// // Copyright (c) 2000-2002 // Joerg Walter, Mathias Koch // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // The authors gratefully acknowledge the support of // GeNeSys mbH & Co. KG in producing this work. // #ifndef _BOOST_UBLAS_VECTOR_PROXY_ #define _BOOST_UBLAS_VECTOR_PROXY_ #include #include #include // Iterators based on ideas of Jeremy Siek namespace boost { namespace numeric { namespace ublas { /** \brief A vector referencing a continuous subvector of elements of vector \c v containing all elements specified by \c range. * * A vector range can be used as a normal vector in any expression. * If the specified range falls outside that of the index range of the vector, then * the \c vector_range is not a well formed \i Vector \i Expression and access to an * element outside of index range of the vector is \b undefined. * * \tparam V the type of vector referenced (for example \c vector) */ template class vector_range: public vector_expression > { typedef vector_range self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef const V const_vector_type; typedef V vector_type; typedef typename V::size_type size_type; typedef typename V::difference_type difference_type; typedef typename V::value_type value_type; typedef typename V::const_reference const_reference; typedef typename boost::mpl::if_, typename V::const_reference, typename V::reference>::type reference; typedef typename boost::mpl::if_, typename V::const_closure_type, typename V::closure_type>::type vector_closure_type; typedef basic_range range_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE vector_range (vector_type &data, const range_type &r): data_ (data), r_ (r.preprocess (data.size ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (r_.start () <= data_.size () && // r_.start () + r_.size () <= data_.size (), bad_index ()); } BOOST_UBLAS_INLINE vector_range (const vector_closure_type &data, const range_type &r, bool): data_ (data), r_ (r.preprocess (data.size ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (r_.start () <= data_.size () && // r_.start () + r_.size () <= data_.size (), bad_index ()); } // Accessors BOOST_UBLAS_INLINE size_type start () const { return r_.start (); } BOOST_UBLAS_INLINE size_type size () const { return r_.size (); } // Storage accessors BOOST_UBLAS_INLINE const vector_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE vector_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data_ (r_ (i)); } BOOST_UBLAS_INLINE reference operator () (size_type i) { return data_ (r_ (i)); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } #else BOOST_UBLAS_INLINE reference operator () (size_type i) const { return data_ (r_ (i)); } BOOST_UBLAS_INLINE reference operator [] (size_type i) const { return (*this) (i); } #endif // ISSUE can this be done in free project function? // Although a const function can create a non-const proxy to a non-const object // Critical is that vector_type and data_ (vector_closure_type) are const correct BOOST_UBLAS_INLINE vector_range project (const range_type &r) const { return vector_range (data_, r_.compose (r.preprocess (data_.size ())), false); } // Assignment BOOST_UBLAS_INLINE vector_range &operator = (const vector_range &vr) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (vr)); return *this; } BOOST_UBLAS_INLINE vector_range &assign_temporary (vector_range &vr) { // assign elements, proxied container remains the same vector_assign (*this, vr); return *this; } template BOOST_UBLAS_INLINE vector_range &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE vector_range &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_range &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE vector_range &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_range &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE vector_range &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_range &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE vector_range &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const vector_range &vr) const { return (*this).data_.same_closure (vr.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const vector_range &vr) const { return (*this).data_ == vr.data_ && r_ == vr.r_; } // Swapping BOOST_UBLAS_INLINE void swap (vector_range vr) { if (this != &vr) { BOOST_UBLAS_CHECK (size () == vr.