MODULE domain !!============================================================================== !! *** MODULE domain *** !! Ocean initialization : domain initialization !!============================================================================== !! History : OPA ! 1990-10 (C. Levy - G. Madec) Original code !! ! 1992-01 (M. Imbard) insert time step initialization !! ! 1996-06 (G. Madec) generalized vertical coordinate !! ! 1997-02 (G. Madec) creation of domwri.F !! ! 2001-05 (E.Durand - G. Madec) insert closed sea !! NEMO 1.0 ! 2002-08 (G. Madec) F90: Free form and module !! 2.0 ! 2005-11 (V. Garnier) Surface pressure gradient organization !! 3.3 ! 2010-11 (G. Madec) initialisation in C1D configuration !! 3.6 ! 2013 ( J. Simeon, C. Calone, G. Madec, C. Ethe ) Online coarsening of outputs !! 3.7 ! 2015-11 (G. Madec, A. Coward) time varying zgr by default !!---------------------------------------------------------------------- !!---------------------------------------------------------------------- !! dom_init : initialize the space and time domain !! dom_nam : read and contral domain namelists !! dom_ctl : control print for the ocean domain !!---------------------------------------------------------------------- USE oce ! ocean variables USE dom_oce ! domain: ocean USE phycst ! physical constants USE closea ! closed seas USE domhgr ! domain: set the horizontal mesh USE domzgr ! domain: set the vertical mesh USE domstp ! domain: set the time-step USE dommsk ! domain: set the mask system USE domwri ! domain: write the meshmask file USE domvvl ! variable volume ! USE in_out_manager ! I/O manager USE iom ! USE wrk_nemo ! Memory Allocation USE lib_mpp ! distributed memory computing library USE lbclnk ! ocean lateral boundary condition (or mpp link) USE timing ! Timing IMPLICIT NONE PRIVATE PUBLIC dom_init ! called by opa.F90 !!------------------------------------------------------------------------- !! NEMO/OCE 4.0 , NEMO Consortium (2018) !! $Id: domain.F90 6140 2015-12-21 11:35:23Z timgraham $ !! Software governed by the CeCILL licence (./LICENSE) !!------------------------------------------------------------------------- CONTAINS SUBROUTINE dom_init !!---------------------------------------------------------------------- !! *** ROUTINE dom_init *** !! !! ** Purpose : Domain initialization. Call the routines that are !! required to create the arrays which define the space !! and time domain of the ocean model. !! !! ** Method : - dom_msk: compute the masks from the bathymetry file !! - dom_hgr: compute or read the horizontal grid-point position !! and scale factors, and the coriolis factor !! - dom_zgr: define the vertical coordinate and the bathymetry !! - dom_stp: defined the model time step !! - dom_wri: create the meshmask file if nmsh=1 !! - 1D configuration, move Coriolis, u and v at T-point !!---------------------------------------------------------------------- INTEGER :: jk ! dummy loop indices INTEGER :: iconf = 0 ! local integers REAL(wp), POINTER, DIMENSION(:,:) :: z1_hu_0, z1_hv_0 !!---------------------------------------------------------------------- ! IF( nn_timing == 1 ) CALL timing_start('dom_init') ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_init : domain initialization' WRITE(numout,*) '~~~~~~~~' ENDIF ! ! !