New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10414 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2018-12-19T00:02:00+01:00 (5 years ago)
Author:
nicolasmartin
Message:
  • Comment \label commands on maths environments for unreferenced equations and adapt the unnumbered math container accordingly (mainly switch to shortanded LateX syntax with \[ ... \])
  • Add a code trick to build subfile with its own bibliography
  • Fix right path for main LaTeX document in first line of subfiles (\documentclass[...]{subfiles})
  • Rename abstract_foreword.tex to foreword.tex
  • Fix some non-ASCII codes inserted here or there in LaTeX (\[0-9]*)
  • Made a first iteration on the indentation and alignement within math, figure and table environments to improve source code readability
File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r10406 r10414  
    1 \documentclass[../tex_main/NEMO_manual]{subfiles} 
     1\documentclass[../main/NEMO_manual]{subfiles} 
     2 
    23\begin{document} 
    34% ================================================================ 
    4 % Chapter 1 Ñ Model Basics 
     5% Chapter 1 Model Basics 
    56% ================================================================ 
    67 
    78\chapter{Model Basics} 
    89\label{chap:PE} 
     10 
    911\minitoc 
    1012 
    1113\newpage 
    12 $\ $\newline    % force a new ligne 
    1314 
    1415% ================================================================ 
     
    6263(namely the momentum balance, the hydrostatic equilibrium, the incompressibility equation, 
    6364the heat and salt conservation equations and an equation of state): 
    64 \begin{subequations} \label{eq:PE} 
    65   \begin{equation}     \label{eq:PE_dyn} 
    66 \frac{\partial {\rm {\bf U}}_h }{\partial t}= 
    67 -\left[    {\left( {\nabla \times {\rm {\bf U}}} \right)\times {\rm {\bf U}} 
    68             +\frac{1}{2}\nabla \left( {{\rm {\bf U}}^2} \right)}    \right]_h 
    69  -f\;{\rm {\bf k}}\times {\rm {\bf U}}_h  
    70 -\frac{1}{\rho_o }\nabla _h p + {\rm {\bf D}}^{\rm {\bf U}} + {\rm {\bf F}}^{\rm {\bf U}} 
     65\begin{subequations} 
     66  \label{eq:PE} 
     67  \begin{equation} 
     68    \label{eq:PE_dyn} 
     69    \frac{\partial {\rm {\bf U}}_h }{\partial t}= 
     70    -\left[    {\left( {\nabla \times {\rm {\bf U}}} \right)\times {\rm {\bf U}} 
     71        +\frac{1}{2}\nabla \left( {{\rm {\bf U}}^2} \right)}    \right]_h 
     72    -f\;{\rm {\bf k}}\times {\rm {\bf U}}_h 
     73    -\frac{1}{\rho_o }\nabla _h p + {\rm {\bf D}}^{\rm {\bf U}} + {\rm {\bf F}}^{\rm {\bf U}} 
    7174  \end{equation} 
    72   \begin{equation}     \label{eq:PE_hydrostatic} 
    73 \frac{\partial p }{\partial z} = - \rho \ g 
     75  \begin{equation} 
     76    \label{eq:PE_hydrostatic} 
     77    \frac{\partial p }{\partial z} = - \rho \ g 
    7478  \end{equation} 
    75   \begin{equation}     \label{eq:PE_continuity} 
    76 \nabla \cdot {\bf U}=  0 
     79  \begin{equation} 
     80    \label{eq:PE_continuity} 
     81    \nabla \cdot {\bf U}=  0 
    7782  \end{equation} 
    78 \begin{equation} \label{eq:PE_tra_T} 
    79 \frac{\partial T}{\partial t} = - \nabla \cdot  \left( T \ \rm{\bf U} \right) + D^T + F^T 
     83  \begin{equation} 
     84    \label{eq:PE_tra_T} 
     85    \frac{\partial T}{\partial t} = - \nabla \cdot  \left( T \ \rm{\bf U} \right) + D^T + F^T 
    8086  \end{equation} 
    81   \begin{equation}     \label{eq:PE_tra_S} 
    82 \frac{\partial S}{\partial t} = - \nabla \cdot  \left( S \ \rm{\bf U} \right) + D^S + F^S 
     87  \begin{equation} 
     88    \label{eq:PE_tra_S} 
     89    \frac{\partial S}{\partial t} = - \nabla \cdot  \left( S \ \rm{\bf U} \right) + D^S + F^S 
    8390  \end{equation} 
    84   \begin{equation}     \label{eq:PE_eos} 
    85 \rho = \rho \left( T,S,p \right) 
     91  \begin{equation} 
     92    \label{eq:PE_eos} 
     93    \rho = \rho \left( T,S,p \right) 
    8694  \end{equation} 
    8795\end{subequations} 
     
    140148\item[Solid earth - ocean interface:] 
    141149  heat and salt fluxes through the sea floor are small, except in special areas of little extent. 
    142   They are usually neglected in the model \footnote{ 
     150  They are usually neglected in the model 
     151  \footnote{ 
    143152    In fact, it has been shown that the heat flux associated with the solid Earth cooling 
    144153    ($i.e.$the geothermal heating) is not negligible for the thermohaline circulation of the world ocean 
     
    150159  the bottom velocity is parallel to solid boundaries). This kinematic boundary condition 
    151160  can be expressed as: 
    152   \begin{equation} \label{eq:PE_w_bbc} 
     161  \begin{equation} 
     162    \label{eq:PE_w_bbc} 
    153163    w = -{\rm {\bf U}}_h \cdot  \nabla _h \left( H \right) 
    154164  \end{equation} 
     
    162172  the kinematic surface condition plus the mass flux of fresh water PE (the precipitation minus evaporation budget) 
    163173  leads to: 
    164   \begin{equation} \label{eq:PE_w_sbc} 
     174  \[ 
     175    % \label{eq:PE_w_sbc} 
    165176    w = \frac{\partial \eta }{\partial t} 
    166177    + \left. {{\rm {\bf U}}_h } \right|_{z=\eta } \cdot  \nabla _h \left( \eta \right) 
    167178    + P-E 
    168   \end{equation} 
     179  \] 
    169180  The dynamic boundary condition, neglecting the surface tension (which removes capillary waves from the system) 
    170181  leads to the continuity of pressure across the interface $z=\eta$. 
     
    179190 
    180191%\newpage 
    181 %$\ $\newline    % force a new ligne 
    182192 
    183193% ================================================================ 
     
    199209assuming that pressure in decibars can be approximated by depth in meters in (\autoref{eq:PE_eos}). 
    200210The hydrostatic pressure is then given by: 
    201 \begin{equation} \label{eq:PE_pressure} 
    202 p_h \left( {i,j,z,t} \right) 
    203  = \int_{\varsigma =z}^{\varsigma =0} {g\;\rho \left( {T,S,\varsigma} \right)\;d\varsigma }  
    204 \end{equation} 
     211\[ 
     212  % \label{eq:PE_pressure} 
     213  p_h \left( {i,j,z,t} \right) 
     214  = \int_{\varsigma =z}^{\varsigma =0} {g\;\rho \left( {T,S,\varsigma} \right)\;d\varsigma } 
     215\] 
    205216Two strategies can be considered for the surface pressure term: 
    206217$(a)$ introduce of a  new variable $\eta$, the free-surface elevation, 
     
    231242This variable is solution of a prognostic equation which is established by forming the vertical average of 
    232243the kinematic surface condition (\autoref{eq:PE_w_bbc}): 
    233 \begin{equation} \label{eq:PE_ssh} 
    234 \frac{\partial \eta }{\partial t}=-D+P-E 
    235    \quad \text{where} \  
    236 D=\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\rm{\bf \overline{U}}}_h \,} \right] 
     244\begin{equation} 
     245  \label{eq:PE_ssh} 
     246  \frac{\partial \eta }{\partial t}=-D+P-E 
     247  \quad \text{where} \ 
     248  D=\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\rm{\bf \overline{U}}}_h \,} \right] 
    237249\end{equation} 
    238250and using (\autoref{eq:PE_hydrostatic}) the surface pressure is given by: $p_s = \rho \, g \, \eta$. 
     
