MODULE limtrp !!====================================================================== !! *** MODULE limtrp *** !! LIM transport ice model : sea-ice advection/diffusion !!====================================================================== !! History : LIM-2 ! 2000-01 (M.A. Morales Maqueda, H. Goosse, and T. Fichefet) Original code !! 3.0 ! 2005-11 (M. Vancoppenolle) Multi-layer sea ice, salinity variations !! 4.0 ! 2011-02 (G. Madec) dynamical allocation !!---------------------------------------------------------------------- #if defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' LIM3 sea-ice model !!---------------------------------------------------------------------- !! lim_trp : advection/diffusion process of sea ice !!---------------------------------------------------------------------- USE phycst ! physical constant USE dom_oce ! ocean domain USE sbc_oce ! ocean surface boundary condition USE ice ! ice variables USE limhdf ! ice horizontal diffusion USE limvar ! USE limadv_prather ! advection scheme (Prather) USE limadv_umx ! advection scheme (ultimate-macho) ! USE in_out_manager ! I/O manager USE lbclnk ! lateral boundary conditions -- MPP exchanges USE lib_mpp ! MPP library USE wrk_nemo ! work arrays USE prtctl ! Print control USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) USE timing ! Timing USE limcons ! conservation tests USE limctl ! control prints IMPLICIT NONE PRIVATE PUBLIC lim_trp ! called by sbcice_lim INTEGER :: ncfl ! number of ice time step with CFL>1/2 !! * Substitution # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/LIM3 4.0 , UCL - NEMO Consortium (2011) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_trp( kt ) !!------------------------------------------------------------------- !! *** ROUTINE lim_trp *** !! !! ** purpose : advection/diffusion process of sea ice !! !! ** method : variables included in the process are scalar, !! other values are considered as second order. !! For advection, one can choose between !! a) an Ultimate-Macho scheme (whose order is defined by nn_limadv_ord) => nn_limadv=0 !! b) and a second order Prather scheme => nn_limadv=-1 !! !! ** action : !!--------------------------------------------------------------------- INTEGER, INTENT(in) :: kt ! number of iteration ! INTEGER :: ji, jj, jk, jm, jl, jt ! dummy loop indices INTEGER :: initad ! number of sub-timestep for the advection REAL(wp) :: zcfl , zusnit ! - - CHARACTER(len=80) :: cltmp ! REAL(wp) :: zvi_b, zsmv_b, zei_b, zfs_b, zfw_b, zft_b REAL(wp) :: zdv, zda REAL(wp), POINTER, DIMENSION(:,:) :: zatold, zeiold, zesold, zsmvold REAL(wp), POINTER, DIMENSION(:,:,:) :: zhimax, zviold, zvsold ! --- diffusion --- ! REAL(wp), POINTER, DIMENSION(:,:,:) :: zhdfptab INTEGER , PARAMETER :: ihdf_vars = 6 ! Number of variables in which we apply horizontal diffusion ! inside limtrp for each ice category , not counting the ! variables corresponding to ice_layers ! --- ultimate macho only --- ! REAL(wp) :: zdt REAL(wp), POINTER, DIMENSION(:,:) :: zudy, zvdx, zcu_box, zcv_box ! --- prather only --- ! REAL(wp), POINTER, DIMENSION(:,:) :: zarea REAL(wp), POINTER, DIMENSION(:,:,:) :: z0opw REAL(wp), POINTER, DIMENSION(:,:,:) :: z0ice, z0snw, z0ai, z0es , z0smi , z0oi REAL(wp), POINTER, DIMENSION(:,:,:,:) :: z0ei !! !!