu(ji,jj,jk) = zftu(ji,jj,jk) + zftug(ji,jj) zftv(ji,jj,jk) = zftv(ji,jj,jk) + zftvg(ji,jj) zfsu(ji,jj,jk) = zfsu(ji,jj,jk) + zfsug(ji,jj) zfsv(ji,jj,jk) = zfsv(ji,jj,jk) + zfsvg(ji,jj) # if defined key_diaeiv u_eiv(ji,jj,jk) = -2. * zcg1 / ( e2u(ji,jj) * fse3u(ji,jj,jk) ) v_eiv(ji,jj,jk) = -2. * zcg2 / ( e1v(ji,jj) * fse3v(ji,jj,jk) ) # endif END DO END DO #endif ! II.4 Second derivative (divergence) and add to the general trend ! ---------------------------------------------------------------- DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr= 1. / ( e1t(ji,jj)*e2t(ji,jj)*fse3t(ji,jj,jk) ) zta = zbtr * ( zftu(ji,jj,jk) - zftu(ji-1,jj,jk) + zftv(ji,jj,jk) - zftv(ji,jj-1,jk) ) zsa = zbtr * ( zfsu(ji,jj,jk) - zfsu(ji-1,jj,jk) + zfsv(ji,jj,jk) - zfsv(ji,jj-1,jk) ) ta (ji,jj,jk) = ta (ji,jj,jk) + zta sa (ji,jj,jk) = sa (ji,jj,jk) + zsa END DO END DO ! ! =============== END DO ! End of slab ! ! =============== ! save the trends for diagnostic ! save the horizontal diffusive trends IF( l_trdtra ) THEN # if defined key_traldf_eiv DO jk = 1 , jpkm1 DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr= 1. / ( e1t(ji,jj)*e2t(ji,jj)*fse3t(ji,jj,jk) ) tladi(ji,jj,jk) = ( zftug(ji,jj) - zftug(ji-1,jj ) ) * zbtr tladj(ji,jj,jk) = ( zftvg(ji,jj) - zftvg(ji ,jj-1) ) * zbtr sladi(ji,jj,jk) = ( zfsug(ji,jj) - zfsug(ji-1,jj ) ) * zbtr sladj(ji,jj,jk) = ( zfsvg(ji,jj) - zfsvg(ji ,jj-1) ) * zbtr END DO END DO END DO # else tladi(:,:,:) = 0.e0 tladj(:,:,:) = 0.e0 sladi(:,:,:) = 0.e0 sladj(:,:,:) = 0.e0 # endif ! Substract the eddy induced velocity for T/S ztdta(:,:,:) = ta(:,:,:) - ztdta(:,:,:) - tladi(:,:,:) - tladj(:,:,:) ztdsa(:,:,:) = sa(:,:,:) - ztdsa(:,:,:) - sladi(:,:,:) - sladj(:,:,:) CALL trd_mod(ztdta, ztdsa, jpttdldf, 'TRA', kt) ENDIF IF(ln_ctl) THEN ! print mean trends (used for debugging) CALL prt_ctl(tab3d_1=ta, clinfo1=' ldf - Ta: ', mask1=tmask, & & tab3d_2=sa, clinfo2=' Sa: ', mask2=tmask, clinfo3='tra') ENDIF !!bug no separation of diff iso and eiv IF( ln_diaptr .AND. ( MOD( kt, nf_ptr ) == 0 ) ) THEN ! "zonal" mean lateral diffusive heat and salt transports pht_ldf(:) = ptr_vj( zftv(:,:,:) ) pst_ldf(:) = ptr_vj( zfsv(:,:,:) ) ! "zonal" mean lateral eddy induced velocity heat and salt transports pht_eiv(:) = ptr_vj( zftv(:,:,:) ) pst_eiv(:) = ptr_vj( zfsv(:,:,:) ) ENDIF END SUBROUTINE tra_ldf_iso_zps #else !!---------------------------------------------------------------------- !! default option : Dummy code NO rotation of the diffusive tensor !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_iso_zps( kt ) ! Empty routine WRITE(*,*) 'tra_ldf_iso_zps: You should not have seen this print! error?', kt END SUBROUTINE tra_ldf_iso_zps #endif !!============================================================================== END MODULE traldf_iso_zps