    275287 
    276288%\newpage 
    277 %$\ $\newline    % force a new line 
    278289 
    279290% ================================================================ 
     
    318329The local deformation of the curvilinear coordinate system is given by $e_1$, $e_2$ and $e_3$, 
    319330the three scale factors: 
    320 \begin{equation} \label{eq:scale_factors} 
     331\begin{equation} 
     332  \label{eq:scale_factors} 
    321333  \begin{aligned} 
    322334    e_1 &=\left( {a+z} \right)\;\left[ {\left( {\frac{\partial \lambda}{\partial i}\cos \varphi } \right)^2 
     
    346358(\autoref{eq:PE_dyn} to \autoref{eq:PE_eos}) can be written in the tensorial form, 
    347359invariant in any orthogonal horizontal curvilinear coordinate system transformation: 
    348 \begin{subequations} \label{eq:PE_discrete_operators} 
    349 \begin{equation} \label{eq:PE_grad} 
    350 \nabla q=\frac{1}{e_1 }\frac{\partial q}{\partial i}\;{\rm {\bf  
    351 i}}+\frac{1}{e_2 }\frac{\partial q}{\partial j}\;{\rm {\bf j}}+\frac{1}{e_3  
    352 }\frac{\partial q}{\partial k}\;{\rm {\bf k}}    \\ 
    353 \end{equation} 
    354 \begin{equation} \label{eq:PE_div} 
    355 \nabla \cdot {\rm {\bf A}}  
    356 = \frac{1}{e_1 \; e_2} \left[  
    357   \frac{\partial \left(e_2 \; a_1\right)}{\partial i } 
    358 +\frac{\partial \left(e_1 \; a_2\right)}{\partial j }       \right] 
    359 + \frac{1}{e_3} \left[ \frac{\partial a_3}{\partial k }   \right] 
    360 \end{equation} 
    361 \begin{equation} \label{eq:PE_curl} 
    362    \begin{split} 
    363 \nabla \times \vect{A} =  
    364     \left[ {\frac{1}{e_2 }\frac{\partial a_3}{\partial j} 
    365             -\frac{1}{e_3 }\frac{\partial a_2 }{\partial k}} \right] \; \vect{i} 
    366 &+\left[ {\frac{1}{e_3 }\frac{\partial a_1 }{\partial k} 
    367            -\frac{1}{e_1 }\frac{\partial a_3 }{\partial i}} \right] \; \vect{j}     \\ 
    368 &+\frac{1}{e_1 e_2 } \left[ {\frac{\partial \left( {e_2 a_2 } \right)}{\partial i} 
    369                                        -\frac{\partial \left( {e_1 a_1 } \right)}{\partial j}} \right] \; \vect{k}  
    370    \end{split} 
    371 \end{equation} 
    372 \begin{equation} \label{eq:PE_lap} 
    373 \Delta q = \nabla \cdot \left(  \nabla q \right) 
    374 \end{equation} 
    375 \begin{equation} \label{eq:PE_lap_vector} 
    376 \Delta {\rm {\bf A}} = 
    377   \nabla \left( \nabla \cdot {\rm {\bf A}} \right) 
    378 - \nabla \times \left(  \nabla \times {\rm {\bf A}} \right) 
    379 \end{equation} 
     360\begin{subequations} 
     361  % \label{eq:PE_discrete_operators} 
     362  \begin{equation} 
     363    \label{eq:PE_grad} 
     364    \nabla q=\frac{1}{e_1 }\frac{\partial q}{\partial i}\;{\rm {\bf 
     365        i}}+\frac{1}{e_2 }\frac{\partial q}{\partial j}\;{\rm {\bf j}}+\frac{1}{e_3 
     366    }\frac{\partial q}{\partial k}\;{\rm {\bf k}}    \\ 
     367  \end{equation} 
     368  \begin{equation} 
     369    \label{eq:PE_div} 
     370    \nabla \cdot {\rm {\bf A}} 
     371    = \frac{1}{e_1 \; e_2} \left[ 
     372      \frac{\partial \left(e_2 \; a_1\right)}{\partial i } 
     373      +\frac{\partial \left(e_1 \; a_2\right)}{\partial j }       \right] 
     374    + \frac{1}{e_3} \left[ \frac{\partial a_3}{\partial k }   \right] 
     375  \end{equation} 
     376  \begin{equation} 
     377    \label{eq:PE_curl} 
     378    \begin{split} 
     379      \nabla \times \vect{A} = 
     380      \left[ {\frac{1}{e_2 }\frac{\partial a_3}{\partial j} 
     381          -\frac{1}{e_3 }\frac{\partial a_2 }{\partial k}} \right] \; \vect{i} 
     382      &+\left[ {\frac{1}{e_3 }\frac{\partial a_1 }{\partial k} 
     383          -\frac{1}{e_1 }\frac{\partial a_3 }{\partial i}} \right] \; \vect{j}      \\ 
     384      &+\frac{1}{e_1 e_2 } \left[ {\frac{\partial \left( {e_2 a_2 } \right)}{\partial i} 
     385          -\frac{\partial \left( {e_1 a_1 } \right)}{\partial j}} \right] \; \vect{k} 
     386    \end{split} 
     387  \end{equation} 
     388  \begin{equation} 
     389    \label{eq:PE_lap} 
     390    \Delta q = \nabla \cdot \left(  \nabla q \right) 
     391  \end{equation} 
     392  \begin{equation} 
     393    \label{eq:PE_lap_vector} 
     394    \Delta {\rm {\bf A}} = 
     395    \nabla \left( \nabla \cdot {\rm {\bf A}} \right) 
     396    - \nabla \times \left(  \nabla \times {\rm {\bf A}} \right) 
     397  \end{equation} 
    380398\end{subequations} 
    381399where $q$ is a scalar quantity and ${\rm {\bf A}}=(a_1,a_2,a_3)$ a vector in the $(i,j,k)$ coordinate system. 
     
