Changeset 10204


Ignore:
Timestamp:
2018-10-18T16:34:57+02:00 (20 months ago)
Author:
mathiot
Message:

intermediate version of test_cases README

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/tests/README.rst

    r10201 r10204  
    33====================== 
    44 
    5 .. include:: .global.rst 
     5  The description below is a brief description of the test cases available in NEMO.  
     6  For detailed description and notebook, the reader is directed on the `Github repository`_ 
    67 
    7 ``CANAL`` 
    8    | [Illustration here ?] 
    9    | East-west periodic canal of variable size with several initial states and associated geostrophic currents 
    10       (zonal jets or vortex). 
     8.. _Github repository:   https://github.com/sflavoni/NEMO-test-cases/ 
    119 
    12 ``ICEDYN`` 
    13    | [Illustration here ?] 
    14    | East-west + north-south periodic channel inlcuding an AGRIF zoom (1:3) in the middle of the basin to test how 
    15       an ice patch is advected through it but one can also test the advection schemes 
    16       (Prather and Ultimate-Macho) by removing the ``key_agrif`` in the CPP keys. 
     10CANAL 
     11===== 
    1712 
    18 ``ISOMIP`` 
    19    | [Illustration here ?] 
    20    | Simple box configuration with an iceshelf with simple geometry on top to evaluate the impact of 
    21       various schemes and new development with iceshelf cavities. 
    22    | `test cavities <http://staff.acecrc.org.au/~bkgalton/ISOMIP/test_cavities.pdf>`_ 
     13  East-west periodic canal of variable size with several initial states and associated geostrophic currents (zonal jets or vortex) 
    2314 
    24 ``LOCK_EXCHANGE`` 
    25    | [Illustration here ?] 
    26    | Classical fluid dynamics experiment that has been adapted for testing advection schemes in 
    27       ocean circulation models. 
    28    | This experiment can in particular illustrate the impact of different choices of numerical schemes and/or 
    29       subgrid closures on spurious interior mixing. 
    30    | :cite:`epic31172,burchard2002getm,ILICAK201237` 
     15  .. image::_static/CANAL_image.gif 
    3116 
    32 ``OVERFLOW`` 
    33    | [Illustration here ?] 
    34    | Adapted from the non-rotating overflow configuration, 
    35       it illustrates the impact of different choices of numerical schemes and/or subgrid closures on 
    36       spurious interior mixing close to bottom topography. 
    37    | :cite:`epic31172,ILICAK201237` 
     17ICEDYN 
     18====== 
     19   
     20  This is an East-t cases illustrate the advection of an ice patch across a East/West and North/South periodic channel.  
     21  This configuration can be used to test the advection of the ice patch in an AGRIF zoom (1:3)  
     22  and across the AGRIF boundary or to test the ice advection schemes (Prather and Ultimate-Macho).  
     23  In the latest case user need to remove ``key_agrif`` out of the CPP keys list.  
    3824 
    39 ``VORTEX`` 
    40    .. figure:: _static/VORTEX_anim.gif 
     25  .. image:: _static/ICEDYN_UDIAG_43days_UM5.gif 
    4126 
    42       Vortex smoothly propagates out of two 1:2 successive nested grids (sea level anomaly in meters) 
     27VORTEX 
     28====== 
     29   
     30  This test case illustrates the propagation of an anticyclonic eddy over a Beta plan and a flat bottom. 
     31  It is implemented here with an online refined subdomain (1:3) out of which the vortex propagates. 
     32  It serves as a benchmark for quantitative estimates of nesting errors as in Debreu et al. (2012), 
     33  Penven et al. (2006) or Spall and Holland (1991). 
     34  The animation below (sea level anomaly in meters) illustrates with two 1:2 successively nested grids how 
     35  the vortex smoothly propagates out of the refined grids. 
     36   
     37  .. image:: _static/VORTEX_anim.gif 
    4338 
    44    | Illustrates the propagation of an anticyclonic eddy over a Beta plan and flat bottom. 
    45    | It is implemented here with an online refined subdomain (1:3) out of which the vortex propagates and 
    46       serves as a benchmark to diagnose nesting errors. 
    47    | :cite:`DEBREU20121,PENVEN2006157,SPALL1991205` 
     39ISOMIP 
     40====== 
    4841 
    49 ``WAD`` 
    50    | [Illustration here ?] 
    51    | Set of simple closed basin geometries for testing the wetting and drying capabilities. 
    52       Examples range from a closed channel with EW linear bottom slope to a parabolic EW channel with 
