MODULE agrif_lim3_interp !!===================================================================================== !! *** MODULE agrif_lim3_interp *** !! Nesting module : interp surface ice boundary condition from a parent grid !! Sea-Ice model : LIM 3.6 Sea ice model time-stepping !!===================================================================================== !! History : 2.0 ! 04-2008 (F. Dupont) initial version !! 3.4 ! 09-2012 (R. Benshila, C. Herbaut) update and EVP !! 3.6 ! 05-2016 (C. Rousset) Add LIM3 compatibility !!---------------------------------------------------------------------- #if defined key_agrif && defined key_lim3 !!---------------------------------------------------------------------- !! 'key_lim3' : LIM 3.6 sea-ice model !! 'key_agrif' : AGRIF library !!---------------------------------------------------------------------- !! agrif_interp_lim3 : interpolation of ice at "after" sea-ice time step !! agrif_interp_u_ice : atomic routine to interpolate u_ice !! agrif_interp_v_ice : atomic routine to interpolate v_ice !! agrif_interp_tra_ice : atomic routine to interpolate ice properties !!---------------------------------------------------------------------- USE par_oce USE dom_oce USE sbc_oce USE ice USE agrif_ice IMPLICIT NONE PRIVATE PUBLIC agrif_interp_lim3 !!---------------------------------------------------------------------- !! NEMO/NST 3.6 , NEMO Consortium (2016) !! $Id: agrif_lim3_interp.F90 6204 2016-01-04 13:47:06Z cetlod $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE agrif_interp_lim3( cd_type, kiter, kitermax ) !!----------------------------------------------------------------------- !! *** ROUTINE agrif_rhg_lim3 *** !! !! ** Method : simple call to atomic routines using stored values to !! fill the boundaries depending of the position of the point and !! computing factor for time interpolation !!----------------------------------------------------------------------- CHARACTER(len=1), INTENT( in ) :: cd_type INTEGER , INTENT( in ), OPTIONAL :: kiter, kitermax !! REAL(wp) :: zbeta !!----------------------------------------------------------------------- ! IF( Agrif_Root() ) RETURN ! IF( PRESENT( kiter ) ) THEN ! interpolation at the child sub-time step (for ice rheology) zbeta = ( REAL(lim_nbstep) - REAL(kitermax - kiter) / REAL(kitermax) ) / & & ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) ELSE ! interpolation at the child time step zbeta = REAL(lim_nbstep) / ( Agrif_Rhot() * REAL(Agrif_Parent(nn_fsbc)) / REAL(nn_fsbc) ) ENDIF ! Agrif_SpecialValue=-9999. Agrif_UseSpecialValue = .TRUE. SELECT CASE(cd_type) CASE('U') CALL Agrif_Bc_variable( u_ice_id , procname=interp_u_ice , calledweight=zbeta ) CASE('V') CALL Agrif_Bc_variable( v_ice_id , procname=interp_v_ice , calledweight=zbeta ) CASE('T') CALL Agrif_Bc_variable( tra_ice_id, procname=interp_tra_ice, calledweight=zbeta ) END SELECT Agrif_SpecialValue=0. Agrif_UseSpecialValue = .FALSE. ! END SUBROUTINE agrif_interp_lim3 !!