MODULE diawri !!====================================================================== !! *** MODULE diawri *** !! Ocean diagnostics : write ocean output files !!===================================================================== !! History : OPA ! 1991-03 (M.-A. Foujols) Original code !! 4.0 ! 1991-11 (G. Madec) !! ! 1992-06 (M. Imbard) correction restart file !! ! 1992-07 (M. Imbard) split into diawri and rstwri !! ! 1993-03 (M. Imbard) suppress writibm !! ! 1998-01 (C. Levy) NETCDF format using ioipsl INTERFACE !! ! 1999-02 (E. Guilyardi) name of netCDF files + variables !! 8.2 ! 2000-06 (M. Imbard) Original code (diabort.F) !! NEMO 1.0 ! 2002-06 (A.Bozec, E. Durand) Original code (diainit.F) !! - ! 2002-09 (G. Madec) F90: Free form and module !! - ! 2002-12 (G. Madec) merge of diabort and diainit, F90 !! ! 2005-11 (V. Garnier) Surface pressure gradient organization !! 3.2 ! 2008-11 (B. Lemaire) creation from old diawri !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dia_wri : create the standart output files !! dia_wri_state : create an output NetCDF file for a single instantaeous ocean state and forcing fields !!---------------------------------------------------------------------- USE oce ! ocean dynamics and tracers USE dom_oce ! ocean space and time domain USE zdf_oce ! ocean vertical physics USE ldftra_oce ! ocean active tracers: lateral physics USE ldfdyn_oce ! ocean dynamics: lateral physics USE sol_oce ! solver variables USE sbc_oce ! Surface boundary condition: ocean fields USE sbc_ice ! Surface boundary condition: ice fields USE sbcssr ! restoring term toward SST/SSS climatology USE phycst ! physical constants USE zdfmxl ! mixed layer USE dianam ! build name of file (routine) USE zdfddm ! vertical physics: double diffusion USE diahth ! thermocline diagnostics USE lbclnk ! ocean lateral boundary conditions (or mpp link) USE in_out_manager ! I/O manager USE diadimg ! dimg direct access file format output USE diaar5, ONLY : lk_diaar5 USE iom USE ioipsl #if defined key_lim2 USE limwri_2 #endif USE dtatem USE dtasal USE lib_mpp ! MPP library IMPLICIT NONE PRIVATE PUBLIC dia_wri ! routines called by step.F90 PUBLIC dia_wri_state PUBLIC dia_wri_alloc ! Called by nemogcm module INTEGER :: nid_T, nz_T, nh_T, ndim_T, ndim_hT ! grid_T file INTEGER :: nid_U, nz_U, nh_U, ndim_U, ndim_hU ! grid_U file INTEGER :: nid_V, nz_V, nh_V, ndim_V, ndim_hV ! grid_V file INTEGER :: nid_W, nz_W, nh_W ! grid_W file INTEGER :: ndex(1) ! ??? INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_hT, ndex_hU, ndex_hV INTEGER, SAVE, ALLOCATABLE, DIMENSION(:) :: ndex_T, ndex_U, ndex_V !! * Substitutions # include "zdfddm_substitute.h90" # include "domzgr_substitute.h90" # include "vectopt_loop_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/OPA 3.3 , NEMO Consortium (2010) !! $Id $ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS INTEGER FUNCTION dia_wri_alloc() !!---------------------------------------------------------------------- INTEGER, DIMENSION(2) :: ierr !!---------------------------------------------------------------------- ! ierr = 0 ! ALLOCATE( ndex_hT(jpi*jpj) , ndex_T(jpi*jpj*jpk) , & & ndex_hU(jpi*jpj) , ndex_U(jpi*jpj*jpk) , & & ndex_hV(jpi*jpj) , ndex_V(jpi*jpj*jpk) , STAT=ierr(1) ) ! dia_wri_alloc = MAXVAL(ierr) IF( lk_mpp ) CALL mpp_sum( dia_wri_alloc ) ! END FUNCTION dia_wri_alloc #if defined key_dimgout !!---------------------------------------------------------------------- !! 'key_dimgout' DIMG output file !!---------------------------------------------------------------------- # include "diawri_dimg.h90" #else !!---------------------------------------------------------------------- !! Default option NetCDF output file !!