--------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('limtrp') CALL wrk_alloc( jpi,jpj, zatold, zeiold, zesold, zsmvold ) CALL wrk_alloc( jpi,jpj,jpl, zhimax, zviold, zvsold ) CALL wrk_alloc( jpi,jpj,jpl*(ihdf_vars + nlay_i)+1, zhdfptab) IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*)'' WRITE(numout,*)'limtrp' WRITE(numout,*)'~~~~~~' ncfl = 0 ! nb of time step with CFL > 1/2 ENDIF CALL lim_var_agg( 1 ) ! integrated values + ato_i !-------------------------------------! ! Advection of sea ice properties ! !-------------------------------------! ! conservation test IF( ln_limdiachk ) CALL lim_cons_hsm(0, 'limtrp', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) ! store old values for diag zviold = v_i zvsold = v_s zsmvold(:,:) = SUM( smv_i(:,:,:), dim=3 ) zeiold (:,:) = et_i zesold (:,:) = et_s !--- Thickness correction init. --- ! zatold(:,:) = at_i DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,jl) - epsi20 ) ) ht_i (ji,jj,jl) = v_i (ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch ht_s (ji,jj,jl) = v_s (ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch END DO END DO END DO ! --- Record max of the surrounding ice thicknesses for correction in case advection creates ice too thick --- ! zhimax(:,:,:) = ht_i(:,:,:) + ht_s(:,:,:) DO jl = 1, jpl DO jj = 2, jpjm1 DO ji = 2, jpim1 zhimax(ji,jj,jl) = MAXVAL( ht_i(ji-1:ji+1,jj-1:jj+1,jl) + ht_s(ji-1:ji+1,jj-1:jj+1,jl) ) END DO END DO CALL lbc_lnk(zhimax(:,:,jl),'T',1.) END DO ! --- If ice drift field is too fast, use an appropriate time step for advection --- ! zcfl = MAXVAL( ABS( u_ice(:,:) ) * rdt_ice * r1_e1u(:,:) ) ! CFL test for stability zcfl = MAX( zcfl, MAXVAL( ABS( v_ice(:,:) ) * rdt_ice * r1_e2v(:,:) ) ) IF( lk_mpp ) CALL mpp_max( zcfl ) IF( zcfl > 0.5 ) THEN ; initad = 2 ; zusnit = 0.5_wp ELSE ; initad = 1 ; zusnit = 1.0_wp ENDIF !! IF( zcfl > 0.5_wp .AND. lwp ) THEN !! ncfl = ncfl + 1 !! IF( ncfl > 0 ) THEN !! WRITE(cltmp,'(i6.1)') ncfl !! CALL ctl_warn( 'lim_trp: ncfl= ', TRIM(cltmp), 'advective ice time-step using a split in sub-time-step ') !! ENDIF !! ENDIF SELECT CASE ( nn_limadv ) !=============================! CASE ( 0 ) !== Ultimate-MACHO scheme ==! !