MODULE trcldf_iso !!============================================================================== !! *** MODULE trcldf_iso *** !! Ocean passive tracers: horizontal component of the lateral tracer mixing trend !!============================================================================== #if key_passivetrc && defined key_ldfslp !!---------------------------------------------------------------------- !! 'key_ldfslp' rotation of the lateral mixing tensor !!---------------------------------------------------------------------- !! trc_ldf_iso : update the tracer trend with the horizontal component !! of iso neutral laplacian operator or horizontal !! laplacian operator in s-coordinate !!---------------------------------------------------------------------- !! * Modules used USE oce_trc ! ocean dynamics and tracers variables USE trc ! ocean passive tracers variables USE prtctl_trc ! Print control for debbuging IMPLICIT NONE PRIVATE !! * Routine accessibility PUBLIC trc_ldf_iso ! routine called by step.F90 !! * Substitutions # include "passivetrc_substitute.h90" !!---------------------------------------------------------------------- !! TOP 1.0 , LOCEAN-IPSL (2005) !! $Header$ !! This software is governed by the CeCILL licence see modipsl/doc/NEMO_CeCILL.txt !!---------------------------------------------------------------------- CONTAINS SUBROUTINE trc_ldf_iso( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE trc_ldf_iso *** !! !! ** Purpose : Compute the before horizontal tracer diffusive !! trend and add it to the general trend of tracer equation. !! !! ** Method : The horizontal component of the lateral diffusive trends !! is provided by a 2nd order operator rotated along neural or geopo- !! tential surfaces to which an eddy induced advection can be added !! It is computed using before fields (forward in time) and isopyc- !! nal or geopotential slopes computed in routine ldfslp. !! !! horizontal fluxes associated with the rotated lateral mixing: !! zftu = (aht+ahtb0) e2u*e3u/e1u di[ tb ] !! - aht e2u*uslp dk[ mi(mk(tb)) ] !! zftv = (aht+ahtb0) e1v*e3v/e2v dj[ tb ] !! - aht e2u*vslp dk[ mj(mk(tb)) ] !! add horizontal Eddy Induced advective fluxes (lk_traldf_eiv=T): !! zftu = zftu - dk-1[ aht e2u mi(wslpi) ] mi( tb ) !! zftv = zftv - dk-1[ aht e1v mj(wslpj) ] mj( tb ) !! take the horizontal divergence of the fluxes: !! difft = 1/(e1t*e2t*e3t) { di-1[ zftu ] + dj-1[ zftv ] } !! Add this trend to the general trend tra : !! tra = tra + difft !! !! ** Action : - Update tra arrays with the before isopycnal or !! geopotential s-coord harmonic mixing trend. !! - Save the trends in trtrd ('key_trc_diatrd') !! !! History : !! ! 94-08 (G. Madec, M. Imbard) !! ! 97-05 (G. Madec) split into traldf and trazdf !! ! 98-03 (L. Bopp, MA Foujols) passive tracer generalisation !! ! 00-10 (MA Foujols E Kestenare) USE passive tracer coefficient !! 8.5 ! 02-08 (G. Madec) Free form, F90 !! 9.0 ! 04-03 (C. Ethe) Free form, F90 !!---------------------------------------------------------------------- !! * Modules used USE oce_trc , zftu => ua, & ! use ua as workspace & zfsu => va ! use va as workspace !! * Arguments INTEGER, INTENT( in ) :: kt ! ocean time-step index !! * Local declarations INTEGER :: ji, jj, jk,jn ! dummy loop indices REAL(wp) :: & zabe1, zabe2, zcof1, zcof2, & ! temporary scalars zmsku, zmskv, zbtr, & #if defined key_trcldf_eiv zcg1, zcg2, zuwk, zvwk, & zuwk1, zvwk1, & #endif ztra REAL(wp), DIMENSION(jpi,jpj) :: & zdkt, zdk1t ! workspace #if defined key_trcldf_eiv REAL(wp), DIMENSION(jpi,jpj) :: & zftug, zftvg #endif REAL(wp), DIMENSION(jpi,jpj,jpk) :: & zftv ! workspace CHARACTER (len=22) :: charout !!---------------------------------------------------------------------- IF( kt == nittrc000 ) THEN IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'trc_ldf_iso : iso neutral lateral diffusion or' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~ horizontal laplacian diffusion in s-coordinate' #if defined key_trcldf_eiv && defined key_diaeiv u_trc_eiv(:,:,:) = 0.e0 v_trc_eiv(:,:,:) = 0.e0 #endif ENDIF DO jn = 1, jptra ! ! =============== DO jk = 1, jpkm1 ! Horizontal slab ! ! =============== ! 