---------------------------------------------------------------------- # if defined key_iomput !!---------------------------------------------------------------------- !! 'key_iomput' use IOM library !!---------------------------------------------------------------------- SUBROUTINE dia_wri( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_wri *** !! !! ** Purpose : Standard output of opa: dynamics and tracer fields !! NETCDF format is used by default !! !! ** Method : use iom_put !!---------------------------------------------------------------------- USE oce, ONLY : z3d => ta ! use ta as 3D workspace USE wrk_nemo, ONLY: wrk_in_use, wrk_not_released USE wrk_nemo, ONLY: z2d => wrk_2d_1 !! INTEGER, INTENT( in ) :: kt ! ocean time-step index !! INTEGER :: ji, jj, jk ! dummy loop indices REAL(wp) :: zztmp, zztmpx, zztmpy ! !!---------------------------------------------------------------------- ! IF( wrk_in_use(2, 1))THEN CALL ctl_stop('dia_wri: ERROR - requested 2D workspace unavailable.') RETURN END IF ! ! Output the initial state and forcings IF( ninist == 1 ) THEN CALL dia_wri_state( 'output.init', kt ) ninist = 0 ENDIF CALL iom_put( "toce" , tn ) ! temperature CALL iom_put( "soce" , sn ) ! salinity CALL iom_put( "sst" , tn(:,:,1) ) ! sea surface temperature CALL iom_put( "sst2" , tn(:,:,1) * tn(:,:,1) ) ! square of sea surface temperature CALL iom_put( "sss" , sn(:,:,1) ) ! sea surface salinity CALL iom_put( "sss2" , sn(:,:,1) * sn(:,:,1) ) ! square of sea surface salinity CALL iom_put( "uoce" , un ) ! i-current CALL iom_put( "voce" , vn ) ! j-current CALL iom_put( "avt" , avt ) ! T vert. eddy diff. coef. CALL iom_put( "avm" , avmu ) ! T vert. eddy visc. coef. IF( lk_zdfddm ) THEN CALL iom_put( "avs" , fsavs(:,:,:) ) ! S vert. eddy diff. coef. ENDIF DO jj = 2, jpjm1 ! sst gradient DO ji = fs_2, fs_jpim1 ! vector opt. zztmp = tn(ji,jj,1) zztmpx = ( tn(ji+1,jj ,1) - zztmp ) / e1u(ji,jj) + ( zztmp - tn(ji-1,jj ,1) ) / e1u(ji-1,jj ) zztmpy = ( tn(ji ,jj+1,1) - zztmp ) / e2v(ji,jj) + ( zztmp - tn(ji ,jj-1,1) ) / e2v(ji ,jj-1) z2d(ji,jj) = 0.25 * ( zztmpx * zztmpx + zztmpy * zztmpy ) & & * umask(ji,jj,1) * umask(ji-1,jj,1) * vmask(ji,jj,1) * umask(ji,jj-1,1) END DO END DO CALL lbc_lnk( z2d, 'T', 1. ) CALL iom_put( "sstgrad2", z2d ) ! square of module of sst gradient !CDIR NOVERRCHK z2d(:,:) = SQRT( z2d(:,:) ) CALL iom_put( "sstgrad" , z2d ) ! module of sst gradient IF( lk_diaar5 ) THEN z3d(:,:,jpk) = 0.e0 DO jk = 1, jpkm1 z3d(:,:,jk) = rau0 * un(:,:,jk) * e1u(:,:) * fse3u(:,:,jk) END DO CALL iom_put( "u_masstr", z3d ) ! mass transport in i-direction zztmp = 0.5 * rcp z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * zztmp * ( tn(ji,jj,jk) + tn(ji+1,jj,jk) ) END DO END DO END DO CALL lbc_lnk( z2d, 'U', -1. ) CALL iom_put( "u_heattr", z2d ) ! heat transport in i-direction DO jk = 1, jpkm1 z3d(:,:,jk) = rau0 * vn(:,:,jk) * e2v(:,:) * fse3v(:,:,jk) END DO CALL iom_put( "v_masstr", z3d ) ! mass transport in j-direction z2d(:,:) = 0.e0 DO jk = 1, jpkm1 DO jj = 2, jpjm1 DO ji = fs_2, fs_jpim1 ! vector opt. z2d(ji,jj) = z2d(ji,jj) + z3d(ji,jj,jk) * zztmp * ( tn(ji,jj,jk) + tn(ji,jj+1,jk) ) END DO END DO END DO CALL lbc_lnk( z2d, 'V', -1. ) CALL iom_put( "v_heattr", z2d ) ! heat transport in i-direction ENDIF ! IF( wrk_not_released(2, 1))THEN CALL ctl_stop('dia_wri: ERROR - failed to release 2D workspace.') RETURN END IF ! END SUBROUTINE dia_wri #else !!---------------------------------------------------------------------- !! Default option use IOIPSL library !!