=============================! CALL wrk_alloc( jpi,jpj, zudy, zvdx, zcu_box, zcv_box ) IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*)'' WRITE(numout,*)'lim_adv_umx : Ultimate-MACHO advection scheme' WRITE(numout,*)'~~~~~~~~~~~' ENDIF ! zdt = rdt_ice / REAL(initad) ! transport zudy(:,:) = u_ice(:,:) * e2u(:,:) zvdx(:,:) = v_ice(:,:) * e1v(:,:) ! define velocity for advection: u*grad(H) DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 IF ( u_ice(ji,jj) * u_ice(ji-1,jj) <= 0._wp ) THEN ; zcu_box(ji,jj) = 0._wp ELSEIF( u_ice(ji,jj) > 0._wp ) THEN ; zcu_box(ji,jj) = u_ice(ji-1,jj) ELSE ; zcu_box(ji,jj) = u_ice(ji ,jj) ENDIF IF ( v_ice(ji,jj) * v_ice(ji,jj-1) <= 0._wp ) THEN ; zcv_box(ji,jj) = 0._wp ELSEIF( v_ice(ji,jj) > 0._wp ) THEN ; zcv_box(ji,jj) = v_ice(ji,jj-1) ELSE ; zcv_box(ji,jj) = v_ice(ji,jj ) ENDIF END DO END DO ! advection DO jt = 1, initad CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, ato_i(:,:) ) ! Open water area DO jl = 1, jpl CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, a_i(:,:,jl) ) ! Ice area CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, v_i(:,:,jl) ) ! Ice volume CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, smv_i(:,:,jl) ) ! Salt content CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, oa_i (:,:,jl) ) ! Age content DO jk = 1, nlay_i CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, e_i(:,:,jk,jl) ) ! Ice heat content END DO CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, v_s(:,:,jl) ) ! Snow volume CALL lim_adv_umx( kt, zdt, zudy, zvdx, zcu_box, zcv_box, e_s(:,:,1,jl) ) ! Snow heat content END DO END DO ! at_i(:,:) = a_i(:,:,1) ! total ice fraction DO jl = 2, jpl at_i(:,:) = at_i(:,:) + a_i(:,:,jl) END DO ! CALL wrk_dealloc( jpi,jpj, zudy, zvdx, zcu_box, zcv_box ) !=============================! CASE ( -1 ) !== Prather scheme ==! !=============================! CALL wrk_alloc( jpi,jpj, zarea ) CALL wrk_alloc( jpi,jpj,1, z0opw ) CALL wrk_alloc( jpi,jpj,jpl, z0ice, z0snw, z0ai, z0es , z0smi , z0oi ) CALL wrk_alloc( jpi,jpj,nlay_i,jpl, z0ei ) IF( kt == nit000 .AND. lwp ) THEN WRITE(numout,*)'' WRITE(numout,*)'lim_adv_xy : Prather advection scheme' WRITE(numout,*)'~~~~~~~~~~~' ENDIF zarea(:,:) = e1e2t(:,:) !------------------------- ! transported fields !------------------------- z0opw(:,:,1) = ato_i(:,:) * e1e2t(:,:) ! Open water area DO jl = 1, jpl z0snw (:,:,jl) = v_s (:,:, jl) * e1e2t(:,:) ! Snow volume z0ice(:,:,jl) = v_i (:,:, jl) * e1e2t(:,:) ! Ice volume z0ai (:,:,jl) = a_i (:,:, jl) * e1e2t(:,:) ! Ice area z0smi (:,:,jl) = smv_i(:,:, jl) * e1e2t(:,:) ! Salt content z0oi (:,:,jl) = oa_i (:,:, jl) * e1e2t(:,:) ! Age content z0es (:,:,jl) = e_s (:,:,1,jl) * e1e2t(:,:) ! Snow heat content DO jk = 1, nlay_i z0ei (:,:,jk,jl) = e_i (:,:,jk,jl) * e1e2t(:,:) ! Ice heat content END DO END DO IF( MOD( ( kt - 1) / nn_fsbc , 2 ) == 0 ) THEN !== odd ice time step: adv_x then adv_y ==! DO jt = 1, initad CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0opw (:,:,1), sxopw(:,:), & !--- ice open water area & sxxopw(:,:) , syopw(:,:), syyopw(:,:), sxyopw(:,:) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0opw (:,:,1), sxopw(:,:), & & sxxopw(:,:) , syopw(:,:), syyopw(:,:), sxyopw(:,:) ) DO jl = 1, jpl CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0ice (:,:,jl), sxice(:,:,jl), & !