== Reference coordinate system ==! ! CALL dom_nam ! read namelist ( namrun, namdom ) CALL dom_clo ! Closed seas and lake CALL dom_hgr ! Horizontal mesh CALL dom_zgr ! Vertical mesh and bathymetry CALL dom_msk ! Masks ! ht_0(:,:) = e3t_0(:,:,1) * tmask(:,:,1) ! Reference ocean thickness hu_0(:,:) = e3u_0(:,:,1) * umask(:,:,1) hv_0(:,:) = e3v_0(:,:,1) * vmask(:,:,1) DO jk = 2, jpk ht_0(:,:) = ht_0(:,:) + e3t_0(:,:,jk) * tmask(:,:,jk) hu_0(:,:) = hu_0(:,:) + e3u_0(:,:,jk) * umask(:,:,jk) hv_0(:,:) = hv_0(:,:) + e3v_0(:,:,jk) * vmask(:,:,jk) END DO ! ! !== time varying part of coordinate system ==! ! IF( ln_linssh ) THEN ! Fix in time : set to the reference one for all ! before ! now ! after ! ; gdept_b = gdept_0 ; gdept_n = gdept_0 ! --- ! depth of grid-points ; gdepw_b = gdepw_0 ; gdepw_n = gdepw_0 ! --- ! ; ; gde3w_n = gde3w_0 ! --- ! ! ; e3t_b = e3t_0 ; e3t_n = e3t_0 ; e3t_a = e3t_0 ! scale factors ; e3u_b = e3u_0 ; e3u_n = e3u_0 ; e3u_a = e3u_0 ! ; e3v_b = e3v_0 ; e3v_n = e3v_0 ; e3v_a = e3v_0 ! ; ; e3f_n = e3f_0 ! --- ! ; e3w_b = e3w_0 ; e3w_n = e3w_0 ! --- ! ; e3uw_b = e3uw_0 ; e3uw_n = e3uw_0 ! --- ! ; e3vw_b = e3vw_0 ; e3vw_n = e3vw_0 ! --- ! ! CALL wrk_alloc( jpi,jpj, z1_hu_0, z1_hv_0 ) ! z1_hu_0(:,:) = ssumask(:,:) / ( hu_0(:,:) + 1._wp - ssumask(:,:) ) ! _i mask due to ISF z1_hv_0(:,:) = ssvmask(:,:) / ( hv_0(:,:) + 1._wp - ssvmask(:,:) ) ! ! before ! now ! after ! ; ; ht_n = ht_0 ! ! water column thickness ; hu_b = hu_0 ; hu_n = hu_0 ; hu_a = hu_0 ! ; hv_b = hv_0 ; hv_n = hv_0 ; hv_a = hv_0 ! ; r1_hu_b = z1_hu_0 ; r1_hu_n = z1_hu_0 ; r1_hu_a = z1_hu_0 ! inverse of water column thickness ; r1_hv_b = z1_hv_0 ; r1_hv_n = z1_hv_0 ; r1_hv_a = z1_hv_0 ! ! CALL wrk_dealloc( jpi,jpj, z1_hu_0, z1_hv_0 ) ! ELSE ! time varying : initialize before/now/after variables ! CALL dom_vvl_init ! ENDIF ! CALL cfg_write ! create the configuration file ! IF( nn_timing == 1 ) CALL timing_stop('dom_init') ! END SUBROUTINE dom_init SUBROUTINE dom_nam !!---------------------------------------------------------------------- !! *** ROUTINE dom_nam *** !! !! ** Purpose : read domaine namelists and print the variables. !! !! ** input : - namrun namelist !! - namdom namelist !! - namnc4 namelist ! "key_netcdf4" only !!---------------------------------------------------------------------- USE ioipsl NAMELIST/namrun/ cn_ocerst_indir, cn_ocerst_outdir, nn_stocklist, ln_rst_list, & nn_no , cn_exp , cn_ocerst_in, cn_ocerst_out, ln_rstart , nn_rstctl , & & nn_it000, nn_itend , nn_date0 , nn_time0 , nn_leapy , nn_istate , & & nn_stock, nn_write , ln_mskland , ln_clobber , nn_chunksz, nn_euler , & & ln_cfmeta, ln_iscpl NAMELIST/namdom/ nn_bathy, rn_bathy , rn_e3zps_min, rn_e3zps_rat, nn_msh, rn_hmin, rn_isfhmin, & & rn_atfp , rn_rdt , nn_closea , ln_crs , jphgr_msh , & & ppglam0, ppgphi0, ppe1_deg, ppe2_deg, ppe1_m, ppe2_m, & & ppsur, ppa0, ppa1, ppkth, ppacr, ppdzmin, pphmax, ldbletanh, & & ppa2, ppkth2, ppacr2 INTEGER :: ios ! Local integer output status for namelist read !!---------------------------------------------------------------------- REWIND( numnam_ref ) ! Namelist namrun in reference namelist : Parameters of the run READ ( numnam_ref, namrun, IOSTAT = ios, ERR = 901) 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namrun in reference namelist', lwp ) REWIND( numnam_cfg ) ! Namelist namrun in configuration namelist : Parameters of the run READ ( numnam_cfg, namrun, IOSTAT = ios, ERR = 902 ) 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namrun in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namrun ) ! IF(lwp) THEN ! control print