MODULE p4zsed !!====================================================================== !! *** MODULE p4sed *** !! TOP : PISCES Compute loss of organic matter in the sediments !!====================================================================== !! History : 1.0 ! 2004-03 (O. Aumont) Original code !! 2.0 ! 2007-12 (C. Ethe, G. Madec) F90 !! 3.4 ! 2011-06 (C. Ethe) USE of fldread !! 3.5 ! 2012-07 (O. Aumont) improvment of river input of nutrients !!---------------------------------------------------------------------- #if defined key_pisces !!---------------------------------------------------------------------- !! 'key_pisces' PISCES bio-model !!---------------------------------------------------------------------- !! p4z_sed : Compute loss of organic matter in the sediments !!---------------------------------------------------------------------- USE oce_trc ! shared variables between ocean and passive tracers USE trc ! passive tracers common variables USE sms_pisces ! PISCES Source Minus Sink variables USE p4zsink ! vertical flux of particulate matter due to sinking USE p4zopt ! optical model USE p4zlim ! Co-limitations of differents nutrients USE p4zrem ! Remineralisation of organic matter USE p4zsbc ! External source of nutrients USE p4zint ! interpolation and computation of various fields USE iom ! I/O manager USE prtctl_trc ! print control for debugging IMPLICIT NONE PRIVATE PUBLIC p4z_sed !! * Module variables REAL(wp) :: ryyss !: number of seconds per year REAL(wp) :: r1_ryyss !: inverse of ryyss REAL(wp) :: rmtss !: number of seconds per month REAL(wp) :: r1_rday !: inverse of rday INTEGER :: numnit !!* Substitution # include "top_substitute.h90" !!---------------------------------------------------------------------- !! NEMO/TOP 3.3 , NEMO Consortium (2010) !! $Header:$ !! Software governed by the CeCILL licence (NEMOGCM/NEMO_CeCILL.txt) !!---------------------------------------------------------------------- CONTAINS SUBROUTINE p4z_sed( kt, jnt ) !!--------------------------------------------------------------------- !! *** ROUTINE p4z_sed *** !! !! ** Purpose : Compute loss of organic matter in the sediments. This !! is by no way a sediment model. The loss is simply !! computed to balance the inout from rivers and dust !! !! ** Method : - ??? !!--------------------------------------------------------------------- ! INTEGER, INTENT(in) :: kt, jnt ! ocean time step INTEGER :: ji, jj, jk, ikt #if ! defined key_sed REAL(wp) :: zsumsedsi, zsumsedpo4, zsumsedcal REAL(wp) :: zrivalk, zrivsil, zrivno3 #endif REAL(wp) :: zwflux, zfminus, zfplus REAL(wp) :: zlim, zfact, zfactcal REAL(wp) :: zo2, zno3, zflx, zpdenit, z1pdenit, zdenitt, zolimit REAL(wp) :: zsiloss, zcaloss, zws3, zws4, zwsc, zdep, zwstpoc REAL(wp) :: ztrfer, ztrpo4, zwdust, zlight REAL(wp) :: zrdenittot, zsdenittot, znitrpottot ! CHARACTER (len=25) :: charout REAL(wp), POINTER, DIMENSION(:,: ) :: zpdep, zsidep, zwork1, zwork2, zwork3, zwork4 REAL(wp), POINTER, DIMENSION(:,: ) :: zdenit2d, zironice, zbureff REAL(wp), POINTER, DIMENSION(:,: ) :: zwsbio3, zwsbio4, zwscal REAL(wp), POINTER, DIMENSION(:,:,:) :: znitrpot, zirondep, zsoufer !!