---------------------------------------------------------------------- SUBROUTINE dia_wri( kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_wri *** !! !! ** Purpose : Standard output of opa: dynamics and tracer fields !! NETCDF format is used by default !! !! ** Method : At the beginning of the first time step (nit000), !! define all the NETCDF files and fields !! At each time step call histdef to compute the mean if ncessary !! Each nwrite time step, output the instantaneous or mean fields !!---------------------------------------------------------------------- USE wrk_nemo, ONLY: wrk_in_use, wrk_not_released USE wrk_nemo, ONLY: zw2d => wrk_2d_1 !! INTEGER, INTENT( in ) :: kt ! ocean time-step index !! LOGICAL :: ll_print = .FALSE. ! =T print and flush numout CHARACTER (len=40) :: clhstnam, clop, clmx ! local names INTEGER :: inum = 11 ! temporary logical unit INTEGER :: iimi, iima, ipk, it, itmod, ijmi, ijma ! local integers REAL(wp) :: zsto, zout, zmax, zjulian, zdt ! local scalars !!---------------------------------------------------------------------- ! IF( wrk_in_use(2, 1))THEN CALL ctl_stop('dia_wri: ERROR - requested 2D workspace unavailable.') RETURN END IF ! ! Output the initial state and forcings IF( ninist == 1 ) THEN CALL dia_wri_state( 'output.init', kt ) ninist = 0 ENDIF ! ! 0. Initialisation ! ----------------- ! local variable for debugging ll_print = .FALSE. ll_print = ll_print .AND. lwp ! Define frequency of output and means zdt = rdt IF( nacc == 1 ) zdt = rdtmin IF( ln_mskland ) THEN ; clop = "only(x)" ! put 1.e+20 on land (very expensive!!) ELSE ; clop = "x" ! no use of the mask value (require less cpu time) ENDIF #if defined key_diainstant zsto = nwrite * zdt clop = "inst("//TRIM(clop)//")" #else zsto=zdt clop = "ave("//TRIM(clop)//")" #endif zout = nwrite * zdt zmax = ( nitend - nit000 + 1 ) * zdt ! Define indices of the horizontal output zoom and vertical limit storage iimi = 1 ; iima = jpi ijmi = 1 ; ijma = jpj ipk = jpk ! define time axis it = kt itmod = kt - nit000 + 1 ! 1. Define NETCDF files and fields at beginning of first time step ! ----------------------------------------------------------------- IF( kt == nit000 ) THEN ! Define the NETCDF files (one per grid) ! Compute julian date from starting date of the run CALL ymds2ju( nyear, nmonth, nday, rdt, zjulian ) zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment IF(lwp)WRITE(numout,*) IF(lwp)WRITE(numout,*) 'Date 0 used :', nit000, ' YEAR ', nyear, & & ' MONTH ', nmonth, ' DAY ', nday, 'Julian day : ', zjulian IF(lwp)WRITE(numout,*) ' indexes of zoom = ', iimi, iima, ijmi, ijma, & ' limit storage in depth = ', ipk ! WRITE root name in date.file for use by postpro IF(lwp) THEN CALL dia_nam( clhstnam, nwrite,' ' ) CALL ctl_opn( inum, 'date.file', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, numout, lwp, narea ) WRITE(inum,*) clhstnam CLOSE(inum) ENDIF ! Define the T grid FILE ( nid_T ) CALL dia_nam( clhstnam, nwrite, 'grid_T' ) IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_T, nid_T, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_T, "deptht", "Vertical T levels", & ! Vertical grid: gdept & "m", ipk, gdept_0, nz_T, "down" ) ! ! Index of ocean points CALL wheneq( jpi*jpj*ipk, tmask, 1, 1., ndex_T , ndim_T ) ! volume CALL wheneq( jpi*jpj , tmask, 1, 1., ndex_hT, ndim_hT ) ! surface ! Define the U grid FILE ( nid_U ) CALL dia_nam( clhstnam, nwrite, 'grid_U' ) IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam ! filename CALL histbeg( clhstnam, jpi, glamu, jpj, gphiu, & ! Horizontal grid: glamu and gphiu & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_U, nid_U, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_U, "depthu", "Vertical U levels", & ! Vertical grid: gdept & "m", ipk, gdept_0, nz_U, "down" ) ! ! Index of ocean points CALL wheneq( jpi*jpj*ipk, umask, 1, 