    392410Let us set $\vect U=(u,v,w)={\vect{U}}_h +w\;\vect{k}$, the velocity in the $(i,j,k)$ coordinate system and 
    393411define the relative vorticity $\zeta$ and the divergence of the horizontal velocity field $\chi$, by: 
    394 \begin{equation} \label{eq:PE_curl_Uh} 
    395 \zeta =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,v}  
    396 \right)}{\partial i}-\frac{\partial \left( {e_1 \,u} \right)}{\partial j}}  
    397 \right] 
     412\begin{equation} 
     413  \label{eq:PE_curl_Uh} 
     414  \zeta =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,v} 
     415        \right)}{\partial i}-\frac{\partial \left( {e_1 \,u} \right)}{\partial j}} 
     416  \right] 
    398417\end{equation} 
    399 \begin{equation} \label{eq:PE_div_Uh} 
    400 \chi =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,u}  
    401 \right)}{\partial i}+\frac{\partial \left( {e_1 \,v} \right)}{\partial j}}  
    402 \right] 
     418\begin{equation} 
     419  \label{eq:PE_div_Uh} 
     420  \chi =\frac{1}{e_1 e_2 }\left[ {\frac{\partial \left( {e_2 \,u} 
     421        \right)}{\partial i}+\frac{\partial \left( {e_1 \,v} \right)}{\partial j}} 
     422  \right] 
    403423\end{equation} 
    404424 
     
    407427the nonlinear term of \autoref{eq:PE_dyn} can be transformed as follows: 
    408428\begin{flalign*} 
    409 &\left[ {\left( { \nabla \times {\rm {\bf U}}    } \right) \times {\rm {\bf U}} 
    410 +\frac{1}{2}   \nabla \left( {{\rm {\bf U}}^2} \right)}   \right]_h        & 
     429  &\left[ {\left( {  \nabla \times {\rm {\bf U}}    } \right) \times {\rm {\bf U}} 
     430      +\frac{1}{2}   \nabla \left( {{\rm {\bf U}}^2} \right)}   \right]_h        & 
    411431\end{flalign*} 
    412432\begin{flalign*} 
    413 &\qquad=\left( {{\begin{array}{*{20}c} 
    414  {\left[    {   \frac{1}{e_3} \frac{\partial u  }{\partial k} 
    415          -\frac{1}{e_1} \frac{\partial w  }{\partial i} } \right] w - \zeta \; v }     \\ 
    416       {\zeta \; u - \left[ {   \frac{1}{e_2} \frac{\partial w}{\partial j} 
    417                      -\frac{1}{e_3} \frac{\partial v}{\partial k} } \right] \ w}  \\ 
    418        \end{array} }} \right)        
    419 +\frac{1}{2}   \left( {{\begin{array}{*{20}c} 
    420        { \frac{1}{e_1}  \frac{\partial \left( u^2+v^2+w^2 \right)}{\partial i}}  \hfill    \\ 
    421        { \frac{1}{e_2}  \frac{\partial \left( u^2+v^2+w^2 \right)}{\partial j}}  \hfill    \\ 
    422        \end{array} }} \right)       & 
     433  &\qquad=\left( {{ 
     434        \begin{array}{*{20}c} 
     435          {\left[    {   \frac{1}{e_3} \frac{\partial u  }{\partial k} 
     436          -\frac{1}{e_1}   \frac{\partial w  }{\partial i} } \right] w - \zeta \; v }     \\ 
     437          {\zeta \; u - \left[ {  \frac{1}{e_2} \frac{\partial w}{\partial j} 
     438          -\frac{1}{e_3} \frac{\partial v}{\partial k} } \right] \ w}    \\ 
     439        \end{array} 
     440      }} \right) 
     441  +\frac{1}{2} \left( {{ 
     442        \begin{array}{*{20}c} 
     443          { \frac{1}{e_1}  \frac{\partial \left( u^2+v^2+w^2 \right)}{\partial i}}  \hfill    \\ 
     444          { \frac{1}{e_2}  \frac{\partial \left( u^2+v^2+w^2 \right)}{\partial j}}  \hfill    \\ 
     445        \end{array} 
     446      }} \right)        & 
    423447\end{flalign*} 
    424448\begin{flalign*} 
    425 & \qquad =\left( {{  \begin{array}{*{20}c} 
    426  {-\zeta \; v} \hfill \\ 
    427  { \zeta \; u} \hfill \\ 
    428          \end{array} }} \right) 
    429 +\frac{1}{2}\left( {{   \begin{array}{*{20}c} 
    430  {\frac{1}{e_1 }\frac{\partial \left( {u^2+v^2} \right)}{\partial i}} \hfill  \\ 
    431  {\frac{1}{e_2 }\frac{\partial \left( {u^2+v^2} \right)}{\partial j}} \hfill  \\ 
    432                   \end{array} }} \right)         
    433 +\frac{1}{e_3 }\left( {{      \begin{array}{*{20}c} 
    434  { w \; \frac{\partial u}{\partial k}}    \\ 
    435  { w \; \frac{\partial v}{\partial k}}    \\ 
    436                      \end{array} }} \right)   
    437 -\left( {{  \begin{array}{*{20}c} 
    438  {\frac{w}{e_1}\frac{\partial w}{\partial i} 
    439  -\frac{1}{2e_1}\frac{\partial w^2}{\partial i}} \hfill \\ 
    440  {\frac{w}{e_2}\frac{\partial w}{\partial j} 
    441   -\frac{1}{2e_2}\frac{\partial w^2}{\partial j}} \hfill \\ 
    442          \end{array} }} \right)        & 
     449  & \qquad =\left( {{ 
     450        \begin{array}{*{20}c} 
     451          {-\zeta \; v} \hfill \\ 
     452          { \zeta \; u} \hfill \\ 
     453        \end{array} 
     454      }} \right) 
     455  +\frac{1}{2}\left( {{ 
     456        \begin{array}{*{20}c} 
     457          {\frac{1}{e_1 }\frac{\partial \left( {u^2+v^2} \right)}{\partial i}} \hfill  \\ 
     458          {\frac{1}{e_2 }\frac{\partial \left( {u^2+v^2} \right)}{\partial j}} \hfill  \\ 
     459        \end{array} 
     460      }} \right) 
     461  +\frac{1}{e_3 }\left( {{ 
     462        \begin{array}{*{20}c} 
     463          { w \; \frac{\partial u}{\partial k}}    \\ 
     464          { w \; \frac{\partial v}{\partial k}}    \\ 
     465        \end{array} 
     466      }} \right) 
     467  -\left( {{ 
     468        \begin{array}{*{20}c} 
     469          {\frac{w}{e_1}\frac{\partial w}{\partial i} -\frac{1}{2e_1}\frac{\partial w^2}{\partial i}} \hfill \\ 
     470          {\frac{w}{e_2}\frac{\partial w}{\partial j} -\frac{1}{2e_2}\frac{\partial w^2}{\partial j}} \hfill \\ 
     471        \end{array} 
     472      }} \right)        & 
    443473\end{flalign*} 
    444474 
    445475The last term of the right hand side is obviously zero, and thus the nonlinear term of 
    446476\autoref{eq:PE_dyn} is written in the $(i,j,k)$ coordinate system: 
    447 \begin{equation} \label{eq:PE_vector_form} 
    448 \left[ {\left( {  \nabla \times {\rm {\bf U}}    } \right) \times {\rm {\bf U}} 
    449 +\frac{1}{2}   \nabla \left( {{\rm {\bf U}}^2} \right)}   \right]_h  
    450 =\zeta  
    451 \;{\rm {\bf k}}\times {\rm {\bf U}}_h +\frac{1}{2}\nabla _h \left( {{\rm  
    452 {\bf U}}_h^2 } \right)+\frac{1}{e_3 }w\frac{\partial {\rm {\bf U}}_h  
    453 }{\partial k}      
     477\begin{equation} 
     478  \label{eq:PE_vector_form} 
     479  \left[ {\left( {   \nabla \times {\rm {\bf U}}    } \right) \times {\rm {\bf U}} 
     480      +\frac{1}{2}   \nabla \left( {{\rm {\bf U}}^2} \right)}   \right]_h 
     481  =\zeta 
     482  \;{\rm {\bf k}}\times {\rm {\bf U}}_h +\frac{1}{2}\nabla _h \left( {{\rm 
     483        {\bf U}}_h^2 } \right)+\frac{1}{e_3 }w\frac{\partial {\rm {\bf U}}_h 
     484  }{\partial k} 
    454485\end{equation} 
    455486 
     