--- ice volume --- & sxxice(:,:,jl), syice(:,:,jl), syyice(:,:,jl), sxyice(:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0ice (:,:,jl), sxice(:,:,jl), & & sxxice(:,:,jl), syice(:,:,jl), syyice(:,:,jl), sxyice(:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0snw (:,:,jl), sxsn (:,:,jl), & !--- snow volume --- & sxxsn (:,:,jl), sysn (:,:,jl), syysn (:,:,jl), sxysn (:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0snw (:,:,jl), sxsn (:,:,jl), & & sxxsn (:,:,jl), sysn (:,:,jl), syysn (:,:,jl), sxysn (:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0smi (:,:,jl), sxsal(:,:,jl), & !--- ice salinity --- & sxxsal(:,:,jl), sysal(:,:,jl), syysal(:,:,jl), sxysal(:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0smi (:,:,jl), sxsal(:,:,jl), & & sxxsal(:,:,jl), sysal(:,:,jl), syysal(:,:,jl), sxysal(:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0oi (:,:,jl), sxage(:,:,jl), & !--- ice age --- & sxxage(:,:,jl), syage(:,:,jl), syyage(:,:,jl), sxyage(:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0oi (:,:,jl), sxage(:,:,jl), & & sxxage(:,:,jl), syage(:,:,jl), syyage(:,:,jl), sxyage(:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0ai (:,:,jl), sxa (:,:,jl), & !--- ice concentrations --- & sxxa (:,:,jl), sya (:,:,jl), syya (:,:,jl), sxya (:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0ai (:,:,jl), sxa (:,:,jl), & & sxxa (:,:,jl), sya (:,:,jl), syya (:,:,jl), sxya (:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0es (:,:,jl), sxc0 (:,:,jl), & !--- snow heat contents --- & sxxc0 (:,:,jl), syc0 (:,:,jl), syyc0 (:,:,jl), sxyc0 (:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0es (:,:,jl), sxc0 (:,:,jl), & & sxxc0 (:,:,jl), syc0 (:,:,jl), syyc0 (:,:,jl), sxyc0 (:,:,jl) ) DO jk = 1, nlay_i !--- ice heat contents --- CALL lim_adv_x( zusnit, u_ice, 1._wp, zarea, z0ei(:,:,jk,jl), sxe (:,:,jk,jl), & & sxxe(:,:,jk,jl), sye (:,:,jk,jl), & & syye(:,:,jk,jl), sxye(:,:,jk,jl) ) CALL lim_adv_y( zusnit, v_ice, 0._wp, zarea, z0ei(:,:,jk,jl), sxe (:,:,jk,jl), & & sxxe(:,:,jk,jl), sye (:,:,jk,jl), & & syye(:,:,jk,jl), sxye(:,:,jk,jl) ) END DO END DO END DO ELSE DO jt = 1, initad CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0opw (:,:,1), sxopw(:,:), & !--- ice open water area & sxxopw(:,:) , syopw(:,:), syyopw(:,:), sxyopw(:,:) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0opw (:,:,1), sxopw(:,:), & & sxxopw(:,:) , syopw(:,:), syyopw(:,:), sxyopw(:,:) ) DO jl = 1, jpl CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0ice (:,:,jl), sxice(:,:,jl), & !--- ice volume --- & sxxice(:,:,jl), syice(:,:,jl), syyice(:,:,jl), sxyice(:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0ice (:,:,jl), sxice(:,:,jl), & & sxxice(:,:,jl), syice(:,:,jl), syyice(:,:,jl), sxyice(:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0snw (:,:,jl), sxsn (:,:,jl), & !