--------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('p4z_sed') ! IF( kt == nittrc000 .AND. jnt == 1 ) THEN ryyss = nyear_len(1) * rday ! number of seconds per year and per month rmtss = ryyss / raamo r1_rday = 1. / rday r1_ryyss = 1. / ryyss IF( ln_check_mass .AND. lwp) & & CALL ctl_opn( numnit, 'nitrogen.budget', 'REPLACE', 'FORMATTED', 'SEQUENTIAL', -1, 6, .FALSE., narea ) ENDIF ! ! Allocate temporary workspace CALL wrk_alloc( jpi, jpj, zdenit2d, zwork1, zwork2, zwork3, zwork4, zbureff ) CALL wrk_alloc( jpi, jpj, zwsbio3, zwsbio4, zwscal ) CALL wrk_alloc( jpi, jpj, jpk, znitrpot, zsoufer ) zdenit2d(:,:) = 0.e0 zbureff (:,:) = 0.e0 ! Iron input/uptake due to sea ice : Crude parameterization based on Lancelot et al. ! ---------------------------------------------------- IF( ln_ironice ) THEN ! CALL wrk_alloc( jpi, jpj, zironice ) ! DO jj = 1, jpj DO ji = 1, jpi zdep = rfact2 / fse3t(ji,jj,1) zwflux = fmmflx(ji,jj) / 1000._wp zfminus = MIN( 0._wp, -zwflux ) * trn(ji,jj,1,jpfer) * zdep zfplus = MAX( 0._wp, -zwflux ) * icefeinput * zdep zironice(ji,jj) = zfplus + zfminus END DO END DO ! trn(:,:,1,jpfer) = trn(:,:,1,jpfer) + zironice(:,:) ! IF( ln_diatrc .AND. lk_iomput .AND. jnt == nrdttrc ) & & CALL iom_put( "Ironice", zironice(:,:) * 1.e+3 * rfact2r * fse3t(:,:,1) * tmask(:,:,1) ) ! iron flux from ice CALL wrk_dealloc( jpi, jpj, zironice ) ! ENDIF ! Add the external input of nutrients from dust deposition ! ---------------------------------------------------------- IF( ln_dust ) THEN ! CALL wrk_alloc( jpi, jpj, zpdep, zsidep ) CALL wrk_alloc( jpi, jpj, jpk, zirondep ) ! ! Iron and Si deposition at the surface IF( ln_solub ) THEN zirondep(:,:,1) = solub(:,:) * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / ( 55.85 * rmtss ) + 3.e-10 * r1_ryyss ELSE zirondep(:,:,1) = dustsolub * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / ( 55.85 * rmtss ) + 3.e-10 * r1_ryyss ENDIF zsidep(:,:) = 8.8 * 0.075 * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / ( 28.1 * rmtss ) zpdep (:,:) = 0.1 * 0.021 * dust(:,:) * mfrac * rfact2 / fse3t(:,:,1) / ( 31. * rmtss ) / po4r ! ! Iron solubilization of particles in the water column ! ! dust in kg/m2/s ---> 1/55.85 to put in mol/Fe ; wdust in m/j zwdust = 0.03 * rday / ( wdust * 55.85 ) / ( 270. * rday ) DO jk = 2, jpkm1 zirondep(:,:,jk) = dust(:,:) * mfrac * zwdust * rfact2 * EXP( -fsdept(:,:,jk) / 540. ) END DO ! ! Iron solubilization of particles in the water column trn(:,:,1,jppo4) = trn(:,:,1,jppo4) + zpdep (:,:) trn(:,:,1,jpsil) = trn(:,:,1,jpsil) + zsidep (:,:) trn(:,:,:,jpfer) = trn(:,:,:,jpfer) + zirondep(:,:,:) ! IF( ln_diatrc ) THEN zfact = 1.e+3 * rfact2r IF( lk_iomput ) THEN IF( jnt == nrdttrc ) THEN CALL iom_put( "Irondep", zirondep(:,:,1) * zfact * fse3t(:,:,1) * tmask(:,:,1) ) ! surface downward dust depo of iron CALL iom_put( "pdust" , dust(:,:) / ( wdust * rday ) * tmask(:,:,1) ) ! dust concentration at surface ENDIF ELSE trc2d(:,:,jp_pcs0_2d + 11) = zirondep(:,:,1) * zfact * fse3t(:,:,1) * tmask(:,:,1) ENDIF ENDIF CALL wrk_dealloc( jpi, jpj, zpdep, zsidep ) CALL wrk_dealloc( jpi, jpj, jpk, zirondep ) ! ENDIF ! Add the external input of nutrients from river ! ---------------------------------------------------------- IF( ln_river ) THEN trn(:,:,1,jppo4) = trn(:,:,1,jppo4) + rivdip(:,:) * rfact2 trn(:,:,1,jpno3) = trn(:,:,1,jpno3) + rivdin(:,:) * rfact2 trn(:,:,1,jpfer) = trn(:,:,1,jpfer) + rivdic(:,:) * 5.e-5 * rfact2 trn(:,:,1,jpsil) = trn(:,:,1,jpsil) + rivdsi(:,:) * rfact2 trn(:,:,1,jpdic) = trn(:,:,1,jpdic) + rivdic(:,:) * rfact2 trn(:,:,1,jptal) = trn(:,:,1,jptal) + ( rivalk(:,:) - rno3 * rivdin(:,:) ) * rfact2 ENDIF ! Add the external input of nutrients from nitrogen deposition ! ---------------------------------------------------------- IF( ln_ndepo ) THEN trn(:,:,1,jpno3) = trn(:,:,1,jpno3) + nitdep(:,:) * rfact2 trn(:,:,1,jptal) = trn(:,:,1,jptal) - rno3 * nitdep(:,:) * rfact2 ENDIF ! Add the external input of iron from sediment mobilization ! ------------------------------------------------------ IF( ln_ironsed ) THEN trn(:,:,:,jpfer) = trn(:,:,:,jpfer) + ironsed(:,:,:) * rfact2 ! IF( ln_diatrc .AND. lk_iomput .AND. jnt == nrdttrc ) & & CALL iom_put( "Ironsed", ironsed(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! iron inputs from sediments ENDIF ! Add the external input of iron from hydrothermal vents ! ------------------------------------------------------ IF( ln_hydrofe ) THEN trn(:,:,:,jpfer) = trn(:,:,:,jpfer) + hydrofe(:,:,:) * rfact2 ! IF( ln_diatrc .AND. lk_iomput .AND. jnt == nrdttrc ) & & CALL iom_put( "HYDR", hydrofe(:,:,:) * 1.e+3 * tmask(:,:,:) ) ! hydrothermal iron input ENDIF ! OA: Warning, the following part is necessary, especially with Kriest ! to avoid CFL problems above the sediments ! -------------------------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = fse3t(ji,jj,ikt) / xstep zwsbio4(ji,jj) = MIN( 0.99 * zdep, wsbio4(ji,jj,ikt) ) zwscal (ji,jj) = MIN( 0.99 * zdep, wscal (ji,jj,ikt) ) zwsbio3(ji,jj) = MIN( 0.99 * zdep, wsbio3(ji,jj,ikt) ) END DO END DO #if ! defined key_sed ! Computation of the sediment denitrification proportion: The metamodel from midlleburg (2006) is being used ! Computation of the fraction of organic matter that is permanently buried from Dunne's model ! ------------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi IF( tmask(ji,jj,1) == 1 ) THEN ikt = mbkt(ji,jj) # if defined key_kriest zflx = trn(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) * 1E3 * 1E6 / 1E4 # else zflx = ( trn(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) & & + trn(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E3 * 1E6 / 1E4 #endif zflx = LOG10( MAX( 1E-3, zflx ) ) zo2 = LOG10( MAX( 10. , trn(ji,jj,ikt,jpoxy) * 1E6 ) ) zno3 = LOG10( MAX( 1. , trn(ji,jj,ikt,jpno3) * 1E6 * rno3 ) ) zdep = LOG10( fsdepw(ji,jj,ikt+1) ) zdenit2d(ji,jj) = -2.2567 - 1.185 * zflx - 0.221 * zflx**2 - 0.3995 * zno3 * zo2 + 1.25 * zno3 & & + 0.4721 * zo2 - 0.0996 * zdep + 0.4256 * zflx * zo2 zdenit2d(ji,jj) = 10.0**( zdenit2d(ji,jj) ) ! zflx = ( trn(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) & & + trn(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) ) * 1E6 zbureff(ji,jj) = 0.013 + 0.53 * zflx**2 / ( 7.0 + zflx )**2 ENDIF END DO END DO ! Loss of biogenic silicon, Caco3 organic carbon in the sediments. ! First, the total loss is computed. ! The factor for calcite comes from the alkalinity effect ! ------------------------------------------------------------- DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) # if defined key_kriest zwork1(ji,jj) = trn(ji,jj,ikt,jpgsi) * zwscal (ji,jj) zwork2(ji,jj) = trn(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) # else zwork1(ji,jj) = trn(ji,jj,ikt,jpgsi) * zwsbio4(ji,jj) zwork2(ji,jj) = trn(ji,jj,ikt,jpgoc) * zwsbio4(ji,jj) + trn(ji,jj,ikt,jppoc) * zwsbio3(ji,jj) # endif ! For calcite, burial efficiency is made a function of saturation zfactcal = MIN( excess(ji,jj,ikt), 0.2 ) zfactcal = MIN( 1., 1.3 * ( 0.2 - zfactcal ) / ( 0.4 - zfactcal ) ) zwork3(ji,jj) = trn(ji,jj,ikt,jpcal) * zwscal(ji,jj) * 2.e0 * zfactcal END DO END DO zsumsedsi = glob_sum( zwork1(:,:) * e1e2t(:,:) ) * r1_rday zsumsedpo4 = glob_sum( zwork2(:,:) * e1e2t(:,:) ) * r1_rday zsumsedcal = glob_sum( zwork3(:,:) * e1e2t(:,:) ) * r1_rday #endif ! This loss is scaled at each bottom grid cell for equilibrating the total budget of silica in the ocean. ! Thus, the amount of silica lost in the sediments equal the supply at the surface (dust+rivers) ! ------------------------------------------------------ #if ! defined key_sed zrivsil = 1._wp - ( sumdepsi + rivdsiinput * r1_ryyss ) / ( zsumsedsi + rtrn ) #endif DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = xstep / fse3t(ji,jj,ikt) zws4 = zwsbio4(ji,jj) * zdep zwsc = zwscal (ji,jj) * zdep # if defined key_kriest zsiloss = trn(ji,jj,ikt,jpgsi) * zws4 # else zsiloss = trn(ji,jj,ikt,jpgsi) * zwsc # endif zcaloss = trn(ji,jj,ikt,jpcal) * zwsc ! trn(ji,jj,ikt,jpgsi) = trn(ji,jj,ikt,jpgsi) - zsiloss trn(ji,jj,ikt,jpcal) = trn(ji,jj,ikt,jpcal) - zcaloss #if ! defined key_sed