New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10414 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex – NEMO

Ignore:
Timestamp:
2018-12-19T00:02:00+01:00 (5 years ago)
Author:
nicolasmartin
Message:
  • Comment \label commands on maths environments for unreferenced equations and adapt the unnumbered math container accordingly (mainly switch to shortanded LateX syntax with \[ ... \])
  • Add a code trick to build subfile with its own bibliography
  • Fix right path for main LaTeX document in first line of subfiles (\documentclass[...]{subfiles})
  • Rename abstract_foreword.tex to foreword.tex
  • Fix some non-ASCII codes inserted here or there in LaTeX (\[0-9]*)
  • Made a first iteration on the indentation and alignement within math, figure and table environments to improve source code readability
File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DIU.tex

    r10406 r10414  
    1 \documentclass[../tex_main/NEMO_manual]{subfiles} 
     1\documentclass[../main/NEMO_manual]{subfiles} 
     2 
    23\begin{document} 
    34% ================================================================ 
     
    2829\end{itemize} 
    2930 
    30 Models are provided for both the warm layer, \mdfl{diurnal_bulk}, and the cool skin, \mdl{cool_skin}. 
     31Models are provided for both the warm layer, \mdl{diurnal\_bulk}, and the cool skin, \mdl{cool\_skin}. 
    3132Foundation SST is not considered as it can be obtained either from the main NEMO model 
    3233($i.e.$ from the temperature of the top few model levels) or from some other source.   
     
    7273$\rho_w$ is the water density, and $L$ is the Monin-Obukhov length. 
    7374The tunable variable $\nu$ is a shape parameter that defines the expected subskin temperature profile via 
    74 $T(z)=T(0)-\left(\frac{z}{D_T}\right)^\nu\DeltaT_{\rm{wl}}$, 
     75$T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\rm{wl}}$, 
    7576where $T$ is the absolute temperature and $z\le D_T$ is the depth below the top of the warm layer. 
    7677The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity of the water $u^*_{w}$, 
     
    8081The symbol $Q$ in equation (\autoref{eq:ecmwf1}) is the instantaneous total thermal energy flux into 
    8182the diurnal layer, $i.e.$ 
    82 \begin{equation} 
    83 Q = Q_{\rm{sol}} + Q_{\rm{lw}} + Q_{\rm{h}}\mbox{,} \label{eq:e_flux_eqn} 
    84 \end{equation} 
     83\[ 
     84  Q = Q_{\rm{sol}} + Q_{\rm{lw}} + Q_{\rm{h}}\mbox{,} 
     85  % \label{eq:e_flux_eqn} 
     86\] 
    8587where $Q_{\rm{h}}$ is the sensible and latent heat flux, $Q_{\rm{lw}}$ is the long wave flux, 
    8688and $Q_{\rm{sol}}$ is the solar flux absorbed within the diurnal warm layer. 
     
    118120The cool skin is modelled using the framework of \citet{Saunders_JAS82} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. 
    119121As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\rm{cs}}$ becomes 
    120 \begin{equation} 
    121 \label{eq:sunders_eqn} 
    122 \Delta T_{\rm{cs}}=\frac{Q_{\rm{ns}}\delta}{k_t} \mbox{,} 
    123 \end{equation} 
     122\[ 
     123  % \label{eq:sunders_eqn} 
     124  \Delta T_{\rm{cs}}=\frac{Q_{\rm{ns}}\delta}{k_t} \mbox{,} 
     125\] 
    124126where $Q_{\rm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and 
    125127$k_t$ is the thermal conductivity of sea water. 
     
    136138both low and high wind speeds. 
    137139Specifically, 
    138 \begin{equation} 
    139 \label{eq:artale_lambda_eqn} 
    140 \lambda = \frac{ 8.64\times10^4 u^*_{w} k_t }{ \rho c_p h \mu \gamma }\mbox{,} 
    141 \end{equation} 
     140\[ 
     141  % \label{eq:artale_lambda_eqn} 
     142  \lambda = \frac{ 8.64\times10^4 u^*_{w} k_t }{ \rho c_p h \mu \gamma }\mbox{,} 
     143\] 
    142144where $h=10$\,m is a reference depth and 
    143145$\gamma$ is a dimensionless function of wind speed $u$: 
    144 \begin{equation} 
    145 \label{eq:artale_gamma_eqn} 
    146 \gamma = \left\{ \begin{matrix} 
    147                      0.2u+0.5\mbox{,} & u \le 7.5\,\mbox{ms}^{-1} \\ 
    148                      1.6u-10\mbox{,} & 7.5 < u < 10\,\mbox{ms}^{-1} \\ 
    149                      6\mbox{,} & \ge 10\,\mbox{ms}^{-1} \\ 
    150                  \end{matrix} 
    151           \right. 
    152 \end{equation} 
     146\[ 
     147  % \label{eq:artale_gamma_eqn} 
     148  \gamma = 
     149  \begin{cases} 
     150    0.2u+0.5\mbox{,} & u \le 7.5\,\mbox{ms}^{-1} \\ 
     151    1.6u-10\mbox{,} & 7.5 < u < 10\,\mbox{ms}^{-1} \\ 
     152    6\mbox{,} & u \ge 10\,\mbox{ms}^{-1} \\ 
     153  \end{cases} 
     154\] 
     155 
     156\biblio 
    153157 
    154158\end{document} 
Note: See TracChangeset for help on using the changeset viewer.