--- snow volume --- & sxxsn (:,:,jl), sysn (:,:,jl), syysn (:,:,jl), sxysn (:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0snw (:,:,jl), sxsn (:,:,jl), & & sxxsn (:,:,jl), sysn (:,:,jl), syysn (:,:,jl), sxysn (:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0smi (:,:,jl), sxsal(:,:,jl), & !--- ice salinity --- & sxxsal(:,:,jl), sysal(:,:,jl), syysal(:,:,jl), sxysal(:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0smi (:,:,jl), sxsal(:,:,jl), & & sxxsal(:,:,jl), sysal(:,:,jl), syysal(:,:,jl), sxysal(:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0oi (:,:,jl), sxage(:,:,jl), & !--- ice age --- & sxxage(:,:,jl), syage(:,:,jl), syyage(:,:,jl), sxyage(:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0oi (:,:,jl), sxage(:,:,jl), & & sxxage(:,:,jl), syage(:,:,jl), syyage(:,:,jl), sxyage(:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0ai (:,:,jl), sxa (:,:,jl), & !--- ice concentrations --- & sxxa (:,:,jl), sya (:,:,jl), syya (:,:,jl), sxya (:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0ai (:,:,jl), sxa (:,:,jl), & & sxxa (:,:,jl), sya (:,:,jl), syya (:,:,jl), sxya (:,:,jl) ) CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0es (:,:,jl), sxc0 (:,:,jl), & !--- snow heat contents --- & sxxc0 (:,:,jl), syc0 (:,:,jl), syyc0 (:,:,jl), sxyc0 (:,:,jl) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0es (:,:,jl), sxc0 (:,:,jl), & & sxxc0 (:,:,jl), syc0 (:,:,jl), syyc0 (:,:,jl), sxyc0 (:,:,jl) ) DO jk = 1, nlay_i !--- ice heat contents --- CALL lim_adv_y( zusnit, v_ice, 1._wp, zarea, z0ei(:,:,jk,jl), sxe (:,:,jk,jl), & & sxxe(:,:,jk,jl), sye (:,:,jk,jl), & & syye(:,:,jk,jl), sxye(:,:,jk,jl) ) CALL lim_adv_x( zusnit, u_ice, 0._wp, zarea, z0ei(:,:,jk,jl), sxe (:,:,jk,jl), & & sxxe(:,:,jk,jl), sye (:,:,jk,jl), & & syye(:,:,jk,jl), sxye(:,:,jk,jl) ) END DO END DO END DO ENDIF !------------------------------------------- ! Recover the properties from their contents !------------------------------------------- ato_i(:,:) = z0opw(:,:,1) * r1_e1e2t(:,:) DO jl = 1, jpl v_i (:,:, jl) = z0ice(:,:,jl) * r1_e1e2t(:,:) v_s (:,:, jl) = z0snw(:,:,jl) * r1_e1e2t(:,:) smv_i(:,:, jl) = z0smi(:,:,jl) * r1_e1e2t(:,:) oa_i (:,:, jl) = z0oi (:,:,jl) * r1_e1e2t(:,:) a_i (:,:, jl) = z0ai (:,:,jl) * r1_e1e2t(:,:) e_s (:,:,1,jl) = z0es (:,:,jl) * r1_e1e2t(:,:) DO jk = 1, nlay_i e_i(:,:,jk,jl) = z0ei(:,:,jk,jl) * r1_e1e2t(:,:) END DO END DO at_i(:,:) = a_i(:,:,1) ! total ice fraction DO jl = 2, jpl at_i(:,:) = at_i(:,:) + a_i(:,:,jl) END DO CALL wrk_dealloc( jpi,jpj, zarea ) CALL wrk_dealloc( jpi,jpj,1, z0opw ) CALL wrk_dealloc( jpi,jpj,jpl, z0ice, z0snw, z0ai, z0es , z0smi , z0oi ) CALL wrk_dealloc( jpi,jpj,nlay_i,jpl, z0ei ) END SELECT !------------------------------! ! Diffusion of Ice fields !