MODULE diaharm #if defined key_diaharm && defined key_tide !!================================================================================= !! *** MODULE diaharm *** !! Harmonic analysis of tidal constituents !!================================================================================= !! * Modules used USE oce ! ocean dynamics and tracers variables USE dom_oce ! ocean space and time domain USE in_out_manager ! I/O units USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE ioipsl ! NetCDF IPSL library USE diadimg ! To write dimg USE phycst USE dynspg_oce USE dynspg_ts USE daymod USE tide_mod USE iom USE timing ! preformance summary USE wrk_nemo ! working arrays IMPLICIT NONE PRIVATE LOGICAL, PUBLIC, PARAMETER :: lk_diaharm = .TRUE. INTEGER, PARAMETER :: jpincomax = 2.*jpmax_harmo INTEGER, PARAMETER :: jpdimsparse = jpincomax*300*24 INTEGER :: & !! namelist variables nit000_han = 1, & ! First time step used for harmonic analysis nitend_han = 1, & ! Last time step used for harmonic analysis nstep_han = 1, & ! Time step frequency for harmonic analysis nb_ana ! Number of harmonics to analyse INTEGER , ALLOCATABLE, DIMENSION(:) :: name REAL(wp), ALLOCATABLE, DIMENSION(:,:,:,:) :: ana_temp REAL(wp), ALLOCATABLE, DIMENSION(:) :: ana_freq, vt, ut, ft REAL(wp), ALLOCATABLE, DIMENSION(:,:,:) :: out_eta, & out_u , & out_v INTEGER :: ninco, nsparse INTEGER , DIMENSION(jpdimsparse) :: njsparse, nisparse INTEGER , SAVE, DIMENSION(jpincomax) :: ipos1 REAL(wp), DIMENSION(jpdimsparse) :: valuesparse REAL(wp), DIMENSION(jpincomax) :: ztmp4 , ztmp7 REAL(wp), SAVE, DIMENSION(jpincomax,jpincomax) :: ztmp3 , zpilier REAL(wp), SAVE, DIMENSION(jpincomax) :: zpivot CHARACTER (LEN=4), DIMENSION(jpmax_harmo) :: & tname ! Names of tidal constituents ('M2', 'K1',...) !! * Routine accessibility PUBLIC dia_harm ! routine called by step.F90 !!--------------------------------------------------------------------------------- !! !!--------------------------------------------------------------------------------- CONTAINS SUBROUTINE dia_harm_init !!---------------------------------------------------------------------- !! *** ROUTINE dia_harm_init *** !!---------------------------------------------------------------------- !! !! ** Purpose : Initialization of tidal harmonic analysis !! !! ** Method : Initialize frequency array and nodal factor for nit000_han !! !! History : !! 9.0 O. Le Galloudec and J. Chanut (Original) !!-------------------------------------------------------------------- !! * Local declarations INTEGER :: jh, nhan, jk, ji NAMELIST/nam_diaharm/ nit000_han, nitend_han, nstep_han, tname !!---------------------------------------------------------------------- IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dia_harm_init: Tidal harmonic analysis initialization' WRITE(numout,*) '~~~~~~~ ' ENDIF ! CALL tide_init_Wave ! tname(:)='' ! ! Read Namelist nam_diaharm REWIND ( numnam ) READ ( numnam, nam_diaharm ) ! IF(lwp) THEN WRITE(numout,*) 'First time step used for analysis: nit000_han= ', nit000_han WRITE(numout,*) 'Last time step used for analysis: