MODULE nemogcm !!====================================================================== !! *** MODULE nemogcm *** !! Ocean system : NEMO GCM (ocean dynamics, on-line tracers, biochemistry and sea-ice) !!====================================================================== !! History : OPA ! 1990-10 (C. Levy, G. Madec) Original code !! 7.0 ! 1991-11 (M. Imbard, C. Levy, G. Madec) !! 7.1 ! 1993-03 (M. Imbard, C. Levy, G. Madec, O. Marti, M. Guyon, A. Lazar, !! P. Delecluse, C. Perigaud, G. Caniaux, B. Colot, C. Maes) release 7.1 !! - ! 1992-06 (L.Terray) coupling implementation !! - ! 1993-11 (M.A. Filiberti) IGLOO sea-ice !! 8.0 ! 1996-03 (M. Imbard, C. Levy, G. Madec, O. Marti, M. Guyon, A. Lazar, !! P. Delecluse, L.Terray, M.A. Filiberti, J. Vialar, A.M. Treguier, M. Levy) release 8.0 !! 8.1 ! 1997-06 (M. Imbard, G. Madec) !! 8.2 ! 1999-11 (M. Imbard, H. Goosse) LIM sea-ice model !! ! 1999-12 (V. Thierry, A-M. Treguier, M. Imbard, M-A. Foujols) OPEN-MP !! ! 2000-07 (J-M Molines, M. Imbard) Open Boundary Conditions (CLIPPER) !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and modules !! - ! 2004-06 (R. Redler, NEC CCRLE, Germany) add OASIS[3/4] coupled interfaces !! - ! 2004-08 (C. Talandier) New trends organization !! - ! 2005-06 (C. Ethe) Add the 1D configuration possibility !! - ! 2005-11 (V. Garnier) Surface pressure gradient organization !! - ! 2006-03 (L. Debreu, C. Mazauric) Agrif implementation !! - ! 2006-04 (G. Madec, R. Benshila) Step reorganization !! - ! 2007-07 (J. Chanut, A. Sellar) Unstructured open boundaries (BDY) !! 3.2 ! 2009-08 (S. Masson) open/write in the listing file in mpp !! 3.3 ! 2010-05 (K. Mogensen, A. Weaver, M. Martin, D. Lea) Assimilation interface !! - ! 2010-10 (C. Ethe, G. Madec) reorganisation of initialisation phase !! 3.3.1! 2011-01 (A. R. Porter, STFC Daresbury) dynamical allocation !! 3.4 ! 2011-11 (C. Harris) decomposition changes for running with CICE !! ! 2012-05 (C. Calone, J. Simeon, G. Madec, C. Ethe) Add grid coarsening !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! nemo_gcm : solve ocean dynamics, tracer, biogeochemistry and/or sea-ice !! nemo_init : initialization of the NEMO system !! nemo_ctl : initialisation of the contol print !! nemo_closefile : close remaining open files !! nemo_alloc : dynamical allocation !! nemo_partition : calculate MPP domain decomposition !! factorise : calculate the factors of the no. of MPI processes !!---------------------------------------------------------------------- USE step_oce ! module used in the ocean time stepping module USE cla ! cross land advection (tra_cla routine) USE domcfg ! domain configuration (dom_cfg routine) USE mppini ! shared/distributed memory setting (mpp_init routine) USE domain ! domain initialization (dom_init routine) #if defined key_nemocice_decomp USE ice_domain_size, only: nx_global, ny_global #endif USE tideini ! tidal components initialization (tide_ini routine) USE bdyini ! open boundary cond. setting (bdy_init routine) USE bdydta ! open boundary cond. setting (bdy_dta_init routine) USE bdytides ! open boundary cond. setting (bdytide_init routine) USE istate ! initial state setting (istate_init routine) USE ldfdyn ! lateral viscosity setting (ldfdyn_init routine) USE ldftra ! lateral diffusivity setting (ldftra_init routine) USE zdfini ! vertical physics setting (zdf_init routine) USE phycst ! physical constant (par_cst routine) USE trdini ! dyn/tra trends initialization (trd_init routine) USE asminc ! assimilation increments USE asmbkg ! writing out state trajectory USE diaptr ! poleward transports (dia_ptr_init routine) USE diadct ! sections transports (dia_dct_init routine) USE diaobs ! Observation diagnostics (dia_obs_init routine) USE lib_fortran ! Fortran utilities (allows no signed zero when 'key_nosignedzero' defined) USE step ! NEMO time-stepping (stp routine) USE icbini ! handle bergs, initialisation USE icbstp ! handle bergs, calving, themodynamics and transport USE cpl_oasis3 ! OASIS3 coupling USE c1d ! 