    459490For example, the first component of \autoref{eq:PE_vector_form} (the $i$-component) is transformed as follows: 
    460491\begin{flalign*} 
    461 &{ \begin{array}{*{20}l} 
    462 \left[ {\left( {\nabla \times \vect{U}} \right)\times \vect{U} 
    463           +\frac{1}{2}\nabla \left( {\vect{U}}^2 \right)} \right]_i   % \\ 
    464 %\\ 
    465      = - \zeta \;v  
    466      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i} 
    467      + \frac{1}{e_3}w \ \frac{\partial u}{\partial k}          \\ 
    468 \\ 
    469 \qquad =\frac{1}{e_1 \; e_2} \left(    -v\frac{\partial \left( {e_2 \,v} \right)}{\partial i} 
    470                      +v\frac{\partial \left( {e_1 \,u} \right)}{\partial j}    \right) 
    471 +\frac{1}{e_1 e_2 }\left(  +e_2 \; u\frac{\partial u}{\partial i} 
    472                      +e_2 \; v\frac{\partial v}{\partial i}              \right)  
    473 +\frac{1}{e_3}       \left(   w\;\frac{\partial u}{\partial k}       \right)   \\ 
    474 \end{array} }        & 
     492  &{ 
     493    \begin{array}{*{20}l} 
     494      \left[ {\left( {\nabla \times \vect{U}} \right)\times \vect{U} 
     495      +\frac{1}{2}\nabla \left( {\vect{U}}^2 \right)} \right]_i   % \\ 
     496  % \\ 
     497      = - \zeta \;v 
     498      + \frac{1}{2\;e_1 } \frac{\partial \left( {u^2+v^2} \right)}{\partial i} 
     499      + \frac{1}{e_3}w \ \frac{\partial u}{\partial k}         \\ \\ 
     500      \qquad =\frac{1}{e_1 \; e_2} \left(    -v\frac{\partial \left( {e_2 \,v} \right)}{\partial i} 
     501      +v\frac{\partial \left( {e_1 \,u} \right)}{\partial j}    \right) 
     502      +\frac{1}{e_1 e_2 }\left(  +e_2 \; u\frac{\partial u}{\partial i} 
     503      +e_2 \; v\frac{\partial v}{\partial i}              \right) 
     504      +\frac{1}{e_3}       \left(   w\;\frac{\partial u}{\partial k}       \right)   \\ 
     505    \end{array} 
     506  }         & 
    475507\end{flalign*} 
    476508\begin{flalign*} 
    477 &{ \begin{array}{*{20}l} 
    478 \qquad =\frac{1}{e_1 \; e_2}  \left\{  
    479  -\left(        v^2  \frac{\partial e_2                                }{\partial i}  
     509  &{ 
     510    \begin{array}{*{20}l} 
     511      \qquad =\frac{1}{e_1 \; e_2}  \left\{ 
     512      -\left(         v^2  \frac{\partial e_2                                }{\partial i} 
    480513      +e_2 \,v    \frac{\partial v                                   }{\partial i}     \right) 
    481 +\left(           \frac{\partial \left( {e_1 \,u\,v}  \right)}{\partial j} 
    482       -e_1 \,u    \frac{\partial v                                   }{\partial j}  \right)  \right.  
    483 \\  \left.  \qquad \qquad \quad 
    484 +\left(           \frac{\partial \left( {e_2 u\,u}     \right)}{\partial i} 
     514      +\left(           \frac{\partial \left( {e_1 \,u\,v}  \right)}{\partial j} 
     515      -e_1 \,u    \frac{\partial v                                   }{\partial j}  \right)  \right. \\ 
     516      \left.   \qquad \qquad \quad 
     517      +\left(           \frac{\partial \left( {e_2 u\,u}     \right)}{\partial i} 
    485518      -u       \frac{\partial \left( {e_2 u}         \right)}{\partial i}  \right) 
    486 +e_2 v            \frac{\partial v                                    }{\partial i} 
    487                   \right\}  
    488 +\frac{1}{e_3} \left( 
    489                \frac{\partial \left( {w\,u} \right)         }{\partial k} 
    490        -u         \frac{\partial w                    }{\partial k}  \right) \\ 
    491 \end{array} }     & 
     519      +e_2 v            \frac{\partial v                                    }{\partial i} 
     520      \right\} 
     521      +\frac{1}{e_3} \left( 
     522      \frac{\partial \left( {w\,u} \right)         }{\partial k} 
     523      -u       \frac{\partial w                    }{\partial k}  \right) \\ 
     524    \end{array} 
     525  }      & 
    492526\end{flalign*} 
    493527\begin{flalign*} 
    494 &{ \begin{array}{*{20}l} 
    495 \qquad =\frac{1}{e_1 \; e_2}  \left(  
    496                \frac{\partial \left( {e_2 \,u\,u} \right)}{\partial i} 
     528  & 
     529  { 
     530    \begin{array}{*{20}l} 
     531      \qquad =\frac{1}{e_1 \; e_2}  \left( 
     532      \frac{\partial \left( {e_2 \,u\,u} \right)}{\partial i} 
    497533      +        \frac{\partial \left( {e_1 \,u\,v} \right)}{\partial j}  \right) 
    498 +\frac{1}{e_3 }      \frac{\partial \left( {w\,u       } \right)}{\partial k} 
    499 \\  \qquad \qquad \quad 
    500 +\frac{1}{e_1 e_2 }     \left(  
     534      +\frac{1}{e_3 }      \frac{\partial \left( {w\,u       } \right)}{\partial k} \\ 
     535      \qquad \qquad \quad 
     536      +\frac{1}{e_1 e_2 }     \left( 
    501537      -u \left(   \frac{\partial \left( {e_1 v   } \right)}{\partial j} 
    502                -v\,\frac{\partial e_1 }{\partial j}             \right) 
     538      -v\,\frac{\partial e_1 }{\partial j}             \right) 
    503539      -u       \frac{\partial \left( {e_2 u   } \right)}{\partial i} 
    504                   \right) 
    505  -\frac{1}{e_3 }     \frac{\partial w}{\partial k} u 
    506  +\frac{1}{e_1 e_2 }\left(    -v^2\frac{\partial e_2   }{\partial i}     \right)  
    507 \end{array} }     & 
     540      \right) 
     541      -\frac{1}{e_3 }      \frac{\partial w}{\partial k} u 
     542      +\frac{1}{e_1 e_2 }\left(  -v^2\frac{\partial e_2   }{\partial i}     \right) 
     543    \end{array} 
     544  }      & 
    508545\end{flalign*} 
    509546\begin{flalign*} 
    510 &{ \begin{array}{*{20}l} 
    511 \qquad = \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) 
    512 -   \left( \nabla \cdot {\rm {\bf U}} \right) \ u 
    513 +\frac{1}{e_1 e_2 }\left(  
     547  &{ 
     548    \begin{array}{*{20}l} 
     549      \qquad = \nabla \cdot \left( {{\rm {\bf U}}\,u} \right) 
     550      -   \left( \nabla \cdot {\rm {\bf U}} \right) \ u 
     551      +\frac{1}{e_1 e_2 }\left( 
    514552      -v^2     \frac{\partial e_2 }{\partial i} 
    515553      +uv   \,    \frac{\partial e_1 }{\partial j}    \right) \\ 
    516 \end{array} }     & 
     554    \end{array} 
     555  }      & 
    517556\end{flalign*} 
    518557as $\nabla \cdot {\rm {\bf U}}\;=0$ (incompressibility) it comes: 
    519558\begin{flalign*} 
    520 &{ \begin{array}{*{20}l} 
    521 \qquad = \nabla \cdot \left(  {{\rm {\bf U}}\,u}      \right) 
    522 +  \frac{1}{e_1 e_2 }   \left( v \; \frac{\partial e_2}{\partial i} 
    523                          -u \; \frac{\partial e_1}{\partial j}    \right)  \left( -v \right)  
    524 \end{array} }     & 
     559  &{ 
     560    \begin{array}{*{20}l} 
     561      \qquad = \nabla \cdot \left(  {{\rm {\bf U}}\,u}      \right) 
     562      +  \frac{1}{e_1 e_2 }   \left( v \; \frac{\partial e_2}{\partial i} 
     563      -u \; \frac{\partial e_1}{\partial j}  \right)  \left( -v \right) 
     564    \end{array} 
     565  }      & 
    525566\end{flalign*} 
    526567 
    527568The flux form of the momentum advection term is therefore given by: 
    528 \begin{multline} \label{eq:PE_flux_form} 
    529       \left[  
    530   \left(    {\nabla \times {\rm {\bf U}}}    \right) \times {\rm {\bf U}} 
    531 +\frac{1}{2}   \nabla \left(  {{\rm {\bf U}}^2}    \right) 
    532       \right]_h  
    533 \\ 
    534 = \nabla \cdot    \left( {{\begin{array}{*{20}c}   {\rm {\bf U}} \, u   \hfill \\ 
    535                                     {\rm {\bf U}} \, v   \hfill \\ 
    536                   \end{array} }}     
    537             \right) 
    538 +\frac{1}{e_1 e_2 }     \left(  
    539        v\frac{\partial e_2}{\partial i} 
    540       -u\frac{\partial e_1}{\partial j}  
    541                   \right) {\rm {\bf k}} \times {\rm {\bf U}}_h 
     569\begin{multline} 
     570  \label{eq:PE_flux_form} 
     571  \left[ 
     572    \left(  {\nabla \times {\rm {\bf U}}}    \right) \times {\rm {\bf U}} 
     573    +\frac{1}{2}  \nabla \left(  {{\rm {\bf U}}^2}    \right) 
     574  \right]_h \\ 
     575  = \nabla \cdot  \left( {{ 
     576        \begin{array}{*{20}c} 
     577          {\rm {\bf U}} \, u  \hfill \\ 
     578          {\rm {\bf U}} \, v  \hfill \\ 
     579        \end{array} 
     580      }} 
     581  \right) 
     582  +\frac{1}{e_1 e_2 }      \left( 
     583    v\frac{\partial e_2}{\partial i} 
     584    -u\frac{\partial e_1}{\partial j} 
     585  \right) {\rm {\bf k}} \times {\rm {\bf U}}_h 
    542586\end{multline} 
    543587 
     