trn(ji,jj,ikt,jpsil) = trn(ji,jj,ikt,jpsil) + zsiloss * zrivsil zfactcal = MIN( excess(ji,jj,ikt), 0.2 ) zfactcal = MIN( 1., 1.3 * ( 0.2 - zfactcal ) / ( 0.4 - zfactcal ) ) zrivalk = 1._wp - ( rivalkinput * r1_ryyss ) * zfactcal / ( zsumsedcal + rtrn ) trn(ji,jj,ikt,jptal) = trn(ji,jj,ikt,jptal) + zcaloss * zrivalk * 2.0 trn(ji,jj,ikt,jpdic) = trn(ji,jj,ikt,jpdic) + zcaloss * zrivalk #endif END DO END DO DO jj = 1, jpj DO ji = 1, jpi ikt = mbkt(ji,jj) zdep = xstep / fse3t(ji,jj,ikt) zws4 = zwsbio4(ji,jj) * zdep zws3 = zwsbio3(ji,jj) * zdep zrivno3 = 1. - zbureff(ji,jj) # if ! defined key_kriest trn(ji,jj,ikt,jpgoc) = trn(ji,jj,ikt,jpgoc) - trn(ji,jj,ikt,jpgoc) * zws4 trn(ji,jj,ikt,jppoc) = trn(ji,jj,ikt,jppoc) - trn(ji,jj,ikt,jppoc) * zws3 trn(ji,jj,ikt,jpbfe) = trn(ji,jj,ikt,jpbfe) - trn(ji,jj,ikt,jpbfe) * zws4 trn(ji,jj,ikt,jpsfe) = trn(ji,jj,ikt,jpsfe) - trn(ji,jj,ikt,jpsfe) * zws3 zwstpoc = trn(ji,jj,ikt,jpgoc) * zws4 + trn(ji,jj,ikt,jppoc) * zws3 # else trn(ji,jj,ikt,jpnum) = trn(ji,jj,ikt,jpnum) - trn(ji,jj,ikt,jpnum) * zws4 trn(ji,jj,ikt,jppoc) = trn(ji,jj,ikt,jppoc) - trn(ji,jj,ikt,jppoc) * zws3 trn(ji,jj,ikt,jpsfe) = trn(ji,jj,ikt,jpsfe) - trn(ji,jj,ikt,jpsfe) * zws3 zwstpoc = trn(ji,jj,ikt,jppoc) * zws3 # endif #if ! defined key_sed ! The 0.5 factor in zpdenit and zdenitt is to avoid negative NO3 concentration after both denitrification ! in the sediments and just above the sediments. Not very clever, but simpliest option. zpdenit = MIN( 0.5 * ( trn(ji,jj,ikt,jpno3) - rtrn ) / rdenit, zdenit2d(ji,jj) * zwstpoc * zrivno3 ) z1pdenit = zwstpoc * zrivno3 - zpdenit zolimit = MIN( ( trn(ji,jj,ikt,jpoxy) - rtrn ) / o2ut, z1pdenit * ( 1.- nitrfac(ji,jj,ikt) ) ) zdenitt = MIN( 0.5 * ( trn(ji,jj,ikt,jpno3) - rtrn ) / rdenit, z1pdenit * nitrfac(ji,jj,ikt) ) trn(ji,jj,ikt,jpdoc) = trn(ji,jj,ikt,jpdoc) + z1pdenit - zolimit - zdenitt trn(ji,jj,ikt,jppo4) = trn(ji,jj,ikt,jppo4) + zpdenit + zolimit + zdenitt trn(ji,jj,ikt,jpnh4) = trn(ji,jj,ikt,jpnh4) + zpdenit + zolimit + zdenitt trn(ji,jj,ikt,jpno3) = trn(ji,jj,ikt,jpno3) - rdenit * (zpdenit + zdenitt) trn(ji,jj,ikt,jpoxy) = trn(ji,jj,ikt,jpoxy) - zolimit * o2ut trn(ji,jj,ikt,jptal) = trn(ji,jj,ikt,jptal) + rno3 * (zolimit + (1.+rdenit) * (zpdenit + zdenitt) ) trn(ji,jj,ikt,jpdic) = trn(ji,jj,ikt,jpdic) + zpdenit + zolimit + zdenitt zwork4(ji,jj) = rdenit * zpdenit * fse3t(ji,jj,ikt) #endif END DO END DO ! Nitrogen fixation process ! Small source iron from particulate inorganic iron !----------------------------------- DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi ! ! Potential nitrogen fixation dependant on temperature and iron zlim = ( 1.- xnanono3(ji,jj,jk) - xnanonh4(ji,jj,jk) ) IF( zlim <= 0.2 ) zlim = 0.01 #if defined key_degrad zfact = zlim * rfact2 * facvol(ji,jj,jk) #else zfact = zlim * rfact2 #endif ztrfer = biron(ji,jj,jk) / ( concfediaz + biron(ji,jj,jk) ) ztrpo4 = trn (ji,jj,jk,jppo4) / ( concnnh4 + trn (ji,jj,jk,jppo4) ) zlight = ( 1.