WRITE(numout,*) WRITE(numout,*) 'dom_nam : domain initialization through namelist read' WRITE(numout,*) '~~~~~~~ ' WRITE(numout,*) ' Namelist namrun' WRITE(numout,*) ' job number nn_no = ', nn_no WRITE(numout,*) ' experiment name for output cn_exp = ', cn_exp WRITE(numout,*) ' file prefix restart input cn_ocerst_in= ', cn_ocerst_in WRITE(numout,*) ' restart input directory cn_ocerst_indir= ', cn_ocerst_indir WRITE(numout,*) ' file prefix restart output cn_ocerst_out= ', cn_ocerst_out WRITE(numout,*) ' restart output directory cn_ocerst_outdir= ', cn_ocerst_outdir WRITE(numout,*) ' restart logical ln_rstart = ', ln_rstart WRITE(numout,*) ' start with forward time step nn_euler = ', nn_euler WRITE(numout,*) ' control of time step nn_rstctl = ', nn_rstctl WRITE(numout,*) ' number of the first time step nn_it000 = ', nn_it000 WRITE(numout,*) ' number of the last time step nn_itend = ', nn_itend WRITE(numout,*) ' initial calendar date aammjj nn_date0 = ', nn_date0 WRITE(numout,*) ' initial time of day in hhmm nn_time0 = ', nn_time0 WRITE(numout,*) ' leap year calendar (0/1) nn_leapy = ', nn_leapy WRITE(numout,*) ' initial state output nn_istate = ', nn_istate IF( ln_rst_list ) THEN WRITE(numout,*) ' list of restart dump times nn_stocklist =', nn_stocklist ELSE WRITE(numout,*) ' frequency of restart file nn_stock = ', nn_stock ENDIF WRITE(numout,*) ' frequency of output file nn_write = ', nn_write WRITE(numout,*) ' mask land points ln_mskland = ', ln_mskland WRITE(numout,*) ' additional CF standard metadata ln_cfmeta = ', ln_cfmeta WRITE(numout,*) ' overwrite an existing file ln_clobber = ', ln_clobber WRITE(numout,*) ' NetCDF chunksize (bytes) nn_chunksz = ', nn_chunksz WRITE(numout,*) ' IS coupling at the restart step ln_iscpl = ', ln_iscpl ENDIF no = nn_no ! conversion DOCTOR names into model names (this should disappear soon) cexper = cn_exp nrstdt = nn_rstctl nit000 = nn_it000 nitend = nn_itend ndate0 = nn_date0 nleapy = nn_leapy ninist = nn_istate nstock = nn_stock nstocklist = nn_stocklist nwrite = nn_write neuler = nn_euler IF ( neuler == 1 .AND. .NOT. ln_rstart ) THEN WRITE(ctmp1,*) 'ln_rstart =.FALSE., nn_euler is forced to 0 ' CALL ctl_warn( ctmp1 ) neuler = 0 ENDIF ! ! control of output frequency IF ( nstock == 0 .OR. nstock > nitend ) THEN WRITE(ctmp1,*) 'nstock = ', nstock, ' it is forced to ', nitend CALL ctl_warn( ctmp1 ) nstock = nitend ENDIF IF ( nwrite == 0 ) THEN WRITE(ctmp1,*) 'nwrite = ', nwrite, ' it is forced to ', nitend CALL ctl_warn( ctmp1 ) nwrite = nitend ENDIF SELECT CASE ( nleapy ) ! Choose calendar for IOIPSL CASE ( 1 ) CALL ioconf_calendar('gregorian') IF(lwp) WRITE(numout,*) ' The IOIPSL calendar is "gregorian", i.e. leap year' CASE ( 0 ) CALL ioconf_calendar('noleap') IF(lwp) WRITE(numout,*) ' The IOIPSL calendar is "noleap", i.e. no leap year' CASE ( 30 ) CALL ioconf_calendar('360d') IF(lwp) WRITE(numout,*) ' The IOIPSL calendar is "360d", i.e. 360 days in a year' END SELECT REWIND( numnam_ref ) ! Namelist namdom in reference namelist : space & time domain (bathymetry, mesh, timestep) READ ( numnam_ref, namdom, IOSTAT = ios, ERR = 903) 903 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdom in reference namelist', lwp ) ! REWIND( numnam_cfg ) ! Namelist namdom in configuration namelist : space & time domain (bathymetry, mesh, timestep) READ ( numnam_cfg, namdom, IOSTAT = ios, ERR = 904 ) 904 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namdom in configuration