1D configuration USE step_c1d ! Time stepping loop for the 1D configuration USE dyndmp ! Momentum damping #if defined key_top USE trcini ! passive tracer initialisation #endif USE lib_mpp ! distributed memory computing #if defined key_iomput USE xios #endif USE sbctide, ONLY: lk_tide USE crsini ! initialise grid coarsening utility USE lbcnfd, ONLY: isendto, nsndto, nfsloop, nfeloop ! Setup of north fold exchanges IMPLICIT NONE PRIVATE PUBLIC nemo_gcm ! called by model.F90 PUBLIC nemo_init ! needed by AGRIF PUBLIC nemo_alloc ! needed by TAM CHARACTER(lc) :: cform_aaa="( /, 'AAAAAAAA', / ) " ! flag for output listing !!---------------------------------------------------------------------- !! NEMO/OPA 4.0 , NEMO Consortium (2011) !! $Id$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE nemo_gcm !!---------------------------------------------------------------------- !! *** ROUTINE nemo_gcm *** !! !! ** Purpose : NEMO solves the primitive equations on an orthogonal !! curvilinear mesh on the sphere. !! !! ** Method : - model general initialization !! - launch the time-stepping (stp routine) !! - finalize the run by closing files and communications !! !! References : Madec, Delecluse, Imbard, and Levy, 1997: internal report, IPSL. !! Madec, 2008, internal report, IPSL. !!---------------------------------------------------------------------- INTEGER :: istp ! time step index !!---------------------------------------------------------------------- ! #if defined key_agrif CALL Agrif_Init_Grids() ! AGRIF: set the meshes #endif ! !-----------------------! CALL nemo_init !== Initialisations ==! ! !-----------------------! #if defined key_agrif CALL Agrif_Declare_Var_dom ! AGRIF: set the meshes for DOM CALL Agrif_Declare_Var ! " " " " " DYN/TRA # if defined key_top CALL Agrif_Declare_Var_top ! " " " " " TOP # endif # if defined key_lim2 CALL Agrif_Declare_Var_lim2 ! " " " " " LIM # endif #endif ! check that all process are still there... If some process have an error, ! they will never enter in step and other processes will wait until the end of the cpu time! IF( lk_mpp ) CALL mpp_max( nstop ) IF(lwp) WRITE(numout,cform_aaa) ! Flag AAAAAAA ! !-----------------------! ! !== time stepping ==! ! !-----------------------! istp = nit000 #if defined key_c1d DO WHILE ( istp <= nitend .AND. nstop == 0 ) CALL stp_c1d( istp ) istp = istp + 1 END DO #else IF( lk_asminc ) THEN IF( ln_bkgwri ) CALL asm_bkg_wri( nit000 - 1 ) ! Output background fields IF( ln_asmdin ) THEN ! Direct initialization IF( ln_trainc ) CALL tra_asm_inc( nit000 - 1 ) ! Tracers IF( ln_dyninc ) CALL dyn_asm_inc( nit000 - 1 ) ! Dynamics IF( ln_sshinc ) CALL ssh_asm_inc( nit000 - 1 ) ! SSH ENDIF ENDIF DO WHILE ( istp <= nitend .AND. nstop == 0 ) #if defined key_agrif CALL Agrif_Step( stp ) ! AGRIF: time stepping #else CALL stp( istp ) ! standard time stepping #endif istp = istp + 1 IF( lk_mpp ) CALL mpp_max( nstop ) END DO #endif IF( lk_diaobs ) CALL dia_obs_wri ! IF( ln_icebergs ) CALL icb_end( nitend ) ! !------------------------! ! !== finalize the run ==! ! !