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), vr.begin ()); vector_swap (*this, vr); } } BOOST_UBLAS_INLINE friend void swap (vector_range vr1, vector_range vr2) { vr1.swap (vr2); } // Iterator types private: typedef typename V::const_iterator const_subiterator_type; typedef typename boost::mpl::if_, typename V::const_iterator, typename V::iterator>::type subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator, typename subiterator_type::iterator_category> iterator; typedef indexed_const_iterator, typename const_subiterator_type::iterator_category> const_iterator; #else class const_iterator; class iterator; #endif // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const { const_subiterator_type it (data_.find (start () + i)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator (*this, it.index ()); #else return const_iterator (*this, it); #endif } BOOST_UBLAS_INLINE iterator find (size_type i) { subiterator_type it (data_.find (start () + i)); #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator (*this, it.index ()); #else return iterator (*this, it); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename const_subiterator_type::difference_type difference_type; typedef typename const_subiterator_type::value_type value_type; typedef typename const_subiterator_type::reference reference; typedef typename const_subiterator_type::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &vr, const const_subiterator_type &it): container_const_reference (vr), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index () - (*this) ().start (); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; }; #endif BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename subiterator_type::difference_type difference_type; typedef typename subiterator_type::value_type value_type; typedef typename subiterator_type::reference reference; typedef typename subiterator_type::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &vr, const subiterator_type &it): container_reference (vr), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return *it_; } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index () - (*this) ().start (); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator; }; #endif BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: vector_closure_type data_; range_type r_; }; // ------------------ // Simple Projections // ------------------ /** \brief Return a \c vector_range on a specified vector, a start and stop index. * Return a \c vector_range on a specified vector, a start and stop index. The resulting \c vector_range can be manipulated like a normal vector. * If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed * Vector Expression and access to an element outside of index range of the vector is \b undefined. */ template BOOST_UBLAS_INLINE vector_range subrange (V &data, typename V::size_type start, typename V::size_type stop) { typedef basic_range range_type; return vector_range (data, range_type (start, stop)); } /** \brief Return a \c const \c vector_range on a specified vector, a start and stop index. * Return a \c const \c vector_range on a specified vector, a start and stop index. The resulting \c const \c vector_range can be manipulated like a normal vector. *If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed * Vector Expression and access to an element outside of index range of the vector is \b undefined. */ template BOOST_UBLAS_INLINE vector_range subrange (const V &data, typename V::size_type start, typename V::size_type stop) { typedef basic_range range_type; return vector_range (data, range_type (start, stop)); } // ------------------- // Generic Projections // ------------------- /** \brief Return a \c const \c vector_range on a specified vector and \c range * Return a \c const \c vector_range on a specified vector and \c range. The resulting \c vector_range can be manipulated like a normal vector. * If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed * Vector Expression and access to an element outside of index range of the vector is \b undefined. */ template BOOST_UBLAS_INLINE vector_range project (V &data, typename vector_range::range_type const &r) { return vector_range (data, r); } /** \brief Return a \c vector_range on a specified vector and \c range * Return a \c vector_range on a specified vector and \c range. The resulting \c vector_range can be manipulated like a normal vector. * If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed * Vector Expression and access to an element outside of index range of the vector is \b undefined. */ template BOOST_UBLAS_INLINE const vector_range project (const V &data, typename vector_range::range_type const &r) { // ISSUE was: return vector_range (const_cast (data), r); return vector_range (data, r); } /** \brief Return a \c const \c vector_range on a specified vector and const \c range * Return a \c const \c vector_range on a specified vector and const \c range. The resulting \c vector_range can be manipulated like a normal vector. * If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed * Vector Expression and access to an element outside of index range of the vector is \b undefined. */ template BOOST_UBLAS_INLINE vector_range project (vector_range &data, const typename vector_range::range_type &r) { return data.project (r); } /** \brief Return a \c vector_range on a specified vector and const \c range * Return a \c vector_range on a specified vector and const \c range. The resulting \c vector_range can be manipulated like a normal vector. * If the specified range falls outside that of of the index range of the vector, then the resulting \c vector_range is not a well formed * Vector Expression and access to an element outside of index range of the vector is \b undefined. */ template BOOST_UBLAS_INLINE const vector_range project (const vector_range &data, const typename vector_range::range_type &r) { return data.project (r); } // Specialization of temporary_traits template struct vector_temporary_traits< vector_range > : vector_temporary_traits< V > {} ; template struct vector_temporary_traits< const vector_range > : vector_temporary_traits< V > {} ; /** \brief A vector referencing a non continuous subvector of elements of vector v containing all elements specified by \c slice. * * A vector slice can be used as a normal vector in any expression. * If the specified slice falls outside that of the index slice of the vector, then * the \c vector_slice is not a well formed \i Vector \i Expression and access to an * element outside of index slice of the vector is \b undefined. * * A slice is a generalization of a range. In a range going from \f$a\f$ to \f$b\f$, * all elements belong to the range. In a slice, a \i \f$step\f$ can be specified meaning to * take one element over \f$step\f$ in the range specified from \f$a\f$ to \f$b\f$. * Obviously, a slice with a \f$step\f$ of 1 is equivalent to a range. * * \tparam V the type of vector referenced (for example \c vector) */ template class vector_slice: public vector_expression > { typedef vector_slice self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef const V const_vector_type; typedef V vector_type; typedef typename V::size_type size_type; typedef typename V::difference_type difference_type; typedef typename V::value_type value_type; typedef typename V::const_reference const_reference; typedef typename boost::mpl::if_, typename V::const_reference, typename V::reference>::type reference; typedef typename boost::mpl::if_, typename V::const_closure_type, typename V::closure_type>::type vector_closure_type; typedef basic_range range_type; typedef basic_slice slice_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE vector_slice (vector_type &data, const slice_type &s): data_ (data), s_ (s.preprocess (data.size ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (s_.start () <= data_.size () && // s_.start () + s_.stride () * (s_.size () - (s_.size () > 0)) <= data_.size (), bad_index ()); } BOOST_UBLAS_INLINE vector_slice (const vector_closure_type &data, const slice_type &s, int): data_ (data), s_ (s.preprocess (data.size ())) { // Early checking of preconditions here. // BOOST_UBLAS_CHECK (s_.start () <= data_.size () && // s_.start () + s_.stride () * (s_.size () - (s_.size () > 0)) <= data_.size (), bad_index ()); } // Accessors BOOST_UBLAS_INLINE size_type start () const { return s_.start (); } BOOST_UBLAS_INLINE difference_type stride () const { return s_.stride (); } BOOST_UBLAS_INLINE size_type size () const { return s_.size (); } // Storage accessors BOOST_UBLAS_INLINE const vector_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE vector_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data_ (s_ (i)); } BOOST_UBLAS_INLINE reference operator () (size_type i) { return data_ (s_ (i)); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } #else BOOST_UBLAS_INLINE reference operator () (size_type i) const { return data_ (s_ (i)); } BOOST_UBLAS_INLINE reference operator [] (size_type i) const { return (*this) (i); } #endif // ISSUE can this be done in free project function? // Although a const function can create a non-const proxy to a non-const object // Critical is that vector_type and data_ (vector_closure_type) are const correct BOOST_UBLAS_INLINE vector_slice project (const range_type &r) const { return vector_slice (data_, s_.compose (r.preprocess (data_.size ())), false); } BOOST_UBLAS_INLINE vector_slice project (const slice_type &s) const { return vector_slice (data_, s_.compose (s.preprocess (data_.size ())), false); } // Assignment BOOST_UBLAS_INLINE vector_slice &operator = (const vector_slice &vs) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (vs)); return *this; } BOOST_UBLAS_INLINE vector_slice &assign_temporary (vector_slice &vs) { // assign elements, proxied container remains the same vector_assign (*this, vs); return *this; } template BOOST_UBLAS_INLINE vector_slice &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE vector_slice &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_slice &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE vector_slice &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_slice &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE vector_slice &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_slice &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE vector_slice &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const vector_slice &vr) const { return (*this).data_.same_closure (vr.data_); } // Comparison BOOST_UBLAS_INLINE bool operator == (const vector_slice &vs) const { return (*this).data_ == vs.data_ && s_ == vs.s_; } // Swapping BOOST_UBLAS_INLINE void swap (vector_slice vs) { if (this != &vs) { BOOST_UBLAS_CHECK (size () == vs.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), vs.begin ()); vector_swap (*this, vs); } } BOOST_UBLAS_INLINE friend void swap (vector_slice vs1, vector_slice vs2) { vs1.swap (vs2); } // Iterator types private: // Use slice as an index - FIXME this fails for packed assignment typedef typename slice_type::const_iterator const_subiterator_type; typedef typename slice_type::const_iterator subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator, typename vector_type::iterator::iterator_category> iterator; typedef indexed_const_iterator, typename vector_type::const_iterator::iterator_category> const_iterator; #else class const_iterator; class iterator; #endif // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator (*this, i); #else return const_iterator (*this, s_.begin () + i); #endif } BOOST_UBLAS_INLINE iterator find (size_type i) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator (*this, i); #else return iterator (*this, s_.begin () + i); #endif } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename V::const_iterator::difference_type difference_type; typedef typename V::const_iterator::value_type value_type; typedef typename V::const_reference reference; //FIXME due to indexing access typedef typename V::const_iterator::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &vs, const const_subiterator_type &it): container_const_reference (vs), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().data_ (*it_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index (); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; }; #endif BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename V::iterator::difference_type difference_type; typedef typename V::iterator::value_type value_type; typedef typename V::reference reference; //FIXME due to indexing access typedef typename V::iterator::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &vs, const subiterator_type &it): container_reference (vs), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().data_ (*it_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index (); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator; }; #endif BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: vector_closure_type data_; slice_type s_; }; // Simple Projections template BOOST_UBLAS_INLINE vector_slice subslice (V &data, typename V::size_type start, typename V::difference_type stride, typename V::size_type size) { typedef basic_slice slice_type; return vector_slice (data, slice_type (start, stride, size)); } template BOOST_UBLAS_INLINE vector_slice subslice (const V &data, typename V::size_type start, typename V::difference_type stride, typename V::size_type size) { typedef basic_slice slice_type; return vector_slice (data, slice_type (start, stride, size)); } // Generic Projections template BOOST_UBLAS_INLINE vector_slice project (V &data, const typename vector_slice::slice_type &s) { return vector_slice (data, s); } template BOOST_UBLAS_INLINE const vector_slice project (const V &data, const typename vector_slice::slice_type &s) { // ISSUE was: return vector_slice (const_cast (data), s); return vector_slice (data, s); } template BOOST_UBLAS_INLINE vector_slice project (vector_slice &data, const typename vector_slice::slice_type &s) { return data.project (s); } template BOOST_UBLAS_INLINE const vector_slice project (const