MODULE trcldf_bilap !!============================================================================== !! *** MODULE trcldf_bilap *** !! TOP : horizontal component of the lateral tracer mixing trend !!============================================================================== #if defined key_top !!---------------------------------------------------------------------- !! 'key_top' TOP models !!---------------------------------------------------------------------- !! trc_ldf_bilap : update the tracer trend with the horizontal diffusion !! using a iso-level biharmonic operator !!---------------------------------------------------------------------- !! * Modules used USE oce_trc ! ocean dynamics and active tracers variables USE trp_trc ! ocean passive tracers variables USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE prtctl_trc ! Print control for debbuging IMPLICIT NONE PRIVATE !! * Routine accessibility PUBLIC trc_ldf_bilap ! routine called by step.F90 !! * Substitutions # include "top_substitute.h90" !!---------------------------------------------------------------------- !! TOP 1.0 , LOCEAN-IPSL (2005) !! $Header: /home/opalod/NEMOCVSROOT/NEMO/TOP_SRC/TRP/trcldf_bilap.F90,v 1.12 2007/10/12 09:26:30 opalod Exp $ !! This software is governed by the CeCILL licence see modipsl/doc/NEMO_CeCILL.txt !!---------------------------------------------------------------------- CONTAINS SUBROUTINE trc_ldf_bilap( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE trc_ldf_bilap *** !! !! ** Purpose : Compute the before horizontal tracer tra diffusive !! trend and add it to the general trend of tracer equation. !! !! ** Method : 4th order diffusive operator along model level surfaces !! evaluated using before fields (forward time scheme). The hor. !! diffusive trends of passive tracer is given by: !! * s-coordinate, the vertical scale !! factors e3. are inside the derivatives: !! Laplacian of trb: !! zlt = 1/(e1t*e2t*e3t) { di-1[ e2u*e3u/e1u di(trb) ] !! + dj-1[ e1v*e3v/e2v dj(trb) ] } !! Multiply by the eddy diffusivity coef. and insure lateral bc: !! zlt = ahtt * zlt !! call to lbc_lnk !! Bilaplacian (laplacian of zlt): !! difft = 1/(e1t*e2t*e3t) { di-1[ e2u*e3u/e1u di(zlt) ] !! + dj-1[ e1v*e3v/e2v dj(zlt) ] } !! * z-coordinate (default key), e3t=e3u=e3v, the trend becomes: !! Laplacian of trb: !! zlt = 1/(e1t*e2t) { di-1[ e2u/e1u di(trb) ] !! + dj-1[ e1v/e2v dj(trb) ] } !! Multiply by the eddy diffusivity coef. and insure lateral bc: !! zlt = ahtt * zlt !! call to lbc_lnk !! Bilaplacian (laplacian of zlt): !! difft = 1/(e1t*e2t) { di-1[ e2u/e1u di(zlt) ] !! + dj-1[ e1v/e2v dj(zlt) ] } !! !! Add this trend to the general trend tra : !! tra = tra + difft !! !! ** Action : - Update tra arrays with the before iso-level !! biharmonic mixing trend. !! - Save the trends in trtrd ('key_trc_diatrd') !! !! History : !! ! 91-11 (G. Madec) Original code !! ! 93-03 (M. Guyon) symetrical conditions !! ! 95-11 (G. Madec) suppress volumetric scale factors !! ! 96-01 (G. Madec) statement function for e3 !! ! 96-01 (M. Imbard) mpp exchange !! ! 97-07 (G. Madec) optimization, and ahtt !! ! 00-05 (MA Foujols) add lbc for tracer trends !! ! 00-10 (MA Foujols E. Kestenare) use passive tracer coefficient !! 8.5 ! 02-08 (G. Madec) F90: Free form and module !! 9.0 ! 04-03 (C. Ethe ) F90: Free form and module !!---------------------------------------------------------------------- !! * Arguments INTEGER, INTENT( in ) :: kt ! ocean time-step index !! * Local declarations INTEGER :: ji, jj, jk, jn ! dummy loop indices INTEGER :: iku, ikv ! temporary integers REAL(wp) :: ztra ! temporary scalars REAL(wp), DIMENSION(jpi,jpj) :: & zeeu, zeev, zbtr, zlt ! workspace REAL(wp), DIMENSION(jpi,jpj,jpk) :: & ztu, ztv ! workspace CHARACTER (len=22) :: charout !!