1., ndex_U , ndim_U ) ! volume CALL wheneq( jpi*jpj , umask, 1, 1., ndex_hU, ndim_hU ) ! surface ! Define the V grid FILE ( nid_V ) CALL dia_nam( clhstnam, nwrite, 'grid_V' ) ! filename IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam CALL histbeg( clhstnam, jpi, glamv, jpj, gphiv, & ! Horizontal grid: glamv and gphiv & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_V, nid_V, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_V, "depthv", "Vertical V levels", & ! Vertical grid : gdept & "m", ipk, gdept_0, nz_V, "down" ) ! ! Index of ocean points CALL wheneq( jpi*jpj*ipk, vmask, 1, 1., ndex_V , ndim_V ) ! volume CALL wheneq( jpi*jpj , vmask, 1, 1., ndex_hV, ndim_hV ) ! surface ! Define the W grid FILE ( nid_W ) CALL dia_nam( clhstnam, nwrite, 'grid_W' ) ! filename IF(lwp) WRITE(numout,*) " Name of NETCDF file ", clhstnam CALL histbeg( clhstnam, jpi, glamt, jpj, gphit, & ! Horizontal grid: glamt and gphit & iimi, iima-iimi+1, ijmi, ijma-ijmi+1, & & nit000-1, zjulian, zdt, nh_W, nid_W, domain_id=nidom, snc4chunks=snc4set ) CALL histvert( nid_W, "depthw", "Vertical W levels", & ! Vertical grid: gdepw & "m", ipk, gdepw_0, nz_W, "down" ) ! Declare all the output fields as NETCDF variables ! !!! nid_T : 3D CALL histdef( nid_T, "votemper", "Temperature" , "C" , & ! tn & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) CALL histdef( nid_T, "vosaline", "Salinity" , "PSU" , & ! sn & jpi, jpj, nh_T, ipk, 1, ipk, nz_T, 32, clop, zsto, zout ) ! !!! nid_T : 2D CALL histdef( nid_T, "sosstsst", "Sea Surface temperature" , "C" , & ! sst & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosaline", "Sea Surface Salinity" , "PSU" , & ! sss & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sossheig", "Sea Surface Height" , "m" , & ! ssh & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) !!$#if defined key_lim3 || defined key_lim2 !!$ ! sowaflup = sowaflep + sorunoff + sowafldp + a term associated to !!$ ! internal damping to Levitus that can be diagnosed from others !!$ ! sowaflcd = sowaflep + sorunoff + sowafldp + iowaflup !!$ CALL histdef( nid_T, "iowaflup", "Ice=>ocean net freshwater" , "kg/m2/s", & ! fsalt !!$ & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) !!$ CALL histdef( nid_T, "sowaflep", "atmos=>ocean net freshwater" , "kg/m2/s", & ! fmass !!$ & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) !!$#endif CALL histdef( nid_T, "sowaflup", "Net Upward Water Flux" , "Kg/m2/s", & ! (emp-rnf) & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) !!$ CALL histdef( nid_T, "sorunoff", "Runoffs" , "Kg/m2/s", & ! runoffs !!$ & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowaflcd", "concentration/dilution water flux" , "kg/m2/s", & ! (emps-rnf) & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosalflx", "Surface Salt Flux" , "Kg/m2/s", & ! (emps-rnf) * sn & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sohefldo", "Net Downward Heat Flux" , "W/m2" , & ! qns + qsr & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! qsr & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "somixhgt", "Turbocline Depth" , "m" , & ! hmld & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "somxl010", "Mixed Layer Depth 0.01" , "m" , & ! hmlp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowindsp", "wind speed at 10m" , "m/s" , & ! wndm & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) #if ! defined key_coupled CALL histdef( nid_T, "sohefldp", "Surface Heat Flux: Damping" , "W/m2" , & ! qrp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowafldp", "Surface Water Flux: Damping" , "Kg/m2/s", & ! erp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosafldp", "Surface salt flux: damping" , "Kg/m2/s", & ! erp * sn & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) #endif #if ( defined key_coupled && ! defined key_lim3 && ! defined key_lim2 ) CALL histdef( nid_T, "sohefldp", "Surface Heat Flux: Damping" , "W/m2" , & ! qrp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sowafldp", "Surface Water Flux: Damping" , "Kg/m2/s", & ! erp & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sosafldp", "Surface salt flux: Damping" , "Kg/m2/s", & ! erp * sn & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) #endif clmx ="l_max(only(x))" ! max index on a period CALL histdef( nid_T, "sobowlin", "Bowl Index" , "W-point", & ! bowl INDEX & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clmx, zsto, zout ) #if defined key_diahth CALL histdef( nid_T, "sothedep", "Thermocline Depth" , "m" , & ! hth & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "so20chgt", "Depth of 20C isotherm" , "m" , & ! hd20 & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "so28chgt", "Depth of 28C isotherm" , "m" , & ! hd28 & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T, "sohtc300", "Heat content 300 m" , "W" , & ! htc3 & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) #endif #if defined key_coupled # if defined key_lim3 Must be adapted to LIM3 # else CALL histdef( nid_T,"soicetem" , "Ice Surface Temperature" , "K" , & ! tn_ice & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( nid_T,"soicealb" , "Ice Albedo" , "[0,1]" , & ! alb_ice & jpi, jpj, nh_T, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) # endif #endif CALL histend( nid_T, snc4chunks=snc4set ) ! !!! nid_U : 3D CALL histdef( nid_U, "vozocrtx", "Zonal Current" , "m/s" , & ! un & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout ) #if defined key_diaeiv CALL histdef( nid_U, "vozoeivu", "Zonal EIV Current" , "m/s" , & ! u_eiv & jpi, jpj, nh_U, ipk, 1, ipk, nz_U, 32, clop, zsto, zout ) #endif ! !!! nid_U : 2D CALL histdef( nid_U, "sozotaux", "Wind Stress along i-axis" , "N/m2" , & ! utau & jpi, jpj, nh_U, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) CALL histend( nid_U, snc4chunks=snc4set ) ! !!! nid_V : 3D CALL histdef( nid_V, "vomecrty", "Meridional Current" , "m/s" , & ! vn & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout ) #if defined key_diaeiv CALL histdef( nid_V, "vomeeivv", "Meridional EIV Current" , "m/s" , & ! v_eiv & jpi, jpj, nh_V, ipk, 1, ipk, nz_V, 32, clop, zsto, zout ) #endif ! !!! nid_V : 2D CALL histdef( nid_V, "sometauy", "Wind Stress along j-axis" , "N/m2" , & ! vtau & jpi, jpj, nh_V, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) CALL histend( nid_V, snc4chunks=snc4set ) ! !!! nid_W : 3D CALL histdef( nid_W, "vovecrtz", "Vertical Velocity" , "m/s" , & ! wn & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) #if defined key_diaeiv CALL histdef( nid_W, "voveeivw", "Vertical EIV Velocity" , "m/s" , & ! w_eiv & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) #endif CALL histdef( nid_W, "votkeavt", "Vertical Eddy Diffusivity" , "m2/s" , & ! avt & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) CALL histdef( nid_W, "votkeavm", "Vertical Eddy Viscosity" , "m2/s" , & ! avmu & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) IF( lk_zdfddm ) THEN CALL histdef( nid_W,"voddmavs","Salt Vertical Eddy Diffusivity" , "m2/s" , & ! avs & jpi, jpj, nh_W, ipk, 1, ipk, nz_W, 32, clop, zsto, zout ) ENDIF ! !!! nid_W : 2D #if defined key_traldf_c2d CALL histdef( nid_W, "soleahtw", "lateral eddy diffusivity" , "m2/s" , & ! ahtw & jpi, jpj, nh_W, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) # if defined key_traldf_eiv CALL histdef( nid_W, "soleaeiw", "eddy induced vel. coeff. at w-point", "m2/s", & ! aeiw & jpi, jpj, nh_W, 1 , 1, 1 , - 99, 32, clop, zsto, zout ) # endif #endif CALL histend( nid_W, snc4chunks=snc4set ) IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'End of NetCDF Initialization' IF(ll_print) CALL FLUSH(numout ) ENDIF ! 