------------------------! IF(lwp) WRITE(numout,cform_aaa) ! Flag AAAAAAA ! IF( nstop /= 0 .AND. lwp ) THEN ! error print WRITE(numout,cform_err) WRITE(numout,*) nstop, ' error have been found' ENDIF ! #if defined key_agrif CALL Agrif_ParentGrid_To_ChildGrid() IF( lk_diaobs ) CALL dia_obs_wri IF( nn_timing == 1 ) CALL timing_finalize CALL Agrif_ChildGrid_To_ParentGrid() #endif IF( nn_timing == 1 ) CALL timing_finalize ! CALL nemo_closefile ! #if defined key_iomput CALL xios_finalize ! end mpp communications with xios IF( lk_cpl ) CALL cpl_finalize ! end coupling and mpp communications with OASIS #else IF( lk_cpl ) THEN CALL cpl_finalize ! end coupling and mpp communications with OASIS ELSE IF( lk_mpp ) CALL mppstop ! end mpp communications ENDIF #endif ! END SUBROUTINE nemo_gcm SUBROUTINE nemo_init !!---------------------------------------------------------------------- !! *** ROUTINE nemo_init *** !! !! ** Purpose : initialization of the NEMO GCM !!---------------------------------------------------------------------- INTEGER :: ji ! dummy loop indices INTEGER :: ilocal_comm ! local integer INTEGER :: ios CHARACTER(len=80), DIMENSION(16) :: cltxt ! NAMELIST/namctl/ ln_ctl , nn_print, nn_ictls, nn_ictle, & & nn_isplt, nn_jsplt, nn_jctls, nn_jctle, & & nn_bench, nn_timing NAMELIST/namcfg/ cp_cfg, cp_cfz, jp_cfg, jpidta, jpjdta, jpkdta, jpiglo, jpjglo, & & jpizoom, jpjzoom, jperio, ln_use_jattr !!---------------------------------------------------------------------- ! cltxt = '' ! ! ! Open reference namelist and configuration namelist files CALL ctl_opn( numnam_ref, 'namelist_ref', 'OLD', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE. ) CALL ctl_opn( numnam_cfg, 'namelist_cfg', 'OLD', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE. ) ! REWIND( numnam_ref ) ! Namelist namctl in reference namelist : Control prints & Benchmark READ ( numnam_ref, namctl, IOSTAT = ios, ERR = 901 ) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namctl in reference namelist', .TRUE. ) REWIND( numnam_cfg ) ! Namelist namctl in confguration namelist : Control prints & Benchmark READ ( numnam_cfg, namctl, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namctl in configuration namelist', .TRUE. ) ! REWIND( numnam_ref ) ! Namelist namcfg in reference namelist : Control prints & Benchmark READ ( numnam_ref, namcfg, IOSTAT = ios, ERR = 903 ) 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namcfg in reference namelist', .TRUE. ) REWIND( numnam_cfg ) ! Namelist namcfg in confguration namelist : Control prints & Benchmark READ ( numnam_cfg, namcfg, IOSTAT = ios, ERR = 904 ) 904 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namcfg in configuration namelist', .TRUE. ) ! Force values for AGRIF zoom (cf. agrif_user.F90) #if defined key_agrif IF( .NOT. Agrif_Root() ) THEN jpiglo = nbcellsx + 2 + 2*nbghostcells jpjglo = nbcellsy + 2 + 2*nbghostcells jpi = ( jpiglo-2*jpreci + (jpni-1+0) ) / jpni + 2*jpreci jpj = ( jpjglo-2*jprecj + (jpnj-1+0) ) / jpnj + 2*jprecj jpidta = jpiglo jpjdta = jpjglo jpizoom = 1 jpjzoom = 1 nperio = 0 jperio = 0 ln_use_jattr = .false. ENDIF #endif ! ! !--------------------------------------------! ! ! set communicator & select the local node ! ! ! NB: mynode also opens output.namelist.dyn ! ! ! on unit number numond on first proc ! ! !--------------------------------------------! #if defined key_iomput IF( Agrif_Root() ) THEN IF( lk_cpl ) THEN CALL cpl_init( ilocal_comm ) ! nemo local communicator given by oasis CALL xios_initialize( "oceanx",local_comm=ilocal_comm ) ! send nemo communicator to xios ELSE CALL xios_initialize( "nemo",return_comm=ilocal_comm ) ! nemo local communicator given by xios ENDIF ENDIF narea = mynode( cltxt, numnam_ref, numnam_cfg, numond , nstop, ilocal_comm ) ! Nodes selection #else IF( lk_cpl ) THEN IF( Agrif_Root() ) THEN CALL cpl_init( ilocal_comm ) ! nemo