nitend_han= ', nitend_han WRITE(numout,*) 'Time step frequency for harmonic analysis: nstep_han= ', nstep_han ENDIF ! Basic checks on harmonic analysis time window: ! ---------------------------------------------- IF (nit000 > nit000_han) THEN IF(lwp) WRITE(numout,*) ' E R R O R dia_harm_init : nit000_han must be greater than nit000, stop' IF(lwp) WRITE(numout,*) ' restart capability not implemented' nstop = nstop + 1 ENDIF IF (nitend < nitend_han) THEN IF(lwp) WRITE(numout,*) ' E R R O R dia_harm_init : nitend_han must be lower than nitend, stop' IF(lwp) WRITE(numout,*) ' restart capability not implemented' nstop = nstop + 1 ENDIF IF (MOD(nitend_han-nit000_han+1,nstep_han).NE.0) THEN IF(lwp) WRITE(numout,*) ' E R R O R dia_harm_init : analysis time span must be a multiple of nstep_han, stop' nstop = nstop + 1 END IF nb_ana=0 DO jk=1,jpmax_harmo DO ji=1,jpmax_harmo IF(TRIM(tname(jk)) == Wave(ji)%cname_tide) THEN nb_ana=nb_ana+1 ENDIF END DO ENDDO ! IF(lwp) THEN WRITE(numout,*) ' Namelist nam_diaharm' WRITE(numout,*) ' nb_ana = ', nb_ana CALL flush(numout) ENDIF ! IF (nb_ana > jpmax_harmo) THEN IF(lwp) WRITE(numout,*) ' E R R O R dia_harm_init : nb_ana must be lower than jpmax_harmo, stop' IF(lwp) WRITE(numout,*) ' jpmax_harmo= ', jpmax_harmo nstop = nstop + 1 ENDIF ALLOCATE(name (nb_ana)) DO jk=1,nb_ana DO ji=1,jpmax_harmo IF (TRIM(tname(jk)) .eq. Wave(ji)%cname_tide) THEN name(jk) = ji EXIT END IF END DO END DO ! Initialize frequency array: ! --------------------------- ALLOCATE(ana_freq(nb_ana)) ALLOCATE(vt (nb_ana)) ALLOCATE(ut (nb_ana)) ALLOCATE(ft (nb_ana)) CALL tide_harmo(ana_freq, vt, ut , ft, name ,nb_ana) IF(lwp) WRITE(numout,*) 'Analysed frequency : ',nb_ana ,'Frequency ' DO jh = 1, nb_ana IF(lwp) WRITE(numout,*) ' : ',tname(jh),' ',ana_freq(jh) END DO ! Initialize temporary arrays: ! ---------------------------- ALLOCATE( ana_temp(jpi,jpj,nb_ana*2,3)) ana_temp(:,:,:,:) = 0.e0 END SUBROUTINE dia_harm_init SUBROUTINE dia_harm ( kt ) !!---------------------------------------------------------------------- !! *** ROUTINE dia_harm *** !!---------------------------------------------------------------------- !! !! ** Purpose : Tidal harmonic analysis main routine !! !! ** Action : Sums ssh/u/v over time analysis [nit000_han,nitend_han] !! !! History : !! 9.0 O. Le Galloudec and J. Chanut (Original) !!-------------------------------------------------------------------- !! * Argument: INTEGER, INTENT( IN ) :: kt !! * Local declarations INTEGER :: ji, jj, jh, jc, nhc REAL(wp) :: ztime, ztemp !!-------------------------------------------------------------------- IF( nn_timing == 1 ) CALL timing_start('dia_harm') IF ( kt .EQ. nit000 ) CALL dia_harm_init IF ( ((kt.GE.nit000_han).AND.(kt.LE.nitend_han)).AND. & (MOD(kt,nstep_han).EQ.0) ) THEN ztime = (kt-nit000+1)*rdt nhc = 0 DO jh = 1,nb_ana DO jc = 1,2 nhc = nhc+1 ztemp =( MOD(jc,2) * ft(jh) *COS(ana_freq(jh)*ztime + vt(jh) + ut(jh)) & +(1.