2. Start writing data ! --------------------- ! ndex(1) est utilise ssi l'avant dernier argument est diffferent de ! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument ! donne le nombre d'elements, et ndex la liste des indices a sortir IF( lwp .AND. MOD( itmod, nwrite ) == 0 ) THEN WRITE(numout,*) 'dia_wri : write model outputs in NetCDF files at ', kt, 'time-step' WRITE(numout,*) '~~~~~~ ' ENDIF ! Write fields on T grid CALL histwrite( nid_T, "votemper", it, tn , ndim_T , ndex_T ) ! temperature CALL histwrite( nid_T, "vosaline", it, sn , ndim_T , ndex_T ) ! salinity CALL histwrite( nid_T, "sosstsst", it, tn(:,:,1) , ndim_hT, ndex_hT ) ! sea surface temperature CALL histwrite( nid_T, "sosaline", it, sn(:,:,1) , ndim_hT, ndex_hT ) ! sea surface salinity CALL histwrite( nid_T, "sossheig", it, sshn , ndim_hT, ndex_hT ) ! sea surface height !!$#if defined key_lim3 || defined key_lim2 !!$ CALL histwrite( nid_T, "iowaflup", it, fsalt(:,:) , ndim_hT, ndex_hT ) ! ice=>ocean water flux !!$ CALL histwrite( nid_T, "sowaflep", it, fmass(:,:) , ndim_hT, ndex_hT ) ! atmos=>ocean water flux !!$#endif CALL histwrite( nid_T, "sowaflup", it, ( emp-rnf ) , ndim_hT, ndex_hT ) ! upward water flux !!$ CALL histwrite( nid_T, "sorunoff", it, runoff , ndim_hT, ndex_hT ) ! runoff CALL histwrite( nid_T, "sowaflcd", it, ( emps-rnf ) , ndim_hT, ndex_hT ) ! c/d water flux zw2d(:,:) = ( emps(:,:) - rnf(:,:) ) * sn(:,:,1) * tmask(:,:,1) CALL histwrite( nid_T, "sosalflx", it, zw2d , ndim_hT, ndex_hT ) ! c/d salt flux CALL histwrite( nid_T, "sohefldo", it, qns + qsr , ndim_hT, ndex_hT ) ! total heat flux CALL histwrite( nid_T, "soshfldo", it, qsr , ndim_hT, ndex_hT ) ! solar heat flux CALL histwrite( nid_T, "somixhgt", it, hmld , ndim_hT, ndex_hT ) ! turbocline depth CALL histwrite( nid_T, "somxl010", it, hmlp , ndim_hT, ndex_hT ) ! mixed layer depth CALL histwrite( nid_T, "soicecov", it, fr_i , ndim_hT, ndex_hT ) ! ice fraction CALL histwrite( nid_T, "sowindsp", it, wndm , ndim_hT, ndex_hT ) ! wind speed #if ! defined key_coupled CALL histwrite( nid_T, "sohefldp", it, qrp , ndim_hT, ndex_hT ) ! heat flux damping CALL histwrite( nid_T, "sowafldp", it, erp , ndim_hT, ndex_hT ) ! freshwater flux damping IF( ln_ssr ) zw2d(:,:) = erp(:,:) * sn(:,:,1) * tmask(:,:,1) CALL histwrite( nid_T, "sosafldp", it, zw2d , ndim_hT, ndex_hT ) ! salt flux damping #endif #if ( defined key_coupled && ! defined key_lim3 && ! defined key_lim2 ) CALL histwrite( nid_T, "sohefldp", it, qrp , ndim_hT, ndex_hT ) ! heat flux damping CALL histwrite( nid_T, "sowafldp", it, erp , ndim_hT, ndex_hT ) ! freshwater flux damping IF( ln_ssr ) zw2d(:,:) = erp(:,:) * sn(:,:,1) * tmask(:,:,1) CALL histwrite( nid_T, "sosafldp", it, zw2d , ndim_hT, ndex_hT ) ! salt flux damping #endif zw2d(:,:) = FLOAT( nmln(:,:) ) * tmask(:,:,1) CALL histwrite( nid_T, "sobowlin", it, zw2d , ndim_hT, ndex_hT ) ! ??? #if defined key_diahth CALL histwrite( nid_T, "sothedep", it, hth , ndim_hT, ndex_hT ) ! depth of the thermocline CALL histwrite( nid_T, "so20chgt", it, hd20 , ndim_hT, ndex_hT ) ! depth of the 20 isotherm CALL histwrite( nid_T, "so28chgt", it, hd28 , ndim_hT, ndex_hT ) ! depth of the 28 isotherm CALL histwrite( nid_T, "sohtc300", it, htc3 , ndim_hT, ndex_hT ) ! first 300m heaat content #endif #if defined key_coupled # if defined key_lim3 Must be adapted for LIM3 CALL histwrite( nid_T, "soicetem", it, tn_ice , ndim_hT, ndex_hT ) ! surf. ice temperature CALL