local communicator given by oasis ENDIF narea = mynode( cltxt, numnam_ref, numnam_cfg, numond , nstop, ilocal_comm ) ! Nodes selection (control print return in cltxt) ELSE ilocal_comm = 0 narea = mynode( cltxt, numnam_ref, numnam_cfg, numond , nstop ) ! Nodes selection (control print return in cltxt) ENDIF #endif narea = narea + 1 ! mynode return the rank of proc (0 --> jpnij -1 ) lwm = (narea == 1) ! control of output namelists lwp = (narea == 1) .OR. ln_ctl ! control of all listing output print IF(lwm) THEN ! write merged namelists from earlier to output namelist now that the ! file has been opened in call to mynode. nammpp has already been ! written in mynode (if lk_mpp_mpi) WRITE( numond, namctl ) WRITE( numond, namcfg ) ENDIF ! If dimensions of processor grid weren't specified in the namelist file ! then we calculate them here now that we have our communicator size IF( (jpni < 1) .OR. (jpnj < 1) )THEN #if defined key_mpp_mpi IF( Agrif_Root() ) CALL nemo_partition(mppsize) #else jpni = 1 jpnj = 1 jpnij = jpni*jpnj #endif END IF ! Calculate domain dimensions given calculated jpni and jpnj ! This used to be done in par_oce.F90 when they were parameters rather ! than variables IF( Agrif_Root() ) THEN #if defined key_nemocice_decomp jpi = ( nx_global+2-2*jpreci + (jpni-1) ) / jpni + 2*jpreci ! first dim. jpj = ( ny_global+2-2*jprecj + (jpnj-1) ) / jpnj + 2*jprecj ! second dim. #else jpi = ( jpiglo-2*jpreci + (jpni-1) ) / jpni + 2*jpreci ! first dim. jpj = ( jpjglo-2*jprecj + (jpnj-1) ) / jpnj + 2*jprecj ! second dim. #endif ENDIF jpk = jpkdta ! third dim jpim1 = jpi-1 ! inner domain indices jpjm1 = jpj-1 ! " " jpkm1 = jpk-1 ! " " jpij = jpi*jpj ! jpi x j IF(lwp) THEN ! open listing units ! CALL ctl_opn( numout, 'ocean.output', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE., narea ) ! WRITE(numout,*) WRITE(numout,*) ' CNRS - NERC - Met OFFICE - MERCATOR-ocean - INGV - CMCC' WRITE(numout,*) ' NEMO team' WRITE(numout,*) ' Ocean General Circulation Model' WRITE(numout,*) ' version 3.6 (2015) ' WRITE(numout,*) WRITE(numout,*) DO ji = 1, SIZE(cltxt) IF( TRIM(cltxt(ji)) /= '' ) WRITE(numout,*) cltxt(ji) ! control print of mynode END DO WRITE(numout,cform_aaa) ! Flag AAAAAAA ! ENDIF ! Now we know the dimensions of the grid and numout has been set we can ! allocate arrays CALL nemo_alloc() ! !-------------------------------! ! ! NEMO general initialization ! ! !-------------------------------! CALL nemo_ctl ! Control prints & Benchmark ! ! Domain decomposition IF( jpni*jpnj == jpnij ) THEN ; CALL mpp_init ! standard cutting out ELSE ; CALL mpp_init2 ! eliminate land processors ENDIF ! IF( nn_timing == 1 ) CALL timing_init ! ! ! General initialization CALL phy_cst ! Physical constants CALL eos_init ! Equation of state IF( lk_c1d ) CALL c1d_init ! 1D column configuration CALL dom_cfg ! Domain configuration CALL dom_init ! Domain IF( ln_nnogather ) CALL nemo_northcomms ! Initialise the northfold neighbour lists (must be done after the masks are defined) IF( ln_ctl ) CALL prt_ctl_init ! Print control CALL istate_init ! ocean initial state (Dynamics and tracers) IF( lk_tide ) CALL tide_init( nit000 ) ! Initialisation of the tidal harmonics CALL sbc_init ! Forcings : surface module (clem: moved here for bdy purpose) IF( lk_bdy ) CALL bdy_init ! Open boundaries initialisation IF( lk_bdy ) CALL bdy_dta_init ! Open boundaries initialisation of external data arrays IF( lk_bdy .AND. lk_tide ) & & CALL bdytide_init ! Open boundaries initialisation of tidal harmonic forcing CALL dyn_nept_init ! simplified form of Neptune effect ! IF( ln_crs ) CALL crs_init ! Domain initialization of coarsened grid ! ! Ocean physics ! ! Vertical physics CALL zdf_init ! namelist read CALL zdf_bfr_init ! bottom friction IF( lk_zdfric ) CALL zdf_ric_init ! Richardson number dependent Kz IF( lk_zdftke ) CALL zdf_tke_init ! TKE closure scheme IF( lk_zdfgls ) CALL zdf_gls_init ! GLS closure scheme IF( lk_zdfkpp ) CALL zdf_kpp_init ! KPP closure scheme IF( lk_zdftmx ) CALL zdf_tmx_init ! tidal vertical mixing IF( lk_zdfddm .AND. .NOT. lk_zdfkpp ) & & CALL zdf_ddm_init ! double diffusive mixing ! ! Lateral physics CALL ldf_tra_init ! Lateral ocean tracer physics CALL ldf_dyn_init ! Lateral ocean momentum physics IF( lk_ldfslp ) CALL ldf_slp_init ! slope of lateral mixing ! ! Active tracers CALL tra_qsr_init ! penetrative solar radiation qsr CALL tra_bbc_init ! bottom heat flux IF( lk_trabbl ) CALL tra_bbl_init ! advective (and/or diffusive) bottom boundary layer scheme CALL tra_dmp_init ! internal damping trends- tracers CALL tra_adv_init ! horizontal & vertical advection CALL tra_ldf_init ! lateral mixing CALL tra_zdf_init ! vertical mixing and after tracer fields ! ! Dynamics IF( lk_c1d ) CALL dyn_dmp_init ! internal damping trends- momentum CALL dyn_adv_init ! advection (vector or flux form) CALL dyn_vor_init ! vorticity term including Coriolis CALL dyn_ldf_init ! lateral mixing CALL dyn_hpg_init ! horizontal gradient of Hydrostatic pressure CALL dyn_zdf_init ! vertical diffusion CALL dyn_spg_init ! surface pressure gradient ! ! Misc. options IF( nn_cla == 1 .AND. cp_cfg == 'orca' .AND. jp_cfg == 2 ) CALL cla_init ! Cross Land Advection CALL icb_init( rdt, nit000) ! initialise icebergs instance #if defined key_top ! ! Passive tracers CALL trc_init #endif ! ! Diagnostics IF( lk_floats ) CALL flo_init ! drifting Floats IF( lk_diaar5 ) CALL dia_ar5_init ! ar5 diag CALL dia_ptr_init ! Poleward TRansports initialization IF( lk_diadct ) CALL dia_dct_init ! Sections tranports CALL dia_hsb_init ! heat content, salt content and volume budgets CALL trd_init ! Mixed-layer/Vorticity/Integral constraints trends IF( lk_diaobs ) THEN ! Observation & model comparison CALL dia_obs_init ! Initialize observational data CALL dia_obs( nit000 - 1 ) ! Observation operator for restart ENDIF ! ! Assimilation increments IF( lk_asminc ) CALL asm_inc_init ! Initialize assimilation increments IF(lwp) WRITE(numout,*) 'Euler time step switch is ', neuler ! END SUBROUTINE nemo_init SUBROUTINE nemo_ctl !!---------------------------------------------------------------------- !! *** ROUTINE nemo_ctl *** !! !! ** Purpose : control print setting !! !! ** Method : - print namctl information and check some consistencies !!---------------------------------------------------------------------- ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'nemo_ctl: Control prints & Benchmark' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namctl' WRITE(numout,*) ' run control (for debugging) ln_ctl = ', ln_ctl WRITE(numout,*) ' level of print nn_print = ', nn_print WRITE(numout,*) ' Start i indice for SUM control nn_ictls = ', nn_ictls WRITE(numout,*) ' End i indice for SUM control nn_ictle = ', nn_ictle WRITE(numout,*) ' Start j indice for SUM control nn_jctls = ', nn_jctls WRITE(numout,*) ' End j indice for SUM control nn_jctle = ', nn_jctle WRITE(numout,*) ' number of proc. following i nn_isplt = ', nn_isplt WRITE(numout,*) ' number of proc. following j nn_jsplt = ', nn_jsplt WRITE(numout,*) ' benchmark parameter (0/1) nn_bench = ', nn_bench WRITE(numout,*) ' timing activated (0/1) nn_timing = ', nn_timing ENDIF ! nprint = nn_print ! convert DOCTOR namelist names into OLD names nictls = nn_ictls nictle = nn_ictle njctls = nn_jctls njctle = nn_jctle