    546590and the second one is due to the curvilinear nature of the coordinate system used. 
    547591The latter is called the \emph{metric} term and can be viewed as a modification of the Coriolis parameter:  
    548 \begin{equation} \label{eq:PE_cor+metric} 
    549 f \to f + \frac{1}{e_1\;e_2}  \left(  v \frac{\partial e_2}{\partial i} 
    550                         -u \frac{\partial e_1}{\partial j}  \right) 
    551 \end{equation} 
     592\[ 
     593  % \label{eq:PE_cor+metric} 
     594  f \to f + \frac{1}{e_1\;e_2}  \left(  v \frac{\partial e_2}{\partial i} 
     595    -u \frac{\partial e_1}{\partial j}  \right) 
     596\] 
    552597 
    553598Note that in the case of geographical coordinate, 
     
    555600we recover the commonly used modification of the Coriolis parameter $f \to f+(u/a) \tan \varphi$. 
    556601 
    557  
    558 $\ $\newline    % force a new ligne 
    559  
    560602To sum up, the curvilinear $z$-coordinate equations solved by the ocean model can be written in 
    561603the following tensorial formalism: 
     
    564606$\bullet$ \textbf{Vector invariant form of the momentum equations} : 
    565607 
    566 \begin{subequations} \label{eq:PE_dyn_vect} 
    567 \begin{equation} \label{eq:PE_dyn_vect_u} \begin{split} 
    568 \frac{\partial u}{\partial t}  
    569 = +   \left( {\zeta +f} \right)\,v                                     
    570    -   \frac{1}{2\,e_1}           \frac{\partial}{\partial i} \left(  u^2+v^2   \right)  
    571    -   \frac{1}{e_3    }  w     \frac{\partial u}{\partial k}      &      \\ 
    572    -   \frac{1}{e_1    }            \frac{\partial}{\partial i} \left( \frac{p_s+p_h }{\rho_o}    \right)     
    573    &+   D_u^{\vect{U}}  +   F_u^{\vect{U}}      \\ 
    574 \\ 
    575 \frac{\partial v}{\partial t} = 
    576        -   \left( {\zeta +f} \right)\,u    
    577        -   \frac{1}{2\,e_2 }        \frac{\partial }{\partial j}\left(  u^2+v^2  \right)    
    578        -   \frac{1}{e_3     }   w  \frac{\partial v}{\partial k}     &      \\ 
    579        -   \frac{1}{e_2     }        \frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}  \right)     
    580     &+  D_v^{\vect{U}}  +   F_v^{\vect{U}} 
    581 \end{split} \end{equation} 
     608\begin{subequations} 
     609  \label{eq:PE_dyn_vect} 
     610  \[ 
     611    % \label{eq:PE_dyn_vect_u} 
     612    \begin{split} 
     613      \frac{\partial u}{\partial t} 
     614      = +   \left( {\zeta +f} \right)\,v 
     615      -   \frac{1}{2\,e_1}           \frac{\partial}{\partial i} \left(  u^2+v^2   \right) 
     616      -   \frac{1}{e_3    }  w     \frac{\partial u}{\partial k}      &      \\ 
     617      -   \frac{1}{e_1    }            \frac{\partial}{\partial i} \left( \frac{p_s+p_h }{\rho_o}    \right) 
     618      &+   D_u^{\vect{U}}  +   F_u^{\vect{U}}      \\ \\ 
     619      \frac{\partial v}{\partial t} = 
     620      -   \left( {\zeta +f} \right)\,u 
     621      -   \frac{1}{2\,e_2 }        \frac{\partial }{\partial j}\left(  u^2+v^2  \right) 
     622      -   \frac{1}{e_3     }   w  \frac{\partial v}{\partial k}     &      \\ 
     623      -   \frac{1}{e_2     }        \frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}  \right) 
     624      &+  D_v^{\vect{U}}  +   F_v^{\vect{U}} 
     625    \end{split} 
     626  \] 
    582627\end{subequations} 
    583628 
     