---------------------------------------------------------------------- IF( kt == nittrc000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'trc_ldf_bilap : iso-level biharmonic operator' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~' ENDIF ! DO jn = 1, jptra ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== ! 0. Initialization of metric arrays (for z- or s-coordinates) ! ---------------------------------- DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. #if ! defined key_zco ! s-coordinates, vertical scale factor are used zbtr(ji,jj) = 1. / ( e1t(ji,jj)*e2t(ji,jj)*fse3t(ji,jj,jk) ) zeeu(ji,jj) = e2u(ji,jj) * fse3u(ji,jj,jk) / e1u(ji,jj) * umask(ji,jj,jk) zeev(ji,jj) = e1v(ji,jj) * fse3v(ji,jj,jk) / e2v(ji,jj) * vmask(ji,jj,jk) #else ! z-coordinates, no vertical scale factors zbtr(ji,jj) = 1. / ( e1t(ji,jj)*e2t(ji,jj) ) zeeu(ji,jj) = e2u(ji,jj) / e1u(ji,jj) * umask(ji,jj,jk) zeev(ji,jj) = e1v(ji,jj) / e2v(ji,jj) * vmask(ji,jj,jk) #endif END DO END DO ! 1. Laplacian ! ------------ ! First derivative (gradient) DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ztu(ji,jj,jk) = zeeu(ji,jj) * ( trb(ji+1,jj ,jk,jn) - trb(ji,jj,jk,jn) ) ztv(ji,jj,jk) = zeev(ji,jj) * ( trb(ji ,jj+1,jk,jn) - trb(ji,jj,jk,jn) ) END DO END DO IF( ln_zps ) THEN DO jj = 1, jpj-1 DO ji = 1, jpi-1 ! last level iku = MIN ( mbathy(ji,jj), mbathy(ji+1,jj ) ) - 1 ikv = MIN ( mbathy(ji,jj), mbathy(ji ,jj+1) ) - 1 IF( iku == jk ) THEN ztu(ji,jj,jk) = zeeu(ji,jj) * gtru(ji,jj,jn) ENDIF IF( ikv == jk ) THEN ztv(ji,jj,jk) = zeev(ji,jj) * gtrv(ji,jj,jn) ENDIF END DO END DO ENDIF ! Second derivative (divergence) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zlt(ji,jj) = zbtr(ji,jj) * ( ztu(ji,jj,jk) - ztu(ji-1,jj,jk) + ztv(ji,jj,jk) - ztv(ji,jj-1,jk) ) END DO END DO ! Multiply by the eddy diffusivity coefficient DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zlt(ji,jj) = fsahtrt(ji,jj,jk) * zlt(ji,jj) END DO END DO ! Lateral boundary conditions on the laplacian zlt (unchanged sgn) CALL lbc_lnk( zlt, 'T', 1. ) ! 2. Bilaplacian ! -------------- ! third derivative (gradient) DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. ztu(ji,jj,jk) = zeeu(ji,jj) * ( zlt(ji+1,jj ) - zlt(ji,jj) ) ztv(ji,jj,jk) = zeev(ji,jj) * ( zlt(ji ,jj+1) - zlt(ji,jj) ) END DO END DO ! fourth derivative (divergence) and add to the general tracer trend DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. ! horizontal diffusive trends ztra = zbtr(ji,jj) * ( ztu(ji,jj,jk) - ztu(ji-1,jj,jk) + ztv(ji,jj,jk) - ztv(ji,jj-1,jk) ) ! add it to the general tracer trends tra(ji,jj,jk,jn) = tra(ji,jj,jk,jn) + ztra #if defined key_trc_diatrd ! save the horizontal diffusive trends IF (luttrd(jn)) trtrd(ji,jj,jk,ikeep(jn),4) = ( ztu(ji,jj,jk) - ztu(ji-1,jj,jk) ) * zbtr(ji,jj) IF (luttrd(jn)) trtrd(ji,jj,jk,ikeep(jn),5) = ( ztv(ji,jj,jk) - ztv(ji-1,jj,jk) ) * zbtr(ji,jj) #endif END DO END DO ! ! =============== END DO ! Horizontal slab ! ! =============== #if defined key_trc_diatrd ! Lateral boundary conditions on the laplacian zlt (unchanged sgn) IF (luttrd(jn)) CALL lbc_lnk( trtrd(:,:,:,ikeep(jn),5), 'T', 1. ) #endif END DO IF(ln_ctl) THEN ! print mean trends (used for debugging) WRITE(charout, FMT="('ldf - bilap')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm,clinfo2='trd') ENDIF END SUBROUTINE trc_ldf_bilap #else !!---------------------------------------------------------------------- !! Default option Empty module !!---------------------------------------------------------------------- CONTAINS SUBROUTINE trc_ldf_bilap( kt ) INTEGER, INTENT(in) :: kt WRITE(*,*) 'trc_ldf_bilap: You should not have seen this print! error?', kt END SUBROUTINE trc_ldf_bilap #endif !!============================================================================== END MODULE trcldf_bilap