isplt = nn_isplt jsplt = nn_jsplt nbench = nn_bench IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'namcfg : configuration initialization through namelist read' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namcfg' WRITE(numout,*) ' configuration name cp_cfg = ', TRIM(cp_cfg) WRITE(numout,*) ' configuration zoom name cp_cfz = ', TRIM(cp_cfz) WRITE(numout,*) ' configuration resolution jp_cfg = ', jp_cfg WRITE(numout,*) ' 1st lateral dimension ( >= jpi ) jpidta = ', jpidta WRITE(numout,*) ' 2nd " " ( >= jpj ) jpjdta = ', jpjdta WRITE(numout,*) ' 3nd " " jpkdta = ', jpkdta WRITE(numout,*) ' 1st dimension of global domain in i jpiglo = ', jpiglo WRITE(numout,*) ' 2nd - - in j jpjglo = ', jpjglo WRITE(numout,*) ' left bottom i index of the zoom (in data domain) jpizoom = ', jpizoom WRITE(numout,*) ' left bottom j index of the zoom (in data domain) jpizoom = ', jpjzoom WRITE(numout,*) ' lateral cond. type (between 0 and 6) jperio = ', jperio WRITE(numout,*) ' use file attribute if exists as i/p j-start ln_use_jattr = ', ln_use_jattr ENDIF ! ! Parameter control ! IF( ln_ctl ) THEN ! sub-domain area indices for the control prints IF( lk_mpp .AND. jpnij > 1 ) THEN isplt = jpni ; jsplt = jpnj ; ijsplt = jpni*jpnj ! the domain is forced to the real split domain ELSE IF( isplt == 1 .AND. jsplt == 1 ) THEN CALL ctl_warn( ' - isplt & jsplt are equal to 1', & & ' - the print control will be done over the whole domain' ) ENDIF ijsplt = isplt * jsplt ! total number of processors ijsplt ENDIF IF(lwp) WRITE(numout,*)' - The total number of processors over which the' IF(lwp) WRITE(numout,*)' print control will be done is ijsplt : ', ijsplt ! ! ! indices used for the SUM control IF( nictls+nictle+njctls+njctle == 0 ) THEN ! print control done over the default area lsp_area = .FALSE. ELSE ! print control done over a specific area lsp_area = .TRUE. IF( nictls < 1 .OR. nictls > jpiglo ) THEN CALL ctl_warn( ' - nictls must be 1<=nictls>=jpiglo, it is forced to 1' ) nictls = 1 ENDIF IF( nictle < 1 .OR. nictle > jpiglo ) THEN CALL ctl_warn( ' - nictle must be 1<=nictle>=jpiglo, it is forced to jpiglo' ) nictle = jpiglo ENDIF IF( njctls < 1 .OR. njctls > jpjglo ) THEN CALL ctl_warn( ' - njctls must be 1<=njctls>=jpjglo, it is forced to 1' ) njctls = 1 ENDIF IF( njctle < 1 .OR. njctle > jpjglo ) THEN CALL ctl_warn( ' - njctle must be 1<=njctle>=jpjglo, it is forced to jpjglo' ) njctle = jpjglo ENDIF ENDIF ENDIF ! IF( nbench == 1 ) THEN ! Benchmark SELECT CASE ( cp_cfg ) CASE ( 'gyre' ) ; CALL ctl_warn( ' The Benchmark is activated ' ) CASE DEFAULT ; CALL ctl_stop( ' The Benchmark is based on the GYRE configuration:', & & ' cp_cfg = "gyre" in namelist &namcfg or set nbench = 0' ) END SELECT ENDIF ! IF( 1_wp /= SIGN(1._wp,-0._wp) ) CALL ctl_stop( 'nemo_ctl: The intrinsec SIGN function follows ', & & 'f2003 standard. ' , & & 'Compile with key_nosignedzero enabled' ) ! END SUBROUTINE nemo_ctl SUBROUTINE nemo_closefile !!---------------------------------------------------------------------- !! *** ROUTINE nemo_closefile *** !! !! ** Purpose : Close the files !!---------------------------------------------------------------------- ! IF( lk_mpp ) CALL mppsync ! CALL iom_close ! close all input/output files managed by iom_* ! IF( numstp /= -1 ) CLOSE( numstp ) ! time-step file IF( numsol /= -1 ) CLOSE( numsol ) ! solver file IF( numnam_ref /= -1 ) CLOSE( numnam_ref ) ! oce reference namelist IF( numnam_cfg /= -1 ) CLOSE( numnam_cfg ) ! oce configuration namelist IF( lwm.AND.numond /= -1 ) CLOSE( numond ) ! oce output namelist IF( numnam_ice_ref /= -1 ) CLOSE( numnam_ice_ref ) ! ice reference namelist