------------------------------! IF( nn_ahi0 /= -1 .AND. nn_limdyn == 2 ) THEN ! ! --- Prepare diffusion for variables with categories --- ! ! mask eddy diffusivity coefficient at ocean U- and V-points jm=1 DO jl = 1, jpl DO jj = 1, jpjm1 ! NB: has not to be defined on jpj line and jpi row DO ji = 1 , fs_jpim1 pahu3D(ji,jj,jl) = ( 1._wp - MAX( 0._wp, SIGN( 1._wp, -a_i(ji ,jj, jl ) ) ) ) & & * ( 1._wp - MAX( 0._wp, SIGN( 1._wp, -a_i(ji+1,jj, jl ) ) ) ) * ahiu(ji,jj) pahv3D(ji,jj,jl) = ( 1._wp - MAX( 0._wp, SIGN( 1._wp, -a_i(ji, jj, jl ) ) ) ) & & * ( 1._wp - MAX( 0._wp, SIGN( 1._wp,- a_i(ji, jj+1,jl ) ) ) ) * ahiv(ji,jj) END DO END DO zhdfptab(:,:,jm)= a_i (:,:, jl); jm = jm + 1 zhdfptab(:,:,jm)= v_i (:,:, jl); jm = jm + 1 zhdfptab(:,:,jm)= v_s (:,:, jl); jm = jm + 1 zhdfptab(:,:,jm)= smv_i(:,:, jl); jm = jm + 1 zhdfptab(:,:,jm)= oa_i (:,:, jl); jm = jm + 1 zhdfptab(:,:,jm)= e_s (:,:,1,jl); jm = jm + 1 ! Sample of adding more variables to apply lim_hdf (ihdf_vars must be increased) ! zhdfptab(:,:,jm) = variable_1 (:,:,1,jl); jm = jm + 1 ! zhdfptab(:,:,jm) = variable_2 (:,:,1,jl); jm = jm + 1 DO jk = 1, nlay_i zhdfptab(:,:,jm)=e_i(:,:,jk,jl); jm= jm+1 END DO END DO ! --- Prepare diffusion for open water area --- ! ! mask eddy diffusivity coefficient at ocean U- and V-points DO jj = 1, jpjm1 ! NB: has not to be defined on jpj line and jpi row DO ji = 1 , fs_jpim1 pahu3D(ji,jj,jpl+1) = ( 1._wp - MAX( 0._wp, SIGN( 1._wp, -at_i(ji ,jj) ) ) ) & & * ( 1._wp - MAX( 0._wp, SIGN( 1._wp, -at_i(ji+1,jj) ) ) ) * ahiu(ji,jj) pahv3D(ji,jj,jpl+1) = ( 1._wp - MAX( 0._wp, SIGN( 1._wp, -at_i(ji,jj ) ) ) ) & & * ( 1._wp - MAX( 0._wp, SIGN( 1._wp,- at_i(ji,jj+1) ) ) ) * ahiv(ji,jj) END DO END DO ! zhdfptab(:,:,jm)= ato_i (:,:); ! --- Apply diffusion --- ! CALL lim_hdf( zhdfptab, ihdf_vars ) ! --- Recover properties --- ! jm=1 DO jl = 1, jpl a_i (:,:, jl) = zhdfptab(:,:,jm); jm = jm + 1 v_i (:,:, jl) = zhdfptab(:,:,jm); jm = jm + 1 v_s (:,:, jl) = zhdfptab(:,:,jm); jm = jm + 1 smv_i(:,:, jl) = zhdfptab(:,:,jm); jm = jm + 1 oa_i (:,:, jl) = zhdfptab(:,:,jm); jm = jm + 1 e_s (:,:,1,jl) = zhdfptab(:,:,jm); jm = jm + 1 ! Sample of adding more variables to apply lim_hdf ! variable_1 (:,:,1,jl) = zhdfptab(:,:, jm ) ; jm + 1 ! variable_2 (:,:,1,jl) = zhdfptab(:,:, jm ) ; jm + 1 DO jk = 1, nlay_i e_i(:,:,jk,jl) = zhdfptab(:,:,jm);jm= jm + 1 END DO END DO ato_i (:,:) = zhdfptab(:,:,jm) ENDIF ! --- diags --- DO jj = 1, jpj DO ji = 1, jpi diag_trp_ei (ji,jj) = ( SUM( e_i (ji,jj,1:nlay_i,:) ) - zeiold(ji,jj) ) * r1_rdtice diag_trp_es (ji,jj) = ( SUM( e_s (ji,jj,1:nlay_s,:) ) - zesold(ji,jj) ) * r1_rdtice diag_trp_smv(ji,jj) = ( SUM( smv_i(ji,jj,:) ) - zsmvold(ji,jj) ) * r1_rdtice diag_trp_vi (ji,jj) = SUM( v_i(ji,jj,:) - zviold(ji,jj,:) ) * r1_rdtice diag_trp_vs (ji,jj) = SUM( v_s(ji,jj,:) - zvsold(ji,jj,:) ) * r1_rdtice END DO END DO IF( nn_limdyn == 2) THEN ! zap small areas CALL lim_var_zapsmall !