histwrite( nid_T, "soicealb", it, alb_ice , ndim_hT, ndex_hT ) ! ice albedo # else CALL histwrite( nid_T, "soicetem", it, tn_ice(:,:,1) , ndim_hT, ndex_hT ) ! surf. ice temperature CALL histwrite( nid_T, "soicealb", it, alb_ice(:,:,1), ndim_hT, ndex_hT ) ! ice albedo # endif #endif ! Write fields on U grid CALL histwrite( nid_U, "vozocrtx", it, un , ndim_U , ndex_U ) ! i-current #if defined key_diaeiv CALL histwrite( nid_U, "vozoeivu", it, u_eiv , ndim_U , ndex_U ) ! i-eiv current #endif CALL histwrite( nid_U, "sozotaux", it, utau , ndim_hU, ndex_hU ) ! i-wind stress ! Write fields on V grid CALL histwrite( nid_V, "vomecrty", it, vn , ndim_V , ndex_V ) ! j-current #if defined key_diaeiv CALL histwrite( nid_V, "vomeeivv", it, v_eiv , ndim_V , ndex_V ) ! j-eiv current #endif CALL histwrite( nid_V, "sometauy", it, vtau , ndim_hV, ndex_hV ) ! j-wind stress ! Write fields on W grid CALL histwrite( nid_W, "vovecrtz", it, wn , ndim_T, ndex_T ) ! vert. current # if defined key_diaeiv CALL histwrite( nid_W, "voveeivw", it, w_eiv , ndim_T, ndex_T ) ! vert. eiv current # endif CALL histwrite( nid_W, "votkeavt", it, avt , ndim_T, ndex_T ) ! T vert. eddy diff. coef. CALL histwrite( nid_W, "votkeavm", it, avmu , ndim_T, ndex_T ) ! T vert. eddy visc. coef. IF( lk_zdfddm ) THEN CALL histwrite( nid_W, "voddmavs", it, fsavs(:,:,:), ndim_T, ndex_T ) ! S vert. eddy diff. coef. ENDIF #if defined key_traldf_c2d CALL histwrite( nid_W, "soleahtw", it, ahtw , ndim_hT, ndex_hT ) ! lateral eddy diff. coef. # if defined key_traldf_eiv CALL histwrite( nid_W, "soleaeiw", it, aeiw , ndim_hT, ndex_hT ) ! EIV coefficient at w-point # endif #endif ! 3. Close all files ! --------------------------------------- IF( kt == nitend ) THEN CALL histclo( nid_T ) CALL histclo( nid_U ) CALL histclo( nid_V ) CALL histclo( nid_W ) ENDIF ! IF( wrk_not_released(2, 1))THEN CALL ctl_stop('dia_wri: ERROR - failed to release 2D workspace.') RETURN END IF ! END SUBROUTINE dia_wri # endif #endif SUBROUTINE dia_wri_state( cdfile_name, kt ) !!--------------------------------------------------------------------- !! *** ROUTINE dia_wri_state *** !! !! ** Purpose : create a NetCDF file named cdfile_name which contains !! the instantaneous ocean state and forcing fields. !! Used to find errors in the initial state or save the last !! ocean state in case of abnormal end of a simulation !! !! ** Method : NetCDF files using ioipsl !! File 'output.init.nc' is created if ninist = 1 (namelist) !! File 'output.abort.nc' is created in case of abnormal job end !!---------------------------------------------------------------------- CHARACTER (len=* ), INTENT( in ) :: cdfile_name ! name of the file created INTEGER , INTENT( in ) :: kt ! ocean time-step index !! CHARACTER (len=32) :: clname CHARACTER (len=40) :: clop INTEGER :: id_i , nz_i, nh_i INTEGER, DIMENSION(1) :: idex ! local workspace REAL(wp) :: zsto, zout, zmax, zjulian, zdt !!---------------------------------------------------------------------- ! 0. Initialisation ! ----------------- ! Define name, frequency of output and means clname = cdfile_name IF( .NOT. Agrif_Root() ) clname = TRIM(Agrif_CFixed())//'_'//TRIM(clname) zdt = rdt zsto = rdt clop = "inst(x)" ! no use of the mask value (require less cpu time) zout = rdt zmax = ( nitend - nit000 + 1 ) * zdt IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'dia_wri_state : single instantaneous ocean state' IF(lwp) WRITE(numout,*) '~~~~~~~~~~~~~ and forcing fields file created ' IF(lwp) WRITE(numout,*) ' and named :', clname, '.nc' ! 