IF( numnam_ice_cfg /= -1 ) CLOSE( numnam_ice_cfg ) ! ice configuration namelist IF( lwm.AND.numoni /= -1 ) CLOSE( numoni ) ! ice output namelist IF( numevo_ice /= -1 ) CLOSE( numevo_ice ) ! ice variables (temp. evolution) IF( numout /= 6 ) CLOSE( numout ) ! standard model output file IF( numdct_vol /= -1 ) CLOSE( numdct_vol ) ! volume transports IF( numdct_heat /= -1 ) CLOSE( numdct_heat ) ! heat transports IF( numdct_salt /= -1 ) CLOSE( numdct_salt ) ! salt transports ! numout = 6 ! redefine numout in case it is used after this point... ! END SUBROUTINE nemo_closefile SUBROUTINE nemo_alloc !!---------------------------------------------------------------------- !! *** ROUTINE nemo_alloc *** !! !! ** Purpose : Allocate all the dynamic arrays of the OPA modules !! !! ** Method : !!---------------------------------------------------------------------- USE diawri , ONLY: dia_wri_alloc USE dom_oce , ONLY: dom_oce_alloc USE ldfdyn_oce, ONLY: ldfdyn_oce_alloc USE ldftra_oce, ONLY: ldftra_oce_alloc USE trc_oce , ONLY: trc_oce_alloc #if defined key_diadct USE diadct , ONLY: diadct_alloc #endif #if defined key_bdy USE bdy_oce , ONLY: bdy_oce_alloc #endif ! INTEGER :: ierr !!---------------------------------------------------------------------- ! ierr = oce_alloc () ! ocean ierr = ierr + dia_wri_alloc () ierr = ierr + dom_oce_alloc () ! ocean domain ierr = ierr + ldfdyn_oce_alloc() ! ocean lateral physics : dynamics ierr = ierr + ldftra_oce_alloc() ! ocean lateral physics : tracers ierr = ierr + zdf_oce_alloc () ! ocean vertical physics ! ierr = ierr + trc_oce_alloc () ! shared TRC / TRA arrays ! #if defined key_diadct ierr = ierr + diadct_alloc () ! #endif #if defined key_bdy ierr = ierr + bdy_oce_alloc () ! bdy masks (incl. initialization) #endif ! IF( lk_mpp ) CALL mpp_sum( ierr ) IF( ierr /= 0 ) CALL ctl_stop( 'STOP', 'nemo_alloc : unable to allocate standard ocean arrays' ) ! END SUBROUTINE nemo_alloc SUBROUTINE nemo_partition( num_pes ) !!---------------------------------------------------------------------- !! *** ROUTINE nemo_partition *** !! !! ** Purpose : !! !! ** Method : !!---------------------------------------------------------------------- INTEGER, INTENT(in) :: num_pes ! The number of MPI processes we have ! INTEGER, PARAMETER :: nfactmax = 20 INTEGER :: nfact ! The no. of factors returned INTEGER :: ierr ! Error flag INTEGER :: ji INTEGER :: idiff, mindiff, imin ! For choosing pair of factors that are closest in value INTEGER, DIMENSION(nfactmax) :: ifact ! Array of factors !!---------------------------------------------------------------------- ! ierr = 0 ! CALL factorise( ifact, nfactmax, nfact, num_pes, ierr ) ! IF( nfact <= 1 ) THEN WRITE (numout, *) 'WARNING: factorisation of number of PEs failed' WRITE (numout, *) ' : using grid of ',num_pes,' x 1' jpnj = 1 jpni = num_pes ELSE ! Search through factors for the pair that are closest in value mindiff = 1000000 imin = 1 DO ji = 1, nfact-1, 2 idiff = ABS( ifact(ji) - ifact(ji+1) ) IF( idiff < mindiff ) THEN mindiff = idiff imin = ji ENDIF END DO jpnj = ifact(imin) jpni = ifact(imin + 1) ENDIF ! jpnij = jpni*jpnj ! END SUBROUTINE nemo_partition SUBROUTINE factorise( kfax, kmaxfax, knfax, kn, kerr ) !!---------------------------------------------------------------------- !! *** ROUTINE factorise *** !! !! ** Purpose : return the prime factors of n. !! knfax factors are returned in array kfax which is of !! maximum dimension kmaxfax. !! ** Method : !!