vector_slice &data, const typename vector_slice::slice_type &s) { return data.project (s); } // ISSUE in the following two functions it would be logical to use vector_slice::range_type but this confuses VC7.1 and 8.0 template BOOST_UBLAS_INLINE vector_slice project (vector_slice &data, const typename vector_range::range_type &r) { return data.project (r); } template BOOST_UBLAS_INLINE const vector_slice project (const vector_slice &data, const typename vector_range::range_type &r) { return data.project (r); } // Specialization of temporary_traits template struct vector_temporary_traits< vector_slice > : vector_temporary_traits< V > {} ; template struct vector_temporary_traits< const vector_slice > : vector_temporary_traits< V > {} ; // Vector based indirection class // Contributed by Toon Knapen. // Extended and optimized by Kresimir Fresl. /** \brief A vector referencing a non continuous subvector of elements given another vector of indices. * * It is the most general version of any subvectors because it uses another vector of indices to reference * the subvector. * * The vector of indices can be of any type with the restriction that its elements must be * type-compatible with the size_type \c of the container. In practice, the following are good candidates: * - \c boost::numeric::ublas::indirect_array where \c A can be \c int, \c size_t, \c long, etc... * - \c std::vector where \c A can \c int, \c size_t, \c long, etc... * - \c boost::numeric::ublas::vector can work too (\c int can be replaced by another integer type) * - etc... * * An indirect vector can be used as a normal vector in any expression. If the specified indirect vector * falls outside that of the indices of the vector, then the \c vector_indirect is not a well formed * \i Vector \i Expression and access to an element outside of indices of the vector is \b undefined. * * \tparam V the type of vector referenced (for example \c vector) * \tparam IA the type of index vector. Default is \c ublas::indirect_array<> */ template class vector_indirect: public vector_expression > { typedef vector_indirect self_type; public: #ifdef BOOST_UBLAS_ENABLE_PROXY_SHORTCUTS using vector_expression::operator (); #endif typedef const V const_vector_type; typedef V vector_type; typedef const IA const_indirect_array_type; typedef IA indirect_array_type; typedef typename V::size_type size_type; typedef typename V::difference_type difference_type; typedef typename V::value_type value_type; typedef typename V::const_reference const_reference; typedef typename boost::mpl::if_, typename V::const_reference, typename V::reference>::type reference; typedef typename boost::mpl::if_, typename V::const_closure_type, typename V::closure_type>::type vector_closure_type; typedef basic_range range_type; typedef basic_slice slice_type; typedef const self_type const_closure_type; typedef self_type closure_type; typedef typename storage_restrict_traits::storage_category storage_category; // Construction and destruction BOOST_UBLAS_INLINE vector_indirect (vector_type &data, size_type size): data_ (data), ia_ (size) {} BOOST_UBLAS_INLINE vector_indirect (vector_type &data, const indirect_array_type &ia): data_ (data), ia_ (ia.preprocess (data.size ())) {} BOOST_UBLAS_INLINE vector_indirect (const vector_closure_type &data, const indirect_array_type &ia, int): data_ (data), ia_ (ia.preprocess (data.size ())) {} // Accessors BOOST_UBLAS_INLINE size_type size () const { return ia_.size (); } BOOST_UBLAS_INLINE const_indirect_array_type &indirect () const { return ia_; } BOOST_UBLAS_INLINE indirect_array_type &indirect () { return ia_; } // Storage accessors BOOST_UBLAS_INLINE const vector_closure_type &data () const { return data_; } BOOST_UBLAS_INLINE vector_closure_type &data () { return data_; } // Element access #ifndef BOOST_UBLAS_PROXY_CONST_MEMBER BOOST_UBLAS_INLINE const_reference operator () (size_type i) const { return data_ (ia_ (i)); } BOOST_UBLAS_INLINE reference operator () (size_type i) { return data_ (ia_ (i)); } BOOST_UBLAS_INLINE const_reference operator [] (size_type i) const { return (*this) (i); } BOOST_UBLAS_INLINE reference operator [] (size_type i) { return (*this) (i); } #else BOOST_UBLAS_INLINE reference operator () (size_type i) const { return data_ (ia_ (i)); } BOOST_UBLAS_INLINE reference operator [] (size_type i) const { return (*this) (i); } #endif // ISSUE can this be done in free project function? // Although a const function can create a non-const proxy to a non-const object // Critical is that vector_type and data_ (vector_closure_type) are const correct BOOST_UBLAS_INLINE vector_indirect