    585630\vspace{+10pt} 
    586631$\bullet$ \textbf{flux form of the momentum equations} : 
    587 \begin{subequations} \label{eq:PE_dyn_flux} 
    588 \begin{multline} \label{eq:PE_dyn_flux_u} 
    589 \frac{\partial u}{\partial t}= 
    590 +   \left( { f + \frac{1}{e_1 \; e_2} 
    591                \left(    v \frac{\partial e_2}{\partial i} 
    592                   -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, v    \\ 
    593 - \frac{1}{e_1 \; e_2}  \left(  
    594                \frac{\partial \left( {e_2 \,u\,u} \right)}{\partial i} 
     632\begin{subequations} 
     633  % \label{eq:PE_dyn_flux} 
     634  \begin{multline*} 
     635    % \label{eq:PE_dyn_flux_u} 
     636    \frac{\partial u}{\partial t}= 
     637    +   \left( { f + \frac{1}{e_1 \; e_2} 
     638        \left(     v \frac{\partial e_2}{\partial i} 
     639          -u \frac{\partial e_1}{\partial j}    \right)}    \right) \, v    \\ 
     640    - \frac{1}{e_1 \; e_2}    \left( 
     641      \frac{\partial \left( {e_2 \,u\,u} \right)}{\partial i} 
    595642      +        \frac{\partial \left( {e_1 \,v\,u} \right)}{\partial j}  \right) 
    596                  - \frac{1}{e_3 }\frac{\partial \left( {         w\,u} \right)}{\partial k}    \\ 
    597 -   \frac{1}{e_1 }\frac{\partial}{\partial i}\left( \frac{p_s+p_h }{\rho_o}   \right) 
    598 +   D_u^{\vect{U}} +   F_u^{\vect{U}} 
    599 \end{multline} 
    600 \begin{multline} \label{eq:PE_dyn_flux_v} 
    601 \frac{\partial v}{\partial t}= 
    602 -   \left( { f + \frac{1}{e_1 \; e_2} 
    603                \left(    v \frac{\partial e_2}{\partial i} 
    604                   -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, u   \\ 
    605  \frac{1}{e_1 \; e_2}   \left(  
    606                \frac{\partial \left( {e_2 \,u\,v} \right)}{\partial i} 
     643    - \frac{1}{e_3 }\frac{\partial \left( {         w\,u} \right)}{\partial k}    \\ 
     644    -   \frac{1}{e_1 }\frac{\partial}{\partial i}\left( \frac{p_s+p_h }{\rho_o}   \right) 
     645    +   D_u^{\vect{U}} +   F_u^{\vect{U}} 
     646  \end{multline*} 
     647  \begin{multline*} 
     648    % \label{eq:PE_dyn_flux_v} 
     649    \frac{\partial v}{\partial t}= 
     650    -   \left( { f + \frac{1}{e_1 \; e_2} 
     651        \left(     v \frac{\partial e_2}{\partial i} 
     652          -u \frac{\partial e_1}{\partial j}    \right)}    \right) \, u   \\ 
     653    \frac{1}{e_1 \; e_2}   \left( 
     654      \frac{\partial \left( {e_2 \,u\,v} \right)}{\partial i} 
    607655      +        \frac{\partial \left( {e_1 \,v\,v} \right)}{\partial j}  \right) 
    608                  - \frac{1}{e_3 } \frac{\partial \left( {        w\,v} \right)}{\partial k}    \\ 
    609 -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}    \right) 
    610 +  D_v^{\vect{U}} +  F_v^{\vect{U}}  
    611 \end{multline} 
     656    - \frac{1}{e_3 } \frac{\partial \left( {        w\,v} \right)}{\partial k}    \\ 
     657    -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}    \right) 
     658    +  D_v^{\vect{U}} +  F_v^{\vect{U}} 
     659  \end{multline*} 
    612660\end{subequations} 
    613661where $\zeta$, the relative vorticity, is given by \autoref{eq:PE_curl_Uh} and 
    614662$p_s $, the surface pressure, is given by: 
    615 \begin{equation} \label{eq:PE_spg} 
    616 p_s =  \rho \,g \,\eta  
    617 \end{equation} 
     663\[ 
     664  % \label{eq:PE_spg} 
     665  p_s =  \rho \,g \,\eta 
     666\] 
    618667with $\eta$ is solution of \autoref{eq:PE_ssh}. 
    619668 
    620669The vertical velocity and the hydrostatic pressure are diagnosed from the following equations: 
    621 \begin{equation} \label{eq:w_diag} 
    622 \frac{\partial w}{\partial k}=-\chi \;e_3  
    623 \end{equation} 
    624 \begin{equation} \label{eq:hp_diag} 
    625 \frac{\partial p_h }{\partial k}=-\rho \;g\;e_3  
    626 \end{equation} 
     670\[ 
     671  % \label{eq:w_diag} 
     672  \frac{\partial w}{\partial k}=-\chi \;e_3 
     673\] 
     674\[ 
     675  % \label{eq:hp_diag} 
     676  \frac{\partial p_h }{\partial k}=-\rho \;g\;e_3 
     677\] 
    627678where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:PE_div_Uh}. 
    628679 
    629680\vspace{+10pt} 
    630681$\bullet$ \textit{tracer equations} : 
    631 \begin{equation} \label{eq:S} 
    632 \frac{\partial T}{\partial t} =  
    633 -\frac{1}{e_1 e_2 }\left[ {      \frac{\partial \left( {e_2 T\,u} \right)}{\partial i} 
    634                   +\frac{\partial \left( {e_1 T\,v} \right)}{\partial j}} \right] 
    635 -\frac{1}{e_3 }\frac{\partial \left( {T\,w} \right)}{\partial k} + D^T + F^T 
    636 \end{equation} 
    637 \begin{equation} \label{eq:T} 
    638 \frac{\partial S}{\partial t} =  
    639 -\frac{1}{e_1 e_2 }\left[    {\frac{\partial \left( {e_2 S\,u} \right)}{\partial i} 
    640                   +\frac{\partial \left( {e_1 S\,v} \right)}{\partial j}} \right] 
    641 -\frac{1}{e_3 }\frac{\partial \left( {S\,w} \right)}{\partial k} + D^S + F^S 
    642 \end{equation} 
    643 \begin{equation} \label{eq:rho} 
    644 \rho =\rho \left( {T,S,z(k)} \right) 
    645 \end{equation} 
     682\[ 
     683  % \label{eq:S} 
     684  \frac{\partial T}{\partial t} = 
     685  -\frac{1}{e_1 e_2 }\left[ {    \frac{\partial \left( {e_2 T\,u} \right)}{\partial i} 
     686      +\frac{\partial \left( {e_1 T\,v} \right)}{\partial j}} \right] 
     687  -\frac{1}{e_3 }\frac{\partial \left( {T\,w} \right)}{\partial k} + D^T + F^T 
     688\] 
     689\[ 
     690  % \label{eq:T} 
     691  \frac{\partial S}{\partial t} = 
     692  -\frac{1}{e_1 e_2 }\left[     {\frac{\partial \left( {e_2 S\,u} \right)}{\partial i} 
     693      +\frac{\partial \left( {e_1 S\,v} \right)}{\partial j}} \right] 
     694  -\frac{1}{e_3 }\frac{\partial \left( {S\,w} \right)}{\partial k} + D^S + F^S 
     695\] 
     696\[ 
     697  % \label{eq:rho} 
     698  \rho =\rho \left( {T,S,z(k)} \right) 
     699\] 
    646700 
    647701The expression of \textbf{D}$^{U}$, $D^{S}$ and $D^{T}$ depends on the subgrid scale parameterisation used. 
     