- EXP( -etot(ji,jj,jk) / diazolight ) ) znitrpot(ji,jj,jk) = MAX( 0.e0, ( 0.6 * tgfunc(ji,jj,jk) - 2.15 ) * r1_rday ) & & * zfact * MIN( ztrfer, ztrpo4 ) * zlight zsoufer(ji,jj,jk) = zlight * 2E-11 / (2E-11 + biron(ji,jj,jk)) END DO END DO END DO ! Nitrogen change due to nitrogen fixation ! ---------------------------------------- DO jk = 1, jpkm1 DO jj = 1, jpj DO ji = 1, jpi zfact = znitrpot(ji,jj,jk) * nitrfix trn(ji,jj,jk,jpnh4) = trn(ji,jj,jk,jpnh4) + zfact trn(ji,jj,jk,jptal) = trn(ji,jj,jk,jptal) + rno3 * zfact trn(ji,jj,jk,jpoxy) = trn(ji,jj,jk,jpoxy) + o2nit * zfact trn(ji,jj,jk,jppo4) = trn(ji,jj,jk,jppo4) + concdnh4 / ( concdnh4 + trn(ji,jj,jk,jppo4) ) & & * 0.002 * trn(ji,jj,jk,jpdoc) * rfact2 / rday trn(ji,jj,jk,jpfer) = trn(ji,jj,jk,jpfer) + 0.002 * 4E-10 * zsoufer(ji,jj,jk) * rfact2 / rday END DO END DO END DO IF( ln_check_mass ) THEN ! Global budget of N SMS : denitrification in the water column and in the sediment ! nitrogen fixation by the diazotrophs ! -------------------------------------------------------------------------------- zrdenittot = glob_sum ( denitr(:,:,:) * rdenit * xnegtr(:,:,:) * cvol(:,:,:) ) zsdenittot = glob_sum ( zwork4(:,:) * e1e2t(:,:) ) znitrpottot = glob_sum ( znitrpot(:,:,:) * nitrfix * cvol(:,:,:) ) IF( kt == nitend .AND. jnt == nrdttrc ) THEN zfact = 1.e+3 * rfact2r * rno3 * ryyss * 14. / 1e12 IF(lwp) WRITE(numnit,9100) ndastp, znitrpottot * nitrfix * zfact, zrdenittot * zfact , zsdenittot * zfact ENDIF ENDIF ! IF( ln_diatrc ) THEN zfact = 1.e+3 * rfact2r IF( lk_iomput ) THEN IF( jnt == nrdttrc ) THEN CALL iom_put( "Nfix" , znitrpot(:,:,:) * nitrfix * rno3 * zfact * tmask(:,:,:) ) ! nitrogen fixation CALL iom_put( "Sdenit", zwork4(:,:) * rno3 * zfact * tmask(:,:,1) ) ! Nitrate reduction in the sediments ENDIF ELSE trc2d(:,:,jp_pcs0_2d + 12) = znitrpot(:,:,1) * nitrfix * zfact * fse3t(:,:,1) * tmask(:,:,1) ENDIF ENDIF ! IF(ln_ctl) THEN ! print mean trends (USEd for debugging) WRITE(charout, fmt="('sed ')") CALL prt_ctl_trc_info(charout) CALL prt_ctl_trc(tab4d=trn, mask=tmask, clinfo=ctrcnm) ENDIF ! CALL wrk_dealloc( jpi, jpj, zdenit2d, zwork1, zwork2, zwork3, zwork4, zbureff ) CALL wrk_dealloc( jpi, jpj, zwsbio3, zwsbio4, zwscal ) CALL wrk_dealloc( jpi, jpj, jpk, znitrpot, zsoufer ) ! IF( nn_timing == 1 ) CALL timing_stop('p4z_sed') ! 9100 FORMAT(i8,3f10.5) ! END SUBROUTINE p4z_sed #else !!====================================================================== !! Dummy module : No PISCES bio-model !!====================================================================== CONTAINS SUBROUTINE p4z_sed ! Empty routine END SUBROUTINE p4z_sed #endif !!====================================================================== END MODULE p4zsed