1. Vertical tracer gradient at level jk and jk+1 ! ------------------------------------------------ ! surface boundary condition: zdkt(jk=1)=zdkt(jk=2) zdk1t(:,:) = ( trb(:,:,jk,jn) - trb(:,:,jk+1,jn) ) * tmask(:,:,jk+1) IF( jk == 1 ) THEN zdkt(:,:) = zdk1t(:,:) ELSE zdkt(:,:) = ( trb(:,:,jk-1,jn) - trb(:,:,jk,jn) ) * tmask(:,:,jk) ENDIF ! 2. Horizontal fluxes ! -------------------- DO jj = 1 , jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zabe1 = ( fsahtru(ji,jj,jk) + ahtrb0 ) * e2u(ji,jj) * fse3u(ji,jj,jk) / e1u(ji,jj) zabe2 = ( fsahtrv(ji,jj,jk) + ahtrb0 ) * e1v(ji,jj) * fse3v(ji,jj,jk) / e2v(ji,jj) zmsku = 1. / MAX( tmask(ji+1,jj,jk ) + tmask(ji,jj,jk+1) & + tmask(ji+1,jj,jk+1) + tmask(ji,jj,jk ), 1. ) zmskv = 1. / MAX( tmask(ji,jj+1,jk ) + tmask(ji,jj,jk+1) & + tmask(ji,jj+1,jk+1) + tmask(ji,jj,jk ), 1. ) zcof1 = -fsahtru(ji,jj,jk) * e2u(ji,jj) * uslp(ji,jj,jk) * zmsku zcof2 = -fsahtrv(ji,jj,jk) * e1v(ji,jj) * vslp(ji,jj,jk) * zmskv zftu(ji,jj,jk) = umask(ji,jj,jk) * ( zabe1 * ( trb(ji+1,jj,jk,jn) - trb(ji,jj,jk,jn) ) & & + zcof1 * ( zdkt (ji+1,jj) + zdk1t(ji,jj) & & + zdk1t(ji+1,jj) + zdkt (ji,jj) ) ) zftv(ji,jj,jk) = vmask(ji,jj,jk) * ( zabe2 * ( trb(ji,jj+1,jk,jn) - trb(ji,jj,jk,jn) ) & & + zcof2 * ( zdkt (ji,jj+1) + zdk1t(ji,jj) & & + zdk1t(ji,jj+1) + zdkt (ji,jj) ) ) END DO END DO # if defined key_trcldf_eiv ! ! ---------------------------------------! ! ! Eddy induced vertical advective fluxes ! ! ! ---------------------------------------! DO jj = 1, jpjm1 DO ji = 1, fs_jpim1 ! vector opt. zuwk = ( wslpi(ji,jj,jk ) + wslpi(ji+1,jj,jk ) ) * fsaeitru(ji,jj,jk ) * umask(ji,jj,jk ) zuwk1= ( wslpi(ji,jj,jk+1) + wslpi(ji+1,jj,jk+1) ) * fsaeitru(ji,jj,jk+1) * umask(ji,jj,jk+1) zvwk = ( wslpj(ji,jj,jk ) + wslpj(ji,jj+1,jk ) ) * fsaeitrv(ji,jj,jk ) * vmask(ji,jj,jk ) zvwk1= ( wslpj(ji,jj,jk+1) + wslpj(ji,jj+1,jk+1) ) * fsaeitrv(ji,jj,jk+1) * vmask(ji,jj,jk+1) zcg1= -0.25 * e2u(ji,jj) * umask(ji,jj,jk) * ( zuwk-zuwk1 ) zcg2= -0.25 * e1v(ji,jj) * vmask(ji,jj,jk) * ( zvwk-zvwk1 ) zftug(ji,jj) = zcg1 * ( trb(ji+1,jj,jk,jn) + trb(ji,jj,jk,jn) ) zftvg(ji,jj) = zcg2 * ( trb(ji,jj+1,jk,jn) + trb(ji,jj,jk,jn) ) zftu(ji,jj,jk) = zftu(ji,jj,jk) + zftug(ji,jj) zftv(ji,jj,jk) = zftv(ji,jj,jk) + zftvg(ji,jj) # if defined key_diaeiv u_trc_eiv(ji,jj,jk) = -2. * zcg1 / ( e2u(ji,jj) * fse3u(ji,jj,jk) ) v_trc_eiv(ji,jj,jk) = -2. * zcg2 / ( e1v(ji,jj) * fse3v(ji,jj,jk) ) # endif END DO END DO # endif ! II.4 Second derivative (divergence) and add to the general trend ! ---------------------------------------------------------------- DO jj = 2 , jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. zbtr= 1. / ( e1t(ji,jj)*e2t(ji,jj)*fse3t(ji,jj,jk) ) ztra = zbtr * ( zftu(ji,jj,jk) - zftu(ji-1,jj ,jk) & & + zftv(ji,jj,jk) - zftv(ji ,jj-1,jk) ) tra (ji,jj,jk,jn) = tra (ji,jj,jk,jn) + ztra #if defined key_trc_diatrd IF (luttrd(jn)) trtrd (ji,jj,jk,ikeep(jn),4) = ( zftu(ji,jj,jk) - zftu(ji-1,jj,jk ) ) * zbtr IF (luttrd(jn)) trtrd (ji,jj,jk,ikeep(jn),5) = ( zftv(ji,jj,jk) - zftv(ji,jj-1,jk ) ) * zbtr #endif END DO END DO ! ! =============== END DO ! End of slab ! ! =============== END DO IF(ln_ctl) THEN ! print mean trends (used for debugging) WRITE(charout, FMT="('ldf - iso')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc(tab4d=tra, mask=tmask, clinfo=ctrcnm,clinfo2='trd') ENDIF END SUBROUTINE trc_ldf_iso #else !!---------------------------------------------------------------------- !! Dummy module : No rotation of the lateral mixing tensor !!---------------------------------------------------------------------- CONTAINS SUBROUTINE trc_ldf_iso( kt ) ! Empty routine INTEGER, INTENT(in) :: kt WRITE(*,*) 'trc_ldf_iso: You should not have seen this print! error?', kt END SUBROUTINE trc_ldf_iso #endif !!============================================================================== END MODULE trcldf_iso