------------------ !! Local subroutines !!------------------ SUBROUTINE interp_u_ice( ptab, i1, i2, j1, j2, before ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_u_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child grid points, !! put -9999 WHERE the parent grid is masked. The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- INTEGER , INTENT(in) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in) :: before !! REAL(wp) :: zrhoy !!----------------------------------------------------------------------- ! IF( before ) THEN ! parent grid ptab(:,:) = e2u(i1:i2,j1:j2) * u_ice_b(i1:i2,j1:j2) WHERE( umask(i1:i2,j1:j2,1) == 0. ) ptab(:,:) = -9999. ELSE ! child grid zrhoy = Agrif_Rhoy() u_ice(i1:i2,j1:j2) = ptab(:,:) / ( e2u(i1:i2,j1:j2) * zrhoy ) * umask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE interp_u_ice SUBROUTINE interp_v_ice( ptab, i1, i2, j1, j2, before ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_v_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child grid points, !! put -9999 WHERE the parent grid is masked. The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- INTEGER , INTENT(in) :: i1, i2, j1, j2 REAL(wp), DIMENSION(i1:i2,j1:j2), INTENT(inout) :: ptab LOGICAL , INTENT(in) :: before !! REAL(wp) :: zrhox !!----------------------------------------------------------------------- ! IF( before ) THEN ! parent grid ptab(:,:) = e1v(i1:i2,j1:j2) * v_ice_b(i1:i2,j1:j2) WHERE( vmask(i1:i2,j1:j2,1) == 0. ) ptab(:,:) = -9999. ELSE ! child grid zrhox = Agrif_Rhox() v_ice(i1:i2,j1:j2) = ptab(:,:) / ( e1v(i1:i2,j1:j2) * zrhox ) * vmask(i1:i2,j1:j2,1) ENDIF ! END SUBROUTINE interp_v_ice SUBROUTINE interp_tra_ice( ptab, i1, i2, j1, j2, k1, k2, before, nb, ndir ) !!----------------------------------------------------------------------- !! *** ROUTINE interp_tra_ice *** !! !! i1 i2 j1 j2 are the index of the boundaries parent(when before) and child (when after) !! To solve issues when parent grid is "land" masked but not all the corresponding child grid points, !! put -9999 WHERE the parent grid is masked. The child solution will be found in the 9(?) points around !!----------------------------------------------------------------------- REAL(wp), DIMENSION(i1:i2,j1:j2,k1:k2), INTENT(inout) :: ptab INTEGER , INTENT(in) :: i1, i2, j1, j2, k1, k2 LOGICAL , INTENT(in) :: before INTEGER , INTENT(in) :: nb, ndir !! REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ztab INTEGER :: ji, jj, jk, jl, jm INTEGER :: imin, imax, jmin, jmax REAL(wp) :: zrhox, z1, z2, z3, z4, z5, z6, z7 LOGICAL :: western_side, eastern_side, northern_side, southern_side !!