namelist', lwp ) IF(lwm) WRITE ( numond, namdom ) ! IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) ' Namelist namdom : space & time domain' WRITE(numout,*) ' flag read/compute bathymetry nn_bathy = ', nn_bathy WRITE(numout,*) ' Depth (if =0 bathy=jpkm1) rn_bathy = ', rn_bathy WRITE(numout,*) ' min depth of the ocean (>0) or rn_hmin = ', rn_hmin WRITE(numout,*) ' min number of ocean level (<0) ' WRITE(numout,*) ' treshold to open the isf cavity rn_isfhmin = ', rn_isfhmin, ' (m)' WRITE(numout,*) ' minimum thickness of partial rn_e3zps_min = ', rn_e3zps_min, ' (m)' WRITE(numout,*) ' step level rn_e3zps_rat = ', rn_e3zps_rat WRITE(numout,*) ' create mesh/mask file(s) nn_msh = ', nn_msh WRITE(numout,*) ' = 0 no file created ' WRITE(numout,*) ' = 1 mesh_mask ' WRITE(numout,*) ' = 2 mesh and mask ' WRITE(numout,*) ' = 3 mesh_hgr, msh_zgr and mask' WRITE(numout,*) ' ocean time step rn_rdt = ', rn_rdt WRITE(numout,*) ' asselin time filter parameter rn_atfp = ', rn_atfp WRITE(numout,*) ' suppression of closed seas (=0) nn_closea = ', nn_closea WRITE(numout,*) ' online coarsening of dynamical fields ln_crs = ', ln_crs WRITE(numout,*) ' type of horizontal mesh jphgr_msh = ', jphgr_msh WRITE(numout,*) ' longitude of first raw and column T-point ppglam0 = ', ppglam0 WRITE(numout,*) ' latitude of first raw and column T-point ppgphi0 = ', ppgphi0 WRITE(numout,*) ' zonal grid-spacing (degrees) ppe1_deg = ', ppe1_deg WRITE(numout,*) ' meridional grid-spacing (degrees) ppe2_deg = ', ppe2_deg WRITE(numout,*) ' zonal grid-spacing (degrees) ppe1_m = ', ppe1_m WRITE(numout,*) ' meridional grid-spacing (degrees) ppe2_m = ', ppe2_m WRITE(numout,*) ' ORCA r4, r2 and r05 coefficients ppsur = ', ppsur WRITE(numout,*) ' ppa0 = ', ppa0 WRITE(numout,*) ' ppa1 = ', ppa1 WRITE(numout,*) ' ppkth = ', ppkth WRITE(numout,*) ' ppacr = ', ppacr WRITE(numout,*) ' Minimum vertical spacing ppdzmin = ', ppdzmin WRITE(numout,*) ' Maximum depth pphmax = ', pphmax WRITE(numout,*) ' Use double tanf function for vertical coordinates ldbletanh = ', ldbletanh WRITE(numout,*) ' Double tanh function parameters ppa2 = ', ppa2 WRITE(numout,*) ' ppkth2 = ', ppkth2 WRITE(numout,*) ' ppacr2 = ', ppacr2 ENDIF ! ntopo = nn_bathy ! conversion DOCTOR names into model names (this should disappear soon) e3zps_min = rn_e3zps_min e3zps_rat = rn_e3zps_rat nmsh = nn_msh atfp = rn_atfp rdt = rn_rdt snc4set%luse = .FALSE. ! No NetCDF 4 case ! END SUBROUTINE dom_nam SUBROUTINE dom_ctl !!---------------------------------------------------------------------- !! *** ROUTINE dom_ctl *** !! !! ** Purpose : Domain control. !! !! ** Method : compute and print extrema of masked scale factors !!---------------------------------------------------------------------- INTEGER :: iimi1, ijmi1, iimi2, ijmi2, iima1, ijma1, iima2, ijma2 INTEGER, DIMENSION(2) :: iloc ! REAL(wp) :: ze1min, ze1max, ze2min, ze2max !!---------------------------------------------------------------------- ! IF(lk_mpp) THEN CALL mpp_minloc( e1t(:,:), tmask_i(:,:), ze1min, iimi1,ijmi1 ) CALL mpp_minloc( e2t(:,:), tmask_i(:,:), ze2min, iimi2,ijmi2 ) CALL mpp_maxloc( e1t(:,:), tmask_i(:,:), ze1max, iima1,ijma1 ) CALL mpp_maxloc( e2t(:,:), tmask_i(:,:), ze2max, iima2,ijma2 ) ELSE ze1min = MINVAL( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) ze2min = MINVAL( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) ze1max = MAXVAL( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) ze2max = MAXVAL( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) iloc = MINLOC( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) iimi1 = iloc(1) + nimpp - 1 ijmi1 = iloc(2) + njmpp - 1 iloc = MINLOC( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) iimi2 = iloc(1) + nimpp - 1 ijmi2 = iloc(2) + njmpp - 1 iloc = MAXLOC( e1t(:,:), mask = tmask_i(:,:) == 1._wp ) iima1 = iloc(1) + nimpp - 1 ijma1 = iloc(2) + njmpp - 1 iloc = MAXLOC( e2t(:,:), mask = tmask_i(:,:) == 1._wp ) iima2 = iloc(1) + nimpp - 1 ijma2 = iloc(2) + njmpp - 1 ENDIF IF(lwp) THEN WRITE(numout,*) WRITE(numout,*) 'dom_ctl : extrema of the masked scale factors' WRITE(numout,*) '~~~~~~~' WRITE(numout,"(14x,'e1t maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") ze1max, iima1, ijma1 WRITE(numout,"(14x,'e1t mini: ',1f10.2,' at i = ',i5,' j= ',i5)") ze1min, iimi1, ijmi1 WRITE(numout,"(14x,'e2t maxi: ',1f10.2,' at i = ',i5,' j= ',i5)") ze2max, iima2, ijma2 WRITE(numout,"(14x,'e2t mini: ',1f10.2,' at i = ',i5,' j= ',i5)") ze2min, iimi2, ijmi2 ENDIF ! END SUBROUTINE dom_ctl SUBROUTINE cfg_write !!---------------------------------------------------------------------- !! *** ROUTINE cfg_write *** !! !! ** Purpose : Create the "domain_cfg" file, a NetCDF file which !! contains all the ocean domain informations required to !! define an ocean configuration. !! !! ** Method : Write in a file all the arrays required to set up an !! ocean configuration. !! !! ** output file : domain_cfg.nc : domain size, characteristics,horizontal mesh, !! Coriolis parameter, and vertical scale factors !! NB: also contains ORCA family information (if cp_cfg = "ORCA") !! and depths (ln_e3_dep=F) !!---------------------------------------------------------------------- INTEGER :: ji, jj, jk ! dummy loop indices INTEGER :: izco, izps, isco, icav INTEGER :: inum ! temprary units for 'domain_cfg.nc' file CHARACTER(len=21) :: clnam ! filename (mesh and mask informations) REAL(wp), DIMENSION(jpi,jpj) :: z2d ! workspace !!---------------------------------------------------------------------- ! IF(lwp) WRITE(numout,*) IF(lwp) WRITE(numout,*) 'cfg_write : create the "domain_cfg.nc" file containing all required configuration information' IF(lwp) WRITE(numout,*) '~~~~~~~~~' ! ! ! ============================= ! ! ! create 'domain_cfg.nc' file ! ! ! ============================= ! ! clnam = 'domain_cfg' ! filename (configuration information) CALL iom_open( TRIM(clnam), inum, ldwrt = .TRUE., kiolib = jprstlib ) ! ! !== ORCA family specificities ==! IF( cp_cfg == "ORCA" ) THEN CALL iom_rstput( 0, 0, inum, 'ORCA' , 1._wp , ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'ORCA_index', REAL( jp_cfg, wp), ktype = jp_i4 ) ENDIF ! !== global domain size ==! ! CALL iom_rstput( 0, 0, inum, 'jpiglo', REAL( jpiglo, wp), ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'jpjglo', REAL( jpjglo, wp), ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'jpkglo', REAL( jpk , wp), ktype = jp_i4 ) ! ! !== domain characteristics ==! ! ! ! lateral boundary of the global ! domain CALL iom_rstput( 0, 0, inum, 'jperio', REAL( jperio, wp), ktype = jp_i4 ) ! ! ! type of vertical coordinate IF( ln_zco ) THEN ; izco = 1 ; ELSE ; izco = 0 ; ENDIF IF( ln_zps ) THEN ; izps = 1 ; ELSE ; izps = 0 ; ENDIF IF( ln_sco ) THEN ; isco = 1 ; ELSE ; isco = 0 ; ENDIF CALL iom_rstput( 0, 0, inum, 'ln_zco' , REAL( izco, wp), ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'ln_zps' , REAL( izps, wp), ktype = jp_i4 ) CALL iom_rstput( 0, 0, inum, 'ln_sco' , REAL( isco, wp), ktype = jp_i4 ) ! ! ! ocean cavities under iceshelves IF( ln_isfcav ) THEN ; icav = 1 ; ELSE ; icav = 0 ; ENDIF CALL iom_rstput( 0, 0, inum, 'ln_isfcav', REAL( icav, wp), ktype = jp_i4 ) ! ! !