    652706 
    653707\newpage  
    654 $\ $\newline    % force a new ligne 
     708 
    655709% ================================================================ 
    656710% Curvilinear generalised vertical coordinate System 
     
    680734In fact one is totally free to choose any space and time vertical coordinate by 
    681735introducing an arbitrary vertical coordinate : 
    682 \begin{equation} \label{eq:PE_s} 
    683 s=s(i,j,k,t) 
     736\begin{equation} 
     737  \label{eq:PE_s} 
     738  s=s(i,j,k,t) 
    684739\end{equation} 
    685740with the restriction that the above equation gives a single-valued monotonic relationship between $s$ and $k$, 
     
    750805Let us define the vertical scale factor by $e_3=\partial_s z$  ($e_3$ is now a function of $(i,j,k,t)$ ), 
    751806and the slopes in the (\textbf{i},\textbf{j}) directions between $s-$ and $z-$surfaces by: 
    752 \begin{equation} \label{eq:PE_sco_slope} 
    753 \sigma _1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s  
    754 \quad \text{, and } \quad  
    755 \sigma _2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s 
     807\begin{equation} 
     808  \label{eq:PE_sco_slope} 
     809  \sigma_1 =\frac{1}{e_1 }\;\left. {\frac{\partial z}{\partial i}} \right|_s 
     810  \quad \text{, and } \quad 
     811  \sigma_2 =\frac{1}{e_2 }\;\left. {\frac{\partial z}{\partial j}} \right|_s 
    756812\end{equation} 
    757813We also introduce  $\omega $, a dia-surface velocity component, defined as the velocity  
    758814relative to the moving $s$-surfaces and normal to them: 
    759 \begin{equation} \label{eq:PE_sco_w} 
    760 \omega  = w - e_3 \, \frac{\partial s}{\partial t} - \sigma _1 \,u - \sigma _2 \,v    \\ 
    761 \end{equation} 
     815\[ 
     816  % \label{eq:PE_sco_w} 
     817  \omega  = w - e_3 \, \frac{\partial s}{\partial t} - \sigma_1 \,u - \sigma_2 \,v    \\ 
     818\] 
    762819 
    763820The equations solved by the ocean model \autoref{eq:PE} in $s-$coordinate can be written as follows 
     
    766823 \vspace{0.5cm} 
    767824$\bullet$ Vector invariant form of the momentum equation : 
    768 \begin{multline} \label{eq:PE_sco_u_vector} 
    769 \frac{\partial  u   }{\partial t}= 
    770    +   \left( {\zeta +f} \right)\,v                                     
    771    -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right)  
    772    -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\ 
    773    -   \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o}    \right)     
    774    +  g\frac{\rho }{\rho_o}\sigma _1  
    775    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
    776 \end{multline} 
    777 \begin{multline} \label{eq:PE_sco_v_vector} 
    778 \frac{\partial v }{\partial t}= 
    779    -   \left( {\zeta +f} \right)\,u    
    780    -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^2  \right)         
    781    -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\ 
    782    -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}  \right)  
    783     +  g\frac{\rho }{\rho_o }\sigma _2    
    784    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
    785 \end{multline} 
     825\begin{multline*} 
     826  % \label{eq:PE_sco_u_vector} 
     827  \frac{\partial  u   }{\partial t}= 
     828  +   \left( {\zeta +f} \right)\,v 
     829  -   \frac{1}{2\,e_1} \frac{\partial}{\partial i} \left(  u^2+v^2   \right) 
     830  -   \frac{1}{e_3} \omega \frac{\partial u}{\partial k}       \\ 
     831  -   \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o}    \right) 
     832  +  g\frac{\rho }{\rho_o}\sigma_1 
     833  +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
     834\end{multline*} 
     835\begin{multline*} 
     836  % \label{eq:PE_sco_v_vector} 
     837  \frac{\partial v }{\partial t}= 
     838  -   \left( {\zeta +f} \right)\,u 
     839  -   \frac{1}{2\,e_2 }\frac{\partial }{\partial j}\left(  u^2+v^2  \right) 
     840  -   \frac{1}{e_3 } \omega \frac{\partial v}{\partial k}         \\ 
     841  -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}  \right) 
     842  +  g\frac{\rho }{\rho_o }\sigma_2 
     843  +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
     844\end{multline*} 
    786845 
    787846 \vspace{0.5cm} 
    788847$\bullet$ Flux form of the momentum equation : 
    789 \begin{multline} \label{eq:PE_sco_u_flux} 
    790 \frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
    791    +   \left( { f + \frac{1}{e_1 \; e_2 } 
    792                \left(    v \frac{\partial e_2}{\partial i} 
    793                   -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, v    \\ 
    794    - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
    795                \frac{\partial \left( {e_2 \, e_3 \, u\,u} \right)}{\partial i} 
    796       +        \frac{\partial \left( {e_1 \, e_3 \, v\,u} \right)}{\partial j}   \right) 
    797    - \frac{1}{e_3 }\frac{\partial \left( { \omega\,u} \right)}{\partial k}    \\ 
    798    - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o}    \right)     
    799    +  g\frac{\rho }{\rho_o}\sigma _1  
    800    +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
    801 \end{multline} 
    802 \begin{multline} \label{eq:PE_sco_v_flux} 
    803 \frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
    804    -   \left( { f + \frac{1}{e_1 \; e_2} 
    805                \left(    v \frac{\partial e_2}{\partial i} 
    806                   -u \frac{\partial e_1}{\partial j}  \right)}    \right) \, u   \\ 
    807    - \frac{1}{e_1 \; e_2 \; e_3 }   \left(  
    808                \frac{\partial \left( {e_2 \; e_3  \,u\,v} \right)}{\partial i} 
    809       +        \frac{\partial \left( {e_1 \; e_3  \,v\,v} \right)}{\partial j}   \right) 
    810                  - \frac{1}{e_3 } \frac{\partial \left( { \omega\,v} \right)}{\partial k}    \\ 
    811    -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}  \right)  
    812     +  g\frac{\rho }{\rho_o }\sigma _2    
    813    +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
    814 \end{multline} 
     848\begin{multline*} 
     849  % \label{eq:PE_sco_u_flux} 
     850  \frac{1}{e_3} \frac{\partial \left(  e_3\,u  \right) }{\partial t}= 
     851  +   \left( { f + \frac{1}{e_1 \; e_2 } 
     852      \left(    v \frac{\partial e_2}{\partial i} 
     853        -u \frac{\partial e_1}{\partial j}   \right)}    \right) \, v    \\ 
     854  - \frac{1}{e_1 \; e_2 \; e_3 }    \left( 
     855    \frac{\partial \left( {e_2 \, e_3 \, u\,u} \right)}{\partial i} 
     856    +       \frac{\partial \left( {e_1 \, e_3 \, v\,u} \right)}{\partial j}   \right) 
     857  - \frac{1}{e_3 }\frac{\partial \left( { \omega\,u} \right)}{\partial k}    \\ 
     858  - \frac{1}{e_1} \frac{\partial}{\partial i} \left( \frac{p_s + p_h}{\rho_o}    \right) 
     859  +  g\frac{\rho }{\rho_o}\sigma_1 
     860  +   D_u^{\vect{U}}  +   F_u^{\vect{U}} \quad 
     861\end{multline*} 
     862\begin{multline*} 
     863  % \label{eq:PE_sco_v_flux} 
     864  \frac{1}{e_3} \frac{\partial \left(  e_3\,v  \right) }{\partial t}= 
     865  -   \left( { f + \frac{1}{e_1 \; e_2} 
     866      \left(    v \frac{\partial e_2}{\partial i} 
     867        -u \frac{\partial e_1}{\partial j}   \right)}    \right) \, u   \\ 
     868  - \frac{1}{e_1 \; e_2 \; e_3 }    \left( 
     869    \frac{\partial \left( {e_2 \; e_3  \,u\,v} \right)}{\partial i} 
     870    +       \frac{\partial \left( {e_1 \; e_3  \,v\,v} \right)}{\partial j}   \right) 
     871  - \frac{1}{e_3 } \frac{\partial \left( { \omega\,v} \right)}{\partial k}    \\ 
     872  -   \frac{1}{e_2 }\frac{\partial }{\partial j}\left( \frac{p_s+p_h }{\rho_o}  \right) 
     873  +  g\frac{\rho }{\rho_o }\sigma_2 
     874  +  D_v^{\vect{U}}  +   F_v^{\vect{U}} \quad 
     875\end{multline*} 
    815876 
    816877where the relative vorticity, \textit{$\zeta $}, the surface pressure gradient, 
     