project (const range_type &r) const { return vector_indirect (data_, ia_.compose (r.preprocess (data_.size ())), 0); } BOOST_UBLAS_INLINE vector_indirect project (const slice_type &s) const { return vector_indirect (data_, ia_.compose (s.preprocess (data_.size ())), 0); } BOOST_UBLAS_INLINE vector_indirect project (const indirect_array_type &ia) const { return vector_indirect (data_, ia_.compose (ia.preprocess (data_.size ())), 0); } // Assignment BOOST_UBLAS_INLINE vector_indirect &operator = (const vector_indirect &vi) { // ISSUE need a temporary, proxy can be overlaping alias vector_assign (*this, typename vector_temporary_traits::type (vi)); return *this; } BOOST_UBLAS_INLINE vector_indirect &assign_temporary (vector_indirect &vi) { // assign elements, proxied container remains the same vector_assign (*this, vi); return *this; } template BOOST_UBLAS_INLINE vector_indirect &operator = (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (ae)); return *this; } template BOOST_UBLAS_INLINE vector_indirect &assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_indirect &operator += (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this + ae)); return *this; } template BOOST_UBLAS_INLINE vector_indirect &plus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_indirect &operator -= (const vector_expression &ae) { vector_assign (*this, typename vector_temporary_traits::type (*this - ae)); return *this; } template BOOST_UBLAS_INLINE vector_indirect &minus_assign (const vector_expression &ae) { vector_assign (*this, ae); return *this; } template BOOST_UBLAS_INLINE vector_indirect &operator *= (const AT &at) { vector_assign_scalar (*this, at); return *this; } template BOOST_UBLAS_INLINE vector_indirect &operator /= (const AT &at) { vector_assign_scalar (*this, at); return *this; } // Closure comparison BOOST_UBLAS_INLINE bool same_closure (const vector_indirect &vr) const { return true; } // Comparison BOOST_UBLAS_INLINE bool operator == (const vector_indirect &vi) const { return (*this).data_ == vi.data_ && ia_ == vi.ia_; } // Swapping BOOST_UBLAS_INLINE void swap (vector_indirect vi) { if (this != &vi) { BOOST_UBLAS_CHECK (size () == vi.size (), bad_size ()); // Sparse ranges may be nonconformant now. // std::swap_ranges (begin (), end (), vi.begin ()); vector_swap (*this, vi); } } BOOST_UBLAS_INLINE friend void swap (vector_indirect vi1, vector_indirect vi2) { vi1.swap (vi2); } // Iterator types private: // Use indirect array as an index - FIXME this fails for packed assignment typedef typename IA::const_iterator const_subiterator_type; typedef typename IA::const_iterator subiterator_type; public: #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR typedef indexed_iterator, typename vector_type::iterator::iterator_category> iterator; typedef indexed_const_iterator, typename vector_type::const_iterator::iterator_category> const_iterator; #else class const_iterator; class iterator; #endif // Element lookup BOOST_UBLAS_INLINE const_iterator find (size_type i) const { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return const_iterator (*this, i); #else return const_iterator (*this, ia_.begin () + i); #endif } BOOST_UBLAS_INLINE iterator find (size_type i) { #ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR return iterator (*this, i); #else return iterator (*this, ia_.begin () + i); #endif } // Iterators simply are indices. #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class const_iterator: public container_const_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename V::const_iterator::difference_type difference_type; typedef typename V::const_iterator::value_type value_type; typedef typename V::const_reference reference; //FIXME due to indexing access typedef typename V::const_iterator::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE const_iterator (): container_const_reference (), it_ () {} BOOST_UBLAS_INLINE const_iterator (const self_type &vi, const const_subiterator_type &it): container_const_reference (vi), it_ (it) {} BOOST_UBLAS_INLINE const_iterator (const typename self_type::iterator &it): // ISSUE self_type:: stops VC8 using std::iterator here container_const_reference (it ()), it_ (it.it_) {} // Arithmetic BOOST_UBLAS_INLINE const_iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE const_iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE const_iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE const_reference operator * () const { // FIXME replace find with at_element BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().data_ (*it_); } BOOST_UBLAS_INLINE const_reference operator [] (difference_type n) const { return *(*this + n); } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index (); } // Assignment BOOST_UBLAS_INLINE const_iterator &operator = (const const_iterator &it) { container_const_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const const_iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: const_subiterator_type it_; }; #endif BOOST_UBLAS_INLINE const_iterator begin () const { return find (0); } BOOST_UBLAS_INLINE const_iterator end () const { return find (size ()); } #ifndef BOOST_UBLAS_USE_INDEXED_ITERATOR class iterator: public container_reference, public iterator_base_traits::template iterator_base::type { public: typedef typename V::iterator::difference_type difference_type; typedef typename V::iterator::value_type value_type; typedef typename V::reference reference; //FIXME due to indexing access typedef typename V::iterator::pointer pointer; // Construction and destruction BOOST_UBLAS_INLINE iterator (): container_reference (), it_ () {} BOOST_UBLAS_INLINE iterator (self_type &vi, const subiterator_type &it): container_reference (vi), it_ (it) {} // Arithmetic BOOST_UBLAS_INLINE iterator &operator ++ () { ++ it_; return *this; } BOOST_UBLAS_INLINE iterator &operator -- () { -- it_; return *this; } BOOST_UBLAS_INLINE iterator &operator += (difference_type n) { it_ += n; return *this; } BOOST_UBLAS_INLINE iterator &operator -= (difference_type n) { it_ -= n; return *this; } BOOST_UBLAS_INLINE difference_type operator - (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ - it.it_; } // Dereference BOOST_UBLAS_INLINE reference operator * () const { // FIXME replace find with at_element BOOST_UBLAS_CHECK (index () < (*this) ().size (), bad_index ()); return (*this) ().data_ (*it_); } BOOST_UBLAS_INLINE reference operator [] (difference_type n) const { return *(*this + n); } // Index BOOST_UBLAS_INLINE size_type index () const { return it_.index (); } // Assignment BOOST_UBLAS_INLINE iterator &operator = (const iterator &it) { container_reference::assign (&it ()); it_ = it.it_; return *this; } // Comparison BOOST_UBLAS_INLINE bool operator == (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ == it.it_; } BOOST_UBLAS_INLINE bool operator < (const iterator &it) const { BOOST_UBLAS_CHECK ((*this) ().same_closure (it ()), external_logic ()); return it_ < it.it_; } private: subiterator_type it_; friend class const_iterator; }; #endif BOOST_UBLAS_INLINE iterator begin () { return find (0); } BOOST_UBLAS_INLINE iterator end () { return find (size ()); } // Reverse iterator typedef reverse_iterator_base const_reverse_iterator; typedef reverse_iterator_base reverse_iterator; BOOST_UBLAS_INLINE const_reverse_iterator rbegin () const { return const_reverse_iterator (end ()); } BOOST_UBLAS_INLINE const_reverse_iterator rend () const { return const_reverse_iterator (begin ()); } BOOST_UBLAS_INLINE reverse_iterator rbegin () { return reverse_iterator (end ()); } BOOST_UBLAS_INLINE reverse_iterator rend () { return reverse_iterator (begin ()); } private: vector_closure_type data_; indirect_array_type ia_; }; // Projections template BOOST_UBLAS_INLINE vector_indirect > project (V &data, const indirect_array &ia) { return vector_indirect > (data, ia); } template BOOST_UBLAS_INLINE const vector_indirect > project (const V &data, const indirect_array &ia) { // ISSUE was: return vector_indirect > (const_cast (data), ia) return vector_indirect > (data, ia); } template BOOST_UBLAS_INLINE vector_indirect project (vector_indirect &data, const typename vector_indirect::range_type &r) { return data.project (r); } template BOOST_UBLAS_INLINE const vector_indirect project (const vector_indirect &data, const typename vector_indirect::range_type &r) { return data.project (r); } template BOOST_UBLAS_INLINE vector_indirect project (vector_indirect &data, const typename vector_indirect::slice_type &s) { return data.project (s); } template BOOST_UBLAS_INLINE const vector_indirect project (const vector_indirect &data, const typename vector_indirect::slice_type &s) { return data.project (s); } template BOOST_UBLAS_INLINE vector_indirect > project (vector_indirect > &data, const indirect_array &ia) { return data.project (ia); } template BOOST_UBLAS_INLINE const vector_indirect > project (const vector_indirect > &data, const indirect_array &ia) { return data.project (ia); } // Specialization of temporary_traits template struct vector_temporary_traits< vector_indirect > : vector_temporary_traits< V > {} ; template struct vector_temporary_traits< const vector_indirect > : vector_temporary_traits< V > {} ; }}} #endif