MODULE traldf_lap !!============================================================================== !! *** MODULE traldf_lap *** !! Ocean active tracers: horizontal component of the lateral tracer mixing trend !!============================================================================== !!---------------------------------------------------------------------- !! tra_ldf_lap : update the tracer trend with the horizontal diffusion !! using a iso-level harmonic (laplacien) operator. !!---------------------------------------------------------------------- !! * Modules used USE oce ! ocean dynamics and active tracers USE dom_oce ! ocean space and time domain USE ldftra_oce ! ocean active tracers: lateral physics USE trdmod ! ocean active tracers trends USE trdmod_oce ! ocean variables trends USE in_out_manager ! I/O manager USE diaptr ! poleward transport diagnostics USE prtctl ! Print control IMPLICIT NONE PRIVATE !! * Routine accessibility PUBLIC tra_ldf_lap ! routine called by step.F90 !! * Substitutions # include "domzgr_substitute.h90" # include "ldftra_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! OPA 9.0 , LOCEAN-IPSL (2005) !! $Header$ !! This software is governed by the CeCILL licence see modipsl/doc/NEMO_CeCILL.txt !!---------------------------------------------------------------------- CONTAINS SUBROUTINE tra_ldf_lap( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE tra_ldf_lap *** !! !! ** Purpose : Compute the before horizontal tracer (t & s) diffusive !! trend and add it to the general trend of tracer equation. !! !! ** Method : Second order diffusive operator evaluated using before !! fields (forward time scheme). The horizontal diffusive trends of !! temperature (idem for salinity) is given by: !! difft = 1/(e1t*e2t*e3t) { di-1[ aht e2u*e3u/e1u di(tb) ] !! + dj-1[ aht e1v*e3v/e2v dj(tb) ] } !! Note: key_zco defined, the e3t=e3u=e3v, the trend becomes: !! difft = 1/(e1t*e2t) { di-1[ aht e2u/e1u di(tb) ] !! + dj-1[ aht e1v/e2v dj(tb) ] } !! Add this trend to the general tracer trend (ta,sa): !! (ta,sa) = (ta,sa) + ( difft , diffs ) !! !! ** Action : - Update (ta,sa) arrays with the before iso-level !! harmonic mixing trend. !! !! History : !! 1.0 ! 87-06 (P. Andrich, D. L Hostis) Original code !! ! 91-11 (G. Madec) !! ! 95-11 (G. Madec) suppress volumetric scale factors !! ! 96-01 (G. Madec) statement function for e3 !! 8.5 ! 02-06 (G. Madec) F90: Free form and module !! 9.0 ! 04-08 (C. Talandier) New trends organization !! ! 05-11 (G. Madec) add zps case !!---------------------------------------------------------------------- USE oce , ztu => ua, & ! use ua as workspace & zsu => va ! use va as workspace !! * Arguments INTEGER, INTENT( in ) :: kt ! ocean time-step index !! * Local save REAL(wp), DIMENSION(jpi,jpj), SAVE :: & ze1ur, ze2vr, zbtr2 ! scale factor coefficients !! * Local declarations INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: iku, ikv ! temporary integers REAL(wp) :: & zabe1, zta, & ! temporary scalars zabe2, zsa, zbtr ! " " REAL(wp), DIMENSION(jpi,jpj,jpk) :: & ztv, zsv ! 3D workspace !!---------------------------------------------------------------------- IF( kt == nit000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'tra_ldf_lap : iso-level laplacian diffusion' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ ' ze1ur(:,:) = e2u(:,:) / e1u(:,:) ze2vr(:,:) = e1v(:,:) / e2v(:,:) zbtr2(:,:) = 1. / ( e1t(:,:) * e2t(:,:) ) ENDIF ! ! ============= DO jk = 1, jpkm1 ! Vertical slab ! ! ============= ! 1. First derivative (gradient) ! ------------------- DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. #if defined key_zco zabe1 = fsahtu(ji,jj,jk) * umask(ji,jj,jk) * ze1ur(ji,jj) zabe2 = fsahtv(ji,jj,jk) * vmask(ji,jj,jk) * ze2vr(ji,jj) #else zabe1 = fsahtu(ji,jj,jk) * umask(ji,jj,jk) * ze1ur(ji,jj) * fse3u(ji,jj,jk) zabe2 = fsahtv(ji,jj,jk) * vmask(ji,jj,jk) * ze2vr(ji,jj) * fse3v(ji,jj,jk) #endif ztu(ji,jj,jk) = zabe1 * ( tb(ji+1,jj ,jk) - tb(ji,jj,jk) ) zsu(ji,jj,jk) = zabe1 * ( sb(ji+1,jj ,jk) - sb(ji,jj,jk) ) ztv(ji,jj,jk) = zabe2 * ( tb(ji ,jj+1,jk) - tb(ji,jj,jk) ) zsv(ji,jj,jk) = zabe2 * ( sb(ji ,jj+1,jk) - sb(ji,jj,jk) ) END DO END DO IF( ln_zps ) THEN ! set gradient at partial step level DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ! last level iku = MIN ( mbathy(ji,jj), mbathy(ji+1,jj ) ) - 1 ikv = MIN ( mbathy(ji,jj), mbathy(ji ,jj+1) ) - 1 IF( iku == jk ) THEN zabe1 = fsahtu(ji,jj,iku) * umask(ji,jj,iku) * ze1ur(ji,jj) * fse3u(ji,jj,iku) ztu(ji,jj,jk) = zabe1 * gtu(ji,jj) zsu(ji,jj,jk) = zabe1 * gsu(ji,jj) ENDIF IF( ikv == jk ) THEN zabe2 = fsahtv(ji,jj,ikv) * vmask(ji,jj,ikv) * ze2vr(ji,jj) * fse3v(ji,jj,ikv) ztv(ji,jj,jk) = zabe2 * gtv(ji,jj) zsv(ji,jj,jk) = zabe2 * gsv(ji,jj) ENDIF END DO END DO ENDIF ! 2. Second derivative (divergence) ! -------------------- DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. #if defined key_zco zbtr = zbtr2(ji,jj) #else zbtr = zbtr2(ji,jj) / fse3t(ji,jj,jk) #endif ! horizontal diffusive trends zta = zbtr * ( ztu(ji,jj,jk) - ztu(ji-1,jj,jk) & & + ztv(ji,jj,jk) - ztv(ji,jj-1,jk) ) zsa = zbtr * ( zsu(ji,jj,jk) - zsu(ji-1,jj,jk) & & + zsv(ji,jj,jk) - zsv(ji,jj-1,jk) ) ! add it to the general tracer trends ta(ji,jj,jk) = ta(ji,jj,jk) + zta sa(ji,jj,jk) = sa(ji,jj,jk) + zsa END DO END DO ! ! ============= END DO ! End of slab ! ! ============= ! "zonal" mean lateral diffusive heat and salt transport IF( ln_diaptr .AND. ( MOD( kt, nf_ptr ) == 0 ) ) THEN IF( lk_zco ) THEN ! z-coordinate - full step (1D arrays) DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ztv(ji,jj,jk) = ztv(ji,jj,jk) * fse3v(ji,jj,jk) zsv(ji,jj,jk) = zsv(ji,jj,jk) * fse3v(ji,jj,jk) END DO END DO END DO ENDIF pht_ldf(:) = ptr_vj( ztv(:,:,:) ) pst_ldf(:) = ptr_vj( zsv(:,:,:) ) ENDIF END SUBROUTINE tra_ldf_lap !!============================================================================== END MODULE traldf_lap