----------------------------------------------------------------------- ! clem: pkoi on n'utilise pas les quantités intégrées ici => before: * e1e2t ; after: * r1_e1e2t / rhox / rhoy ! a priori c'est ok comme ca (cf ce qui est fait dans l'ocean). Je ne sais pas pkoi ceci dit ALLOCATE( ztab(SIZE(a_i_b,1),SIZE(a_i_b,2),SIZE(ptab,3)) ) IF( before ) THEN ! parent grid jm = 1 DO jl = 1, jpl ptab(i1:i2,j1:j2,jm) = a_i_b (i1:i2,j1:j2,jl) ; jm = jm + 1 ptab(i1:i2,j1:j2,jm) = v_i_b (i1:i2,j1:j2,jl) ; jm = jm + 1 ptab(i1:i2,j1:j2,jm) = v_s_b (i1:i2,j1:j2,jl) ; jm = jm + 1 ptab(i1:i2,j1:j2,jm) = smv_i_b(i1:i2,j1:j2,jl) ; jm = jm + 1 ptab(i1:i2,j1:j2,jm) = oa_i_b (i1:i2,j1:j2,jl) ; jm = jm + 1 DO jk = 1, nlay_s ptab(i1:i2,j1:j2,jm) = e_s_b(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 ENDDO DO jk = 1, nlay_i ptab(i1:i2,j1:j2,jm) = e_i_b(i1:i2,j1:j2,jk,jl) ; jm = jm + 1 ENDDO ENDDO DO jk = k1, k2 WHERE( tmask(i1:i2,j1:j2,1) == 0. ) ptab(i1:i2,j1:j2,jk) = -9999. ENDDO ELSE ! child grid !! ==> The easiest interpolation is the following commented lines !! jm = 1 !! DO jl = 1, jpl !! a_i (i1:i2,j1:j2,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 !! v_i (i1:i2,j1:j2,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 !! v_s (i1:i2,j1:j2,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 !! smv_i(i1:i2,j1:j2,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 !! oa_i (i1:i2,j1:j2,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 !! DO jk = 1, nlay_s !! e_s(i1:i2,j1:j2,jk,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 !! ENDDO !! DO jk = 1, nlay_i !! e_i(i1:i2,j1:j2,jk,jl) = ptab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 !! ENDDO !! ENDDO !! ==> this is a more complex interpolation since we mix solutions over a couple of grid points !! it is advised to use it for fields modified by high order schemes (e.g. advection UM5...) ! record ztab jm = 1 DO jl = 1, jpl ztab(:,:,jm) = a_i_b (:,:,jl) ; jm = jm + 1 ztab(:,:,jm) = v_i_b (:,:,jl) ; jm = jm + 1 ztab(:,:,jm) = v_s_b (:,:,jl) ; jm = jm + 1 ztab(:,:,jm) = smv_i_b(:,:,jl) ; jm = jm + 1 ztab(:,:,jm) = oa_i_b (:,:,jl) ; jm = jm + 1 DO jk = 1, nlay_s ztab(:,:,jm) = e_s_b(:,:,jk,jl) ; jm = jm + 1 ENDDO DO jk = 1, nlay_i ztab(:,:,jm) = e_i_b(:,:,jk,jl) ; jm = jm + 1 ENDDO ENDDO ! ! borders of the domain western_side = (nb == 1).AND.(ndir == 1) ; eastern_side = (nb == 1).AND.(ndir == 2) southern_side = (nb == 2).AND.(ndir == 1) ; northern_side = (nb == 2).AND.(ndir == 2) ! ! spatial smoothing zrhox = Agrif_Rhox() z1 = ( zrhox - 1. ) * 0.5 z3 = ( zrhox - 1. ) / ( zrhox + 1. ) z6 = 2. * ( zrhox - 1. ) / ( zrhox + 1. ) z7 = - ( zrhox - 1. ) / ( zrhox + 3. ) z2 = 1. - z1 z4 = 1. - z3 z5 = 1. - z6 - z7 ! ! Remove corners imin = i1 ; imax = i2 ; jmin = j1 ; jmax = j2 IF( (nbondj == -1) .OR. (nbondj == 2) ) jmin = 3 IF( (nbondj == +1) .OR. (nbondj == 2) ) jmax = nlcj-2 IF( (nbondi == -1) .OR. (nbondi == 2) ) imin = 3 IF( (nbondi == +1) .OR. (nbondi == 2) ) imax = nlci-2 ! smoothed fields IF( eastern_side ) THEN ztab(nlci,j1:j2,:) = z1 * ptab(nlci,j1:j2,:) + z2 * ptab(nlci-1,j1:j2,:) DO jj = jmin, jmax rswitch = 0. IF( u_ice(nlci-2,jj) > 0._wp ) rswitch = 1. ztab(nlci-1,jj,:) = ( 1. - umask(nlci-2,jj,1) ) * ztab(nlci,jj,:) & & + umask(nlci-2,jj,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(nlci,jj,:) + z3 * ztab(nlci-2,jj,:) ) & & + rswitch * ( z6 * ztab(nlci-2,jj,:) + z5 * ztab(nlci,jj,:) + z7 * ztab(nlci-3,jj,:) ) ) ztab(nlci-1,jj,:) = ztab(nlci-1,jj,:) * tmask(nlci-1,jj,1) END DO ENDIF ! IF( northern_side ) THEN ztab(i1:i2,nlcj,:) = z1 * ptab(i1:i2,nlcj,:) + z2 * ptab(i1:i2,nlcj-1,:) DO ji = imin, imax rswitch = 0. IF( v_ice(ji,nlcj-2) > 0._wp ) rswitch = 1. ztab(ji,nlcj-1,:) = ( 1. - vmask(ji,nlcj-2,1) ) * ztab(ji,nlcj,:) & & + vmask(ji,nlcj-2,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(ji,nlcj,:) + z3 * ztab(ji,nlcj-2,:) ) & & + rswitch * ( z6 * ztab(ji,nlcj-2,:) + z5 * ztab(ji,nlcj,:) + z7 * ztab(ji,nlcj-3,:) ) ) ztab(ji,nlcj-1,:) = ztab(ji,nlcj-1,:) * tmask(ji,nlcj-1,1) END DO END IF ! IF( western_side) THEN ztab(1,j1:j2,:) = z1 * ptab(1,j1:j2,:) + z2 * ptab(2,j1:j2,:) DO jj = jmin, jmax rswitch = 0. IF( u_ice(2,jj) > 0._wp ) rswitch = 1. ztab(2,jj,:) = ( 1. - umask(2,jj,1) ) * ztab(1,jj,:) & & + umask(2,jj,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(1,jj,:) + z3 * ztab(3,jj,:) ) & & + rswitch * ( z6 * ztab(3,jj,:) + z5 * ztab(1,jj,:) + z7 * ztab(4,jj,:) ) ) ztab(2,jj,:) = ztab(2,jj,:) * tmask(2,jj,1) END DO ENDIF ! IF( southern_side ) THEN ztab(i1:i2,1,:) = z1 * ptab(i1:i2,1,:) + z2 * ptab(i1:i2,2,:) DO ji = imin, imax rswitch = 0. IF( v_ice(ji,2) > 0._wp ) rswitch = 1. ztab(ji,2,:) = ( 1. - vmask(ji,2,1) ) * ztab(ji,1,:) & & + vmask(ji,2,1) * & & ( ( 1. - rswitch ) * ( z4 * ztab(ji,1,:) + z3 * ztab(ji,3,:) ) & & + rswitch * ( z6 * ztab(ji,3,:) + z5 * ztab(ji,1,:) + z7 * ztab(ji,4,:) ) ) ztab(ji,2,:) = ztab(ji,2,:) * tmask(ji,2,1) END DO END IF ! ! Treatment of corners IF( (eastern_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(nlci-1,2,:) = ptab(nlci-1,2,:) ! East south IF( (eastern_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(nlci-1,nlcj-1,:) = ptab(nlci-1,nlcj-1,:) ! East north IF( (western_side) .AND. ((nbondj == -1).OR.(nbondj == 2)) ) ztab(2,2,:) = ptab(2,2,:) ! West south IF( (western_side) .AND. ((nbondj == 1).OR.(nbondj == 2)) ) ztab(2,nlcj-1,:) = ptab(2,nlcj-1,:) ! West north ! retrieve ice tracers jm = 1 DO jl = 1, jpl a_i (i1:i2,j1:j2,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 v_i (i1:i2,j1:j2,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 v_s (i1:i2,j1:j2,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 smv_i(i1:i2,j1:j2,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 oa_i (i1:i2,j1:j2,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 DO jk = 1, nlay_s e_s(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 ENDDO DO jk = 1, nlay_i e_i(i1:i2,j1:j2,jk,jl) = ztab(i1:i2,j1:j2,jm) * tmask(i1:i2,j1:j2,1) ; jm = jm + 1 ENDDO ENDDO ENDIF DEALLOCATE( ztab ) ! END SUBROUTINE interp_tra_ice #else CONTAINS SUBROUTINE agrif_lim3_interp_empty !!--------------------------------------------- !! *** ROUTINE agrif_lim3_interp_empty *** !!--------------------------------------------- WRITE(*,*) 'agrif_lim3_interp : You should not have seen this print! error?' END SUBROUTINE agrif_lim3_interp_empty #endif END MODULE agrif_lim3_interp