-MOD(jc,2))* ft(jh) *SIN(ana_freq(jh)*ztime + vt(jh) + ut(jh))) DO jj = 1,jpj DO ji = 1,jpi ! Elevation ana_temp(ji,jj,nhc,1) = ana_temp(ji,jj,nhc,1) & + ztemp*sshn(ji,jj)*tmask(ji,jj,1) #if defined key_dynspg_ts ! ubar ana_temp(ji,jj,nhc,2) = ana_temp(ji,jj,nhc,2) & + ztemp*un_b(ji,jj)*hur(ji,jj)*umask(ji,jj,1) ! vbar ana_temp(ji,jj,nhc,3) = ana_temp(ji,jj,nhc,3) & + ztemp*vn_b(ji,jj)*hvr(ji,jj)*vmask(ji,jj,1) #endif END DO END DO END DO END DO END IF IF ( kt .EQ. nitend_han ) CALL dia_harm_end IF( nn_timing == 1 ) CALL timing_stop('dia_harm') END SUBROUTINE dia_harm SUBROUTINE dia_harm_end !!---------------------------------------------------------------------- !! *** ROUTINE diaharm_end *** !!---------------------------------------------------------------------- !! !! ** Purpose : Compute the Real and Imaginary part of tidal constituents !! !! ** Action : Decompose the signal on the harmonic constituents !! !! History : !! 9.0 O. Le Galloudec and J. Chanut (Original) !!-------------------------------------------------------------------- !! * Local declarations INTEGER :: ji, jj, jh, jc, jn, nhan, jl INTEGER :: ksp, kun, keq REAL(wp) :: ztime, ztime_ini, ztime_end REAL(wp) :: X1,X2 REAL(wp), POINTER, DIMENSION(:,:,:,:) :: ana_amp !!-------------------------------------------------------------------- CALL wrk_alloc( jpi , jpj , jpmax_harmo , 2 , ana_amp ) IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'anharmo_end: kt=nitend_han: Perform harmonic analysis' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~' ztime_ini = nit000_han*rdt ! Initial time in seconds at the beginning of analysis ztime_end = nitend_han*rdt ! Final time in seconds at the end of analysis nhan = (nitend_han-nit000_han+1)/nstep_han ! Number of dumps used for analysis ninco = 2*nb_ana ksp = 0 keq = 0 DO jn = 1, nhan ztime=( (nhan-jn)*ztime_ini + (jn-1)*ztime_end )/FLOAT(nhan-1) keq = keq + 1 kun = 0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 ksp = ksp + 1 nisparse(ksp) = keq njsparse(ksp) = kun valuesparse(ksp)= & +( MOD(jc,2) * ft(jh) * COS(ana_freq(jh)*ztime + vt(jh) + ut(jh)) & +(1.-MOD(jc,2))* ft(jh) * SIN(ana_freq(jh)*ztime + vt(jh) + ut(jh))) END DO END DO END DO nsparse=ksp ! Elevation: DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun=0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 ztmp4(kun)=ana_temp(ji,jj,kun,1) ENDDO ENDDO CALL SUR_DETERMINE(jj) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1)=ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2)=ztmp7((jh-1)*2+2) END DO END DO END DO ALLOCATE(out_eta(jpi,jpj,2*nb_ana)) ALLOCATE(out_u (jpi,jpj,2*nb_ana)) ALLOCATE(out_v (jpi,jpj,2*nb_ana)) DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1=ana_amp(ji,jj,jh,1) X2=-ana_amp(ji,jj,jh,2) out_eta(ji,jj,jh)=X1 * tmask(ji,jj,1) out_eta(ji,jj,nb_ana+jh)=X2 * tmask(ji,jj,1) ENDDO ENDDO ENDDO ! ubar: DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun=0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 ztmp4(kun)=ana_temp(ji,jj,kun,2) ENDDO ENDDO CALL SUR_DETERMINE(jj+1) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1)=ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2)=ztmp7((jh-1)*2+2) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1=ana_amp(ji,jj,jh,1) X2=-ana_amp(ji,jj,jh,2) out_u(ji,jj,jh) = X1 * umask(ji,jj,1) out_u (ji,jj,nb_ana+jh) = X2 * umask(ji,jj,1) ENDDO ENDDO ENDDO ! vbar: DO jj = 1, jpj DO ji = 1, jpi ! Fill input array kun=0 DO jh = 1,nb_ana DO jc = 1,2 kun = kun + 1 ztmp4(kun)=ana_temp(ji,jj,kun,3) ENDDO ENDDO CALL SUR_DETERMINE(jj+1) ! Fill output array DO jh = 1, nb_ana ana_amp(ji,jj,jh,1)=ztmp7((jh-1)*2+1) ana_amp(ji,jj,jh,2)=ztmp7((jh-1)*2+2) END DO END DO END DO DO jj = 1, jpj DO ji = 1, jpi DO jh = 1, nb_ana X1=ana_amp(ji,jj,jh,1) X2=-ana_amp(ji,jj,jh,2) out_v(ji,jj,jh)=X1 * vmask(ji,jj,1) out_v(ji,jj,nb_ana+jh)=X2 * vmask(ji,jj,1) ENDDO ENDDO ENDDO CALL dia_wri_harm ! Write results in files CALL wrk_dealloc( jpi , jpj , jpmax_harmo , 2 , ana_amp ) ! END SUBROUTINE dia_harm_end SUBROUTINE dia_wri_harm !!-------------------------------------------------------------------- !! *** ROUTINE dia_wri_harm *** !!-------------------------------------------------------------------- !! !! ** Purpose : Write tidal harmonic analysis results in a netcdf file !! !! !! History : !! 9.0 O. Le Galloudec and J. Chanut (Original) !!-------------------------------------------------------------------- !! * Local declarations CHARACTER(LEN=lc) :: cltext CHARACTER(LEN=lc) :: & cdfile_name_T , & ! name of the file created (T-points) cdfile_name_U , & ! name of the file created (U-points) cdfile_name_V ! name of the file created (V-points) INTEGER :: jh !!---------------------------------------------------------------------- #if defined key_dimgout cdfile_name_T = TRIM(cexper)//'_Tidal_harmonics_gridT.dimgproc' cdfile_name_U = TRIM(cexper)//'_Tidal_harmonics_gridU.dimgproc' cdfile_name_V = TRIM(cexper)//'_Tidal_harmonics_gridV.dimgproc' #endif IF(lwp) WRITE(numout,*) ' ' IF(lwp) WRITE(numout,*) 'dia_wri_harm : Write harmonic analysis results' #if defined key_dimgout IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~ Output files: ', TRIM(cdfile_name_T) IF(lwp) WRITE(numout,*) ' ', TRIM(cdfile_name_U) IF(lwp) WRITE(numout,*) ' ', TRIM(cdfile_name_V) #endif IF(lwp) WRITE(numout,*) ' ' ! A) Elevation !///////////// ! #if defined key_dimgout cltext='Elevation amplitude and phase' CALL dia_wri_dimg(TRIM(cdfile_name_T), TRIM(cltext), out_eta, 2*nb_ana, '2') #else DO jh = 1, nb_ana CALL iom_put( TRIM(tname(jh))//'x', out_eta(:,:,jh) ) CALL iom_put( TRIM(tname(jh))//'y', out_eta(:,:,nb_ana+jh) ) END DO #endif ! B) ubar !///////// ! #if defined key_dimgout cltext='ubar amplitude and phase' CALL dia_wri_dimg(TRIM(cdfile_name_U), TRIM(cltext), out_u, 2*nb_ana, '2') #else DO jh = 1, nb_ana CALL iom_put( TRIM(tname(jh))//'x_u', out_u(:,:,jh) ) CALL iom_put( TRIM(tname(jh))//'y_u', out_u(:,:,nb_ana+jh) ) END DO #endif ! C) vbar !///////// ! #if defined key_dimgout cltext='vbar amplitude and phase' CALL dia_wri_dimg(TRIM(cdfile_name_V), TRIM(cltext), out_v, 2*nb_ana, '2') #else DO jh = 1, nb_ana CALL iom_put( TRIM(tname(jh))//'x_v', out_u(:,:,jh) ) CALL iom_put( TRIM(tname(jh))//'y_v', out_u(:,:,nb_ana+jh) ) END DO #endif END SUBROUTINE dia_wri_harm SUBROUTINE SUR_DETERMINE(init) !!--------------------------------------------------------------------------------- !! *** ROUTINE SUR_DETERMINE *** !! !! !! !!