    53       a Gaussian ridge. 
     42  Simple box configuration with an ice shelf covering all the domain. South part is a sloping ice shelf and north part is a flat ice shelf.  
     43  The purpose of this test case is to evaluate the impact of various schemes and new development with iceshelf cavities. 
     44  This configuration served as initial assesment of the ice shelf module in Losh et al. (2008) and Mathiot et al. (2017). 
     45   
     46  The default setup is the one described [http://staff.acecrc.org.au/~bkgalton/ISOMIP/test_cavities.pdf]. 
    5447 
     48  .. image:: _static/ISOMIP_moc.png 
     49 
     50LOCK_EXCHANGE 
     51============= 
     52 
     53  The LOCK EXCHANGE experiment is a classical fluid dynamics experiment that has been adapted 
     54  by Haidvogel and Beckmann (1999) for testing advection schemes in ocean circulation models. 
     55  It has been used by several authors including Burchard and Bolding (2002) and Ilicak et al. (2012). 
     56  The LOCK EXCHANGE experiment can in particulart illustrate the impact of different choices of numerical schemes  
     57  and/or subgrid closures on spurious interior mixing. 
     58 
     59  The plot below xxxxx 
     60 
     61  .. image:: _static/LOCK_EXCHANGE_image.png 
     62 
     63OVERFLOW 
     64======== 
     65 
     66  The OVERFLOW experiment illustrates the impact of different choices of numerical schemes  
     67  and/or subgrid closures on spurious interior mixing close to bottom topography.  
     68  The OVERFLOW experiment is adapted from the non-rotating overflow configuration described  
     69  in Haidvogel and Beckmann (1999) and further used by Ilicak et al. (2012). 
     70  Here we can assess the behaviour of the second-order tracer advection scheme FCT2 and fortht-order FCT4,  
     71  with some exemple of python scripts into the notebook associated. 
     72 
     73  .. image:: _static/OVERFLOW_image.png 
     74 
     75WAD 
     76=== 
     77 
     78  A set of simple closed basin geometries for testing the Wetting and drying capabilities.  
     79  Examples range from a closed channel with EW linear bottom slope to a parabolic EW channel with a Gaussian ridge. 
     80   
     81  Below the animation of the test case 7. This test case is a simple linear slope with a mid-depth shelf with an open boundary forced with a sinusoidally varying ssh. 
     82  This test case has been introduced to emulate a typical coastal application with a tidally forced open boundary with an adverse SSH gradient that, when released, creates a surge up the slope. 
     83  The parameters are chosen such that the surge rises above sea-level before falling back and oscillating towards an equilibrium position 
     84 
     85  .. image:: _static/wad_testcase_7.gif 
     86 
     87 
     88 
     89========== 
    5590References 
    5691========== 
    57  
    58 .. bibliography:: test_cases.bib 
    59    :all: 
    60    :style: unsrt 
     92- Burchard, H., Bolding, K., 2002. GETM - a general estuarine transport model. Scientific documentation. Tech. Rep. EUR 20253 EN, European Commission. 
     93- Debreu, L., P. Marchesiello, P. Penven and G. Cambon, 2012: Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modelling, 49-50, 1-21. 
     94- Haidvogel, Dale B., and Aike Beckmann. Numerical ocean circulation modeling. Vol. 2. World Scientific, 1999.  
     95- Haidvogel, Dale B., and Aike Beckmann. Numerical ocean circulation modeling. Vol. 2. World Scientific, 1999.  
     96- Ilicak, Mehmet, et al. "Spurious dianeutral mixing and the role of momentum closure." Ocean Modelling 45 (2012): 37-58. 
     97- Ilicak, Mehmet, et al. "Spurious dianeutral mixing and the role of momentum closure." Ocean Modelling 45 (2012): 37-58. 
     98- Losch, M., 2008: Modeling ice shelf cavities in a z coordinate ocean general circulation model, J. Geophys. Res.-Oceans, 113, C08043. 
     99- Mathiot, P., Jenkins, A., Harris, C., and Madec, G., 2017: Explicit representation and parametrised impacts of under ice shelf seas in the z* coordinate ocean model NEMO 3.6, Geosci. Model Dev., 10, 2849-2874. 
     100- Penven, P., L. Debreu, P. Marchesiello and J. C. Mc Williams, 2006: Evaluation and application of the ROMS 1-way embedding procedure to the central california upwelling system. Ocean Modelling, 12, 157-187. 
     101- Spall, M. A. and W. R. Holland, 1991: A Nested Primitive Equation Model for Oceanic Applications. J. Phys. Ocean., 21, 205-220. 
Note: See TracChangeset for help on using the changeset viewer.