--- Thickness correction in case too high --- ! DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi IF ( v_i(ji,jj,jl) > 0._wp ) THEN rswitch = MAX( 0._wp , SIGN( 1._wp, a_i(ji,jj,jl) - epsi20 ) ) ht_i (ji,jj,jl) = v_i (ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch ht_s (ji,jj,jl) = v_s (ji,jj,jl) / MAX( a_i(ji,jj,jl) , epsi20 ) * rswitch zdv = v_i(ji,jj,jl) + v_s(ji,jj,jl) - zviold(ji,jj,jl) - zvsold(ji,jj,jl) IF ( ( zdv > 0.0 .AND. (ht_i(ji,jj,jl)+ht_s(ji,jj,jl)) > zhimax(ji,jj,jl) .AND. zatold(ji,jj) < 0.80 ) .OR. & & ( zdv <= 0.0 .AND. (ht_i(ji,jj,jl)+ht_s(ji,jj,jl)) > zhimax(ji,jj,jl) ) ) THEN rswitch = MAX( 0._wp, SIGN( 1._wp, zhimax(ji,jj,jl) - epsi20 ) ) a_i(ji,jj,jl) = rswitch * ( v_i(ji,jj,jl) + v_s(ji,jj,jl) ) / MAX( zhimax(ji,jj,jl), epsi20 ) ! small correction due to *rswitch for a_i v_i (ji,jj,jl) = rswitch * v_i (ji,jj,jl) v_s (ji,jj,jl) = rswitch * v_s (ji,jj,jl) smv_i(ji,jj,jl) = rswitch * smv_i(ji,jj,jl) e_s(ji,jj,1,jl) = rswitch * e_s(ji,jj,1,jl) e_i(ji,jj,1:nlay_i,jl) = rswitch * e_i(ji,jj,1:nlay_i,jl) ENDIF ENDIF END DO END DO END DO ! ------------------------------------------------- ! Force the upper limit of ht_i to always be < hi_max (99 m). DO jj = 1, jpj DO ji = 1, jpi rswitch = MAX( 0._wp , SIGN( 1._wp, ht_i(ji,jj,jpl) - epsi20 ) ) ht_i(ji,jj,jpl) = MIN( ht_i(ji,jj,jpl) , hi_max(jpl) ) a_i (ji,jj,jpl) = v_i(ji,jj,jpl) / MAX( ht_i(ji,jj,jpl) , epsi20 ) * rswitch END DO END DO ENDIF !------------------------------------------------------------ ! Impose a_i < amax if no ridging/rafting or in mono-category !------------------------------------------------------------ ! at_i(:,:) = SUM( a_i(:,:,:), dim=3 ) IF ( nn_limdyn == 1 .OR. ( ( nn_monocat == 2 ) .AND. ( jpl == 1 ) ) ) THEN ! simple conservative piling, comparable with LIM2 DO jl = 1, jpl DO jj = 1, jpj DO ji = 1, jpi rswitch = MAX( 0._wp, SIGN( 1._wp, at_i(ji,jj) - epsi20 ) ) zda = rswitch * MIN( rn_amax_2d(ji,jj) - at_i(ji,jj), 0._wp ) & & * a_i(ji,jj,jl) / MAX( at_i(ji,jj), epsi20 ) a_i(ji,jj,jl) = a_i(ji,jj,jl) + zda END DO END DO END DO ENDIF ! --- agglomerate variables ----------------- vt_i(:,:) = SUM( v_i(:,:,:), dim=3 ) vt_s(:,:) = SUM( v_s(:,:,:), dim=3 ) at_i(:,:) = SUM( a_i(:,:,:), dim=3 ) ! --- open water = 1 if at_i=0 -------------------------------- WHERE( at_i == 0._wp ) ato_i = 1._wp ! conservation test IF( ln_limdiachk ) CALL lim_cons_hsm(1, 'limtrp', zvi_b, zsmv_b, zei_b, zfw_b, zfs_b, zft_b) ! ------------------------------------------------- ! control prints ! ------------------------------------------------- IF( ln_limctl ) CALL lim_prt( kt, iiceprt, jiceprt,-1, ' - ice dyn & trp - ' ) ! CALL wrk_dealloc( jpi,jpj, zatold, zeiold, zesold, zsmvold ) CALL wrk_dealloc( jpi,jpj,jpl, zhimax, zviold, zvsold ) CALL wrk_dealloc( jpi,jpj,jpl*(ihdf_vars + nlay_i)+1, zhdfptab) ! IF( nn_timing == 1 ) CALL timing_stop('limtrp') ! END SUBROUTINE lim_trp #else !!---------------------------------------------------------------------- !! Default option Empty Module No sea-ice model !!---------------------------------------------------------------------- CONTAINS SUBROUTINE lim_trp ! Empty routine END SUBROUTINE lim_trp #endif !!====================================================================== END MODULE limtrp