---------------------------------------------------------------------- INTEGER , INTENT(in ) :: kn, kmaxfax INTEGER , INTENT( out) :: kerr, knfax INTEGER, DIMENSION(kmaxfax), INTENT( out) :: kfax ! INTEGER :: ifac, jl, inu INTEGER, PARAMETER :: ntest = 14 INTEGER :: ilfax(ntest) ! ! lfax contains the set of allowed factors. data (ilfax(jl),jl=1,ntest) / 16384, 8192, 4096, 2048, 1024, 512, 256, & & 128, 64, 32, 16, 8, 4, 2 / !!---------------------------------------------------------------------- ! Clear the error flag and initialise output vars kerr = 0 kfax = 1 knfax = 0 ! Find the factors of n. IF( kn == 1 ) GOTO 20 ! nu holds the unfactorised part of the number. ! knfax holds the number of factors found. ! l points to the allowed factor list. ! ifac holds the current factor. inu = kn knfax = 0 DO jl = ntest, 1, -1 ! ifac = ilfax(jl) IF( ifac > inu ) CYCLE ! Test whether the factor will divide. IF( MOD(inu,ifac) == 0 ) THEN ! knfax = knfax + 1 ! Add the factor to the list IF( knfax > kmaxfax ) THEN kerr = 6 write (*,*) 'FACTOR: insufficient space in factor array ', knfax return ENDIF kfax(knfax) = ifac ! Store the other factor that goes with this one knfax = knfax + 1 kfax(knfax) = inu / ifac !WRITE (*,*) 'ARPDBG, factors ',knfax-1,' & ',knfax,' are ', kfax(knfax-1),' and ',kfax(knfax) ENDIF ! END DO 20 CONTINUE ! Label 20 is the exit point from the factor search loop. ! END SUBROUTINE factorise #if defined key_mpp_mpi SUBROUTINE nemo_northcomms !!====================================================================== !! *** ROUTINE nemo_northcomms *** !! nemo_northcomms : Setup for north fold exchanges with explicit !! point-to-point messaging !!===================================================================== !!---------------------------------------------------------------------- !! !! ** Purpose : Initialization of the northern neighbours lists. !!---------------------------------------------------------------------- !! 1.0 ! 2011-10 (A. C. Coward, NOCS & J. Donners, PRACE) !! 2.0 ! 2013-06 Setup avoiding MPI communication (I. Epicoco, S. Mocavero, CMCC) !!---------------------------------------------------------------------- INTEGER :: sxM, dxM, sxT, dxT, jn INTEGER :: njmppmax njmppmax = MAXVAL( njmppt ) !initializes the north-fold communication variables isendto(:) = 0 nsndto = 0 !if I am a process in the north IF ( njmpp == njmppmax ) THEN !sxM is the first point (in the global domain) needed to compute the !north-fold for the current process sxM = jpiglo - nimppt(narea) - nlcit(narea) + 1 !dxM is the last point (in the global domain) needed to compute the !north-fold for the current process dxM = jpiglo - nimppt(narea) + 2 !loop over the other north-fold processes to find the processes !managing the points belonging to the sxT-dxT range DO jn = 1, jpni !sxT is the first point (in the global domain) of the jn !process sxT = nfiimpp(jn, jpnj) !dxT is the last point (in the global domain) of the jn !process dxT = nfiimpp(jn, jpnj) + nfilcit(jn, jpnj) - 1 IF ((sxM .gt. sxT) .AND. (sxM .lt. dxT)) THEN nsndto = nsndto + 1 isendto(nsndto) = jn ELSEIF ((sxM .le. sxT) .AND. (dxM .ge. dxT)) THEN nsndto = nsndto + 1 isendto(nsndto) = jn ELSEIF ((dxM .lt. dxT) .AND. (sxT .lt. dxM)) THEN nsndto = nsndto + 1 isendto(nsndto) = jn END IF END DO nfsloop = 1 nfeloop = nlci DO jn = 2,jpni-1 IF(nfipproc(jn,jpnj) .eq. (narea - 1)) THEN IF (nfipproc(jn - 1 ,jpnj) .eq. -1) THEN nfsloop = nldi ENDIF IF (nfipproc(jn + 1,jpnj) .eq. -1) THEN nfeloop = nlei ENDIF ENDIF END DO ENDIF l_north_nogather = .TRUE. END SUBROUTINE nemo_northcomms #else SUBROUTINE nemo_northcomms ! Dummy routine WRITE(*,*) 'nemo_northcomms: You should not have seen this print! error?' END SUBROUTINE nemo_northcomms #endif !!====================================================================== END MODULE nemogcm