// // Copyright (c) 2000-2010 // Joerg Walter, Mathias Koch, David Bellot // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_IO_ #define _BOOST_UBLAS_IO_ // Only forward definition required to define stream operations #include #include #include namespace boost { namespace numeric { namespace ublas { /** \brief output stream operator for vector expressions * * Any vector expressions can be written to a standard output stream * as defined in the C++ standard library. For example: * \code * vector v1(3),v2(3); * for(size_t i=0; i<3; i++) * { * v1(i) = i+0.2; * v2(i) = i+0.3; * } * cout << v1+v2 << endl; * \endcode * will display the some of the 2 vectors like this: * \code * [3](0.5,2.5,4.5) * \endcode * * \param os is a standard basic output stream * \param v is a vector expression * \return a reference to the resulting output stream */ template // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. std::basic_ostream &operator << (std::basic_ostream &os, const vector_expression &v) { typedef typename VE::size_type size_type; size_type size = v ().size (); std::basic_ostringstream > s; s.flags (os.flags ()); s.imbue (os.getloc ()); s.precision (os.precision ()); s << '[' << size << "]("; if (size > 0) s << v () (0); for (size_type i = 1; i < size; ++ i) s << ',' << v () (i); s << ')'; return os << s.str ().c_str (); } /** \brief input stream operator for vectors * * This is used to feed in vectors with data stored as an ASCII representation * from a standard input stream. * * From a file or any valid stream, the format is: * \c [](,,...) like for example: * \code * [5](1,2.1,3.2,3.14,0.2) * \endcode * * You can use it like this * \code * my_input_stream >> my_vector; * \endcode * * You can only put data into a valid \c vector<> not a \c vector_expression * * \param is is a standard basic input stream * \param v is a vector * \return a reference to the resulting input stream */ template // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. std::basic_istream &operator >> (std::basic_istream &is, vector &v) { typedef typename vector::size_type size_type; E ch; size_type size; if (is >> ch && ch != '[') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (is >> size >> ch && ch != ']') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (! is.fail ()) { vector s (size); if (is >> ch && ch != '(') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (! is.fail ()) { for (size_type i = 0; i < size; i ++) { if (is >> s (i) >> ch && ch != ',') { is.putback (ch); if (i < size - 1) is.setstate (std::ios_base::failbit); break; } } if (is >> ch && ch != ')') { is.putback (ch); is.setstate (std::ios_base::failbit); } } if (! is.fail ()) v.swap (s); } return is; } /** \brief output stream operator for matrix expressions * * it outpus the content of a \f$(M \times N)\f$ matrix to a standard output * stream using the following format: * \c[,]((,,...,),...,(,,...,)) * * For example: * \code * matrix m(3,3) = scalar_matrix(3,3,1.0) - diagonal_matrix(3,3,1.0); * cout << m << endl; * \encode * will display * \code * [3,3]((0,1,1),(1,0,1),(1,1,0)) * \endcode * This output is made for storing and retrieving matrices in a simple way but you can * easily recognize the following: * \f[ \left( \begin{array}{ccc} 1 & 1 & 1\\ 1 & 1 & 1\\ 1 & 1 & 1 \end{array} \right) - \left( \begin{array}{ccc} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{array} \right) = \left( \begin{array}{ccc} 0 & 1 & 1\\ 1 & 0 & 1\\ 1 & 1 & 0 \end{array} \right) \f] * * \param os is a standard basic output stream * \param m is a matrix expression * \return a reference to the resulting output stream */ template // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. std::basic_ostream &operator << (std::basic_ostream &os, const matrix_expression &m) { typedef typename ME::size_type size_type; size_type size1 = m ().size1 (); size_type size2 = m ().size2 (); std::basic_ostringstream > s; s.flags (os.flags ()); s.imbue (os.getloc ()); s.precision (os.precision ()); s << '[' << size1 << ',' << size2 << "]("; if (size1 > 0) { s << '(' ; if (size2 > 0) s << m () (0, 0); for (size_type j = 1; j < size2; ++ j) s << ',' << m () (0, j); s << ')'; } for (size_type i = 1; i < size1; ++ i) { s << ",(" ; if (size2 > 0) s << m () (i, 0); for (size_type j = 1; j < size2; ++ j) s << ',' << m () (i, j); s << ')'; } s << ')'; return os << s.str ().c_str (); } /** \brief input stream operator for matrices * * This is used to feed in matrices with data stored as an ASCII representation * from a standard input stream. * * From a file or any valid standard stream, the format is: * \c[,]((,,...,),...,(,,...,)) * * You can use it like this * \code * my_input_stream >> my_matrix; * \endcode * * You can only put data into a valid \c matrix<> not a \c matrix_expression * * \param is is a standard basic input stream * \param m is a matrix * \return a reference to the resulting input stream */ template // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. std::basic_istream &operator >> (std::basic_istream &is, matrix &m) { typedef typename matrix::size_type size_type; E ch; size_type size1, size2; if (is >> ch && ch != '[') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (is >> size1 >> ch && ch != ',') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (is >> size2 >> ch && ch != ']') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (! is.fail ()) { matrix s (size1, size2); if (is >> ch && ch != '(') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (! is.fail ()) { for (size_type i = 0; i < size1; i ++) { if (is >> ch && ch != '(') { is.putback (ch); is.setstate (std::ios_base::failbit); break; } for (size_type j = 0; j < size2; j ++) { if (is >> s (i, j) >> ch && ch != ',') { is.putback (ch); if (j < size2 - 1) { is.setstate (std::ios_base::failbit); break; } } } if (is >> ch && ch != ')') { is.putback (ch); is.setstate (std::ios_base::failbit); break; } if (is >> ch && ch != ',') { is.putback (ch); if (i < size1 - 1) { is.setstate (std::ios_base::failbit); break; } } } if (is >> ch && ch != ')') { is.putback (ch); is.setstate (std::ios_base::failbit); } } if (! is.fail ()) m.swap (s); } return is; } /** \brief special input stream operator for symmetric matrices * * This is used to feed in symmetric matrices with data stored as an ASCII * representation from a standard input stream. * * You can simply write your matrices in a file or any valid stream and read them again * at a later time with this function. The format is the following: * \code [,]((,,...,),...,(,,...,)) \endcode * * You can use it like this * \code * my_input_stream >> my_symmetric_matrix; * \endcode * * You can only put data into a valid \c symmetric_matrix<>, not in a \c matrix_expression * This function also checks that input data form a valid symmetric matrix * * \param is is a standard basic input stream * \param m is a \c symmetric_matrix * \return a reference to the resulting input stream */ template // BOOST_UBLAS_INLINE This function seems to be big. So we do not let the compiler inline it. std::basic_istream &operator >> (std::basic_istream &is, symmetric_matrix &m) { typedef typename symmetric_matrix::size_type size_type; E ch; size_type size1, size2; MT value; if (is >> ch && ch != '[') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (is >> size1 >> ch && ch != ',') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (is >> size2 >> ch && (size2 != size1 || ch != ']')) { // symmetric matrix must be square is.putback (ch); is.setstate (std::ios_base::failbit); } else if (! is.fail ()) { symmetric_matrix s (size1, size2); if (is >> ch && ch != '(') { is.putback (ch); is.setstate (std::ios_base::failbit); } else if (! is.fail ()) { for (size_type i = 0; i < size1; i ++) { if (is >> ch && ch != '(') { is.putback (ch); is.setstate (std::ios_base::failbit); break; } for (size_type j = 0; j < size2; j ++) { if (is >> value >> ch && ch != ',') { is.putback (ch); if (j < size2 - 1) { is.setstate (std::ios_base::failbit); break; } } if (i <= j) { // this is the first time we read this element - set the value s(i,j) = value; } else if ( s(i,j) != value ) { // matrix is not symmetric is.setstate (std::ios_base::failbit); break; } } if (is >> ch && ch != ')') { is.putback (ch); is.setstate (std::ios_base::failbit); break; } if (is >> ch && ch != ',') { is.putback (ch); if (i < size1 - 1) { is.setstate (std::ios_base::failbit); break; } } } if (is >> ch && ch != ')') { is.putback (ch); is.setstate (std::ios_base::failbit); } } if (! is.fail ()) m.swap (s); } return is; } }}} #endif