--------------------------------------------------------------------------------- INTEGER, INTENT(in) :: init INTEGER :: ji_sd, jj_sd, ji1_sd, ji2_sd, jk1_sd, jk2_sd REAL(wp) :: zval1, zval2, zx1 REAL(wp), POINTER, DIMENSION(:) :: ztmpx, zcol1, zcol2 INTEGER , POINTER, DIMENSION(:) :: ipos2, ipivot !--------------------------------------------------------------------------------- CALL wrk_alloc( jpincomax , ztmpx , zcol1 , zcol2 ) CALL wrk_alloc( jpincomax , ipos2 , ipivot ) IF( init==1 )THEN IF( nsparse .GT. jpdimsparse ) & CALL ctl_stop( 'STOP', 'SUR_DETERMINE : nsparse .GT. jpdimsparse') IF( ninco .GT. jpincomax ) & CALL ctl_stop( 'STOP', 'SUR_DETERMINE : ninco .GT. jpincomax') ztmp3(:,:)=0.e0 DO jk1_sd = 1, nsparse DO jk2_sd = 1, nsparse nisparse(jk2_sd)=nisparse(jk2_sd) njsparse(jk2_sd)=njsparse(jk2_sd) IF( nisparse(jk2_sd) == nisparse(jk1_sd) ) THEN ztmp3(njsparse(jk1_sd),njsparse(jk2_sd)) = ztmp3(njsparse(jk1_sd),njsparse(jk2_sd)) & + valuesparse(jk1_sd)*valuesparse(jk2_sd) ENDIF ENDDO ENDDO DO jj_sd = 1 ,ninco ipos1(jj_sd) = jj_sd ipos2(jj_sd) = jj_sd ENDDO DO ji_sd = 1 , ninco !find greatest non-zero pivot: zval1 = ABS(ztmp3(ji_sd,ji_sd)) ipivot(ji_sd) = ji_sd DO jj_sd = ji_sd, ninco zval2 = ABS(ztmp3(ji_sd,jj_sd)) IF( zval2.GE.zval1 )THEN ipivot(ji_sd) = jj_sd zval1 = zval2 ENDIF ENDDO DO ji1_sd = 1, ninco zcol1(ji1_sd) = ztmp3(ji1_sd,ji_sd) zcol2(ji1_sd) = ztmp3(ji1_sd,ipivot(ji_sd)) ztmp3(ji1_sd,ji_sd) = zcol2(ji1_sd) ztmp3(ji1_sd,ipivot(ji_sd)) = zcol1(ji1_sd) ENDDO ipos2(ji_sd) = ipos1(ipivot(ji_sd)) ipos2(ipivot(ji_sd)) = ipos1(ji_sd) ipos1(ji_sd) = ipos2(ji_sd) ipos1(ipivot(ji_sd)) = ipos2(ipivot(ji_sd)) zpivot(ji_sd) = ztmp3(ji_sd,ji_sd) DO jj_sd = 1, ninco ztmp3(ji_sd,jj_sd) = ztmp3(ji_sd,jj_sd) / zpivot(ji_sd) ENDDO DO ji2_sd = ji_sd+1, ninco zpilier(ji2_sd,ji_sd)=ztmp3(ji2_sd,ji_sd) DO jj_sd=1,ninco ztmp3(ji2_sd,jj_sd)= ztmp3(ji2_sd,jj_sd) - ztmp3(ji_sd,jj_sd) * zpilier(ji2_sd,ji_sd) ENDDO ENDDO ENDDO ENDIF ! End init==1 DO ji_sd = 1, ninco ztmp4(ji_sd) = ztmp4(ji_sd) / zpivot(ji_sd) DO ji2_sd = ji_sd+1, ninco ztmp4(ji2_sd) = ztmp4(ji2_sd) - ztmp4(ji_sd) * zpilier(ji2_sd,ji_sd) ENDDO ENDDO !system solving: ztmpx(ninco) = ztmp4(ninco) / ztmp3(ninco,ninco) ji_sd = ninco DO ji_sd = ninco-1, 1, -1 zx1=0. DO jj_sd = ji_sd+1, ninco zx1 = zx1 + ztmpx(jj_sd) * ztmp3(ji_sd,jj_sd) ENDDO ztmpx(ji_sd) = ztmp4(ji_sd)-zx1 ENDDO DO jj_sd =1, ninco ztmp7(ipos1(jj_sd))=ztmpx(jj_sd) ENDDO CALL wrk_dealloc( jpincomax , ztmpx , zcol1 , zcol2 ) CALL wrk_dealloc( jpincomax , ipos2 , ipivot ) END SUBROUTINE SUR_DETERMINE #else !!---------------------------------------------------------------------- !! Default case : Empty module !!---------------------------------------------------------------------- LOGICAL, PUBLIC, PARAMETER :: lk_diaharm = .FALSE. CONTAINS SUBROUTINE dia_harm ( kt ) ! Empty routine INTEGER, INTENT( IN ) :: kt WRITE(*,*) 'dia_harm: you should not have seen this print' END SUBROUTINE dia_harm #endif !!====================================================================== END MODULE diaharm