== horizontal mesh ! ! CALL iom_rstput( 0, 0, inum, 'glamt', glamt, ktype = jp_r8 ) ! latitude CALL iom_rstput( 0, 0, inum, 'glamu', glamu, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'glamv', glamv, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'glamf', glamf, ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'gphit', gphit, ktype = jp_r8 ) ! longitude CALL iom_rstput( 0, 0, inum, 'gphiu', gphiu, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'gphiv', gphiv, ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'gphif', gphif, ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'e1t' , e1t , ktype = jp_r8 ) ! i-scale factors (e1.) CALL iom_rstput( 0, 0, inum, 'e1u' , e1u , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e1v' , e1v , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e1f' , e1f , ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'e2t' , e2t , ktype = jp_r8 ) ! j-scale factors (e2.) CALL iom_rstput( 0, 0, inum, 'e2u' , e2u , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e2v' , e2v , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e2f' , e2f , ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'ff_f' , ff_f , ktype = jp_r8 ) ! coriolis factor CALL iom_rstput( 0, 0, inum, 'ff_t' , ff_t , ktype = jp_r8 ) ! ! !== vertical mesh ==! ! CALL iom_rstput( 0, 0, inum, 'e3t_1d' , e3t_1d , ktype = jp_r8 ) ! reference 1D-coordinate CALL iom_rstput( 0, 0, inum, 'e3w_1d' , e3w_1d , ktype = jp_r8 ) ! CALL iom_rstput( 0, 0, inum, 'e3t_0' , e3t_0 , ktype = jp_r8 ) ! vertical scale factors (e CALL iom_rstput( 0, 0, inum, 'e3u_0' , e3u_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3v_0' , e3v_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3f_0' , e3f_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3w_0' , e3w_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3uw_0' , e3uw_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'e3vw_0' , e3vw_0 , ktype = jp_r8 ) ! IF(.NOT.ln_e3_dep ) THEN ! depth (t- & w-points) CALL iom_rstput( 0, 0, inum, 'gdept_1d', gdept_1d, ktype = jp_r8 ) ! required only with CALL iom_rstput( 0, 0, inum, 'gdepw_1d', gdepw_1d, ktype = jp_r8 ) ! the old e3. definition CALL iom_rstput( 0, 0, inum, 'gdept_0' , gdept_0 , ktype = jp_r8 ) CALL iom_rstput( 0, 0, inum, 'gdepw_0' , gdepw_0 , ktype = jp_r8 ) ENDIF ! ! !== ocean top and bottom level ==! ! CALL iom_rstput( 0, 0, inum, 'bottom_level' , REAL( mbkt, wp )*ssmask , ktype = jp_i4 ) ! nb of ocean T-points CALL iom_rstput( 0, 0, inum, 'top_level' , REAL( mikt, wp )*ssmask , ktype = jp_i4 ) ! nb of ocean T-points (ISF) DO jj = 1,jpj DO ji = 1,jpi z2d (ji,jj) = SUM ( e3t_0(ji,jj, 1:mbkt(ji,jj) ) ) * ssmask(ji,jj) END DO END DO CALL iom_rstput( 0, 0, inum, 'bathy_metry' , z2d , ktype = jp_r4 ) ! IF( ln_sco ) THEN ! s-coordinate: store grid stiffness ratio (Not required anyway) CALL dom_stiff( z2d ) CALL iom_rstput( 0, 0, inum, 'stiffness', z2d ) ! ! Max. grid stiffness ratio ENDIF ! ! ! ============================ ! ! close the files ! ! ============================ CALL iom_close( inum ) ! END SUBROUTINE cfg_write !!====================================================================== END MODULE domain