1. Define NETCDF files and fields at beginning of first time step ! ----------------------------------------------------------------- ! Compute julian date from starting date of the run CALL ymds2ju( nyear, nmonth, nday, rdt, zjulian ) ! time axis zjulian = zjulian - adatrj ! set calendar origin to the beginning of the experiment CALL histbeg( clname, jpi, glamt, jpj, gphit, & 1, jpi, 1, jpj, nit000-1, zjulian, zdt, nh_i, id_i, domain_id=nidom, snc4chunks=snc4set ) ! Horizontal grid : glamt and gphit CALL histvert( id_i, "deptht", "Vertical T levels", & ! Vertical grid : gdept "m", jpk, gdept_0, nz_i, "down") ! Declare all the output fields as NetCDF variables CALL histdef( id_i, "vosaline", "Salinity" , "PSU" , & ! salinity & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "votemper", "Temperature" , "C" , & ! temperature & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "sossheig", "Sea Surface Height" , "m" , & ! ssh & jpi, jpj, nh_i, 1 , 1, 1 , nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "vozocrtx", "Zonal Current" , "m/s" , & ! zonal current & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "vomecrty", "Meridional Current" , "m/s" , & ! meridonal current & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "vovecrtz", "Vertical Velocity" , "m/s" , & ! vertical current & jpi, jpj, nh_i, jpk, 1, jpk, nz_i, 32, clop, zsto, zout ) CALL histdef( id_i, "sowaflup", "Net Upward Water Flux" , "Kg/m2/S", & ! net freshwater & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "sohefldo", "Net Downward Heat Flux", "W/m2" , & ! net heat flux & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "soshfldo", "Shortwave Radiation" , "W/m2" , & ! solar flux & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "soicecov", "Ice fraction" , "[0,1]" , & ! fr_i & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "sozotaux", "Zonal Wind Stress" , "N/m2" , & ! i-wind stress & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) CALL histdef( id_i, "sometauy", "Meridional Wind Stress", "N/m2" , & ! j-wind stress & jpi, jpj, nh_i, 1 , 1, 1 , -99 , 32, clop, zsto, zout ) #if defined key_lim2 CALL lim_wri_state_2( kt, id_i, nh_i ) #else CALL histend( id_i, snc4chunks=snc4set ) #endif ! 2. Start writing data ! --------------------- ! idex(1) est utilise ssi l'avant dernier argument est diffferent de ! la taille du tableau en sortie. Dans ce cas , l'avant dernier argument ! donne le nombre d'elements, et idex la liste des indices a sortir idex(1) = 1 ! init to avoid compil warning ! Write all fields on T grid CALL histwrite( id_i, "votemper", kt, tn , jpi*jpj*jpk, idex ) ! now temperature CALL histwrite( id_i, "vosaline", kt, sn , jpi*jpj*jpk, idex ) ! now salinity CALL histwrite( id_i, "sossheig", kt, sshn , jpi*jpj , idex ) ! sea surface height CALL histwrite( id_i, "vozocrtx", kt, un , jpi*jpj*jpk, idex ) ! now i-velocity CALL histwrite( id_i, "vomecrty", kt, vn , jpi*jpj*jpk, idex ) ! now j-velocity CALL histwrite( id_i, "vovecrtz", kt, wn , jpi*jpj*jpk, idex ) ! now k-velocity CALL histwrite( id_i, "sowaflup", kt, (emp-rnf), jpi*jpj , idex ) ! freshwater budget CALL histwrite( id_i, "sohefldo", kt, qsr + qns, jpi*jpj , idex ) ! total heat flux CALL histwrite( id_i, "soshfldo", kt, qsr , jpi*jpj , idex ) ! solar heat flux CALL histwrite( id_i, "soicecov", kt, fr_i , jpi*jpj , idex ) ! ice fraction CALL histwrite( id_i, "sozotaux", kt, utau , jpi*jpj , idex ) ! i-wind stress CALL histwrite( id_i, "sometauy", kt, vtau , jpi*jpj , idex ) ! j-wind stress ! 3. Close the file ! ----------------- CALL histclo( id_i ) #if ! defined key_iomput && ! defined key_dimgout IF( ninist /= 1 ) THEN CALL histclo( nid_T ) CALL histclo( nid_U ) CALL histclo( nid_V ) CALL histclo( nid_W ) ENDIF #endif END SUBROUTINE dia_wri_state !!====================================================================== END MODULE diawri