    818879they do not represent exactly the same quantities. 
    819880$\omega$ is provided by the continuity equation (see \autoref{apdx:A}): 
    820 \begin{equation} \label{eq:PE_sco_continuity} 
    821 \frac{\partial e_3}{\partial t} + e_3 \; \chi + \frac{\partial \omega }{\partial s} = 0    
    822 \qquad \text{with }\;\;   
    823 \chi =\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3 \,u}  
    824 \right)}{\partial i}+\frac{\partial \left( {e_1 e_3 \,v} \right)}{\partial  
    825 j}} \right] 
    826 \end{equation} 
     881\[ 
     882  % \label{eq:PE_sco_continuity} 
     883  \frac{\partial e_3}{\partial t} + e_3 \; \chi + \frac{\partial \omega }{\partial s} = 0 
     884  \qquad \text{with }\;\; 
     885  \chi =\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3 \,u} 
     886        \right)}{\partial i}+\frac{\partial \left( {e_1 e_3 \,v} \right)}{\partial 
     887        j}} \right] 
     888\] 
    827889 
    828890 \vspace{0.5cm} 
    829891$\bullet$ tracer equations: 
    830 \begin{multline} \label{eq:PE_sco_t} 
    831 \frac{1}{e_3} \frac{\partial \left(  e_3\,T  \right) }{\partial t}= 
    832 -\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,T} \right)}{\partial i} 
    833                                            +\frac{\partial \left( {e_1 e_3\,v\,T} \right)}{\partial j}} \right]   \\ 
    834 -\frac{1}{e_3 }\frac{\partial \left( {T\,\omega } \right)}{\partial k}   + D^T + F^S   \qquad 
    835 \end{multline} 
    836  
    837 \begin{multline} \label{eq:PE_sco_s} 
    838 \frac{1}{e_3} \frac{\partial \left(  e_3\,S  \right) }{\partial t}= 
    839 -\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,S} \right)}{\partial i} 
    840                                            +\frac{\partial \left( {e_1 e_3\,v\,S} \right)}{\partial j}} \right]    \\ 
    841 -\frac{1}{e_3 }\frac{\partial \left( {S\,\omega } \right)}{\partial k}     + D^S + F^S   \qquad 
    842 \end{multline} 
     892\begin{multline*} 
     893  % \label{eq:PE_sco_t} 
     894  \frac{1}{e_3} \frac{\partial \left(  e_3\,T  \right) }{\partial t}= 
     895  -\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,T} \right)}{\partial i} 
     896      +\frac{\partial \left( {e_1 e_3\,v\,T} \right)}{\partial j}} \right]   \\ 
     897  -\frac{1}{e_3 }\frac{\partial \left( {T\,\omega } \right)}{\partial k}   + D^T + F^S   \qquad 
     898\end{multline*} 
     899 
     900\begin{multline*} 
     901  % \label{eq:PE_sco_s} 
     902  \frac{1}{e_3} \frac{\partial \left(  e_3\,S  \right) }{\partial t}= 
     903  -\frac{1}{e_1 e_2 e_3 }\left[ {\frac{\partial \left( {e_2 e_3\,u\,S} \right)}{\partial i} 
     904      +\frac{\partial \left( {e_1 e_3\,v\,S} \right)}{\partial j}} \right]    \\ 
     905  -\frac{1}{e_3 }\frac{\partial \left( {S\,\omega } \right)}{\partial k}     + D^S + F^S   \qquad 
     906\end{multline*} 
    843907 
    844908The equation of state has the same expression as in $z$-coordinate, 
     
    889953The major points are summarized here. 
    890954The position ( \textit{z*}) and vertical discretization (\textit{z*}) are expressed as: 
    891 \begin{equation} \label{eq:z-star} 
    892 H +  \textit{z*} = (H + z) / r \quad \text{and} \ \delta \textit{z*} = \delta z / r \quad \text{with} \ r = \frac{H+\eta} {H} 
    893 \end{equation}  
     955\[ 
     956  % \label{eq:z-star} 
     957  H +  \textit{z*} = (H + z) / r \quad \text{and} \ \delta \textit{z*} = \delta z / r \quad \text{with} \ r = \frac{H+\eta} {H} 
     958\]  
    894959Since the vertical displacement of the free surface is incorporated in the vertical coordinate \textit{z*}, 
    895960the upper and lower boundaries are at fixed  \textit{z*} position, 
     
    897962Also the divergence of the flow field is no longer zero as shown by the continuity equation: 
    898963\[  
    899 \frac{\partial r}{\partial t} = \nabla_{\textit{z*}} \cdot \left( r \; \rm{\bf U}_h \right) 
    900       \left( r \; w\textit{*} \right) = 0  
     964  \frac{\partial r}{\partial t} = \nabla_{\textit{z*}} \cdot \left( r \; \rm{\bf U}_h \right) 
     965  \left( r \; w\textit{*} \right) = 0  
    901966\]  
    902967%} 
     
    906971 
    907972To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate  
    908 \begin{equation} \label{eq:PE_} 
    909    z^\star = H \left( \frac{z-\eta}{H+\eta} \right) 
    910 \end{equation} 
     973\[ 
     974  % \label{eq:PE_} 
     975  z^\star = H \left( \frac{z-\eta}{H+\eta} \right) 
     976\] 
    911977 
    912978This coordinate is closely related to the "eta" coordinate used in many atmospheric models 
     
    9371003 
    9381004Because $z^\star$ has a time independent range, all grid cells have static increments ds, 
    939 and the sum of the ver tical increments yields the time independent ocean depth. %·k ds = H.  
     1005and the sum of the ver tical increments yields the time independent ocean depth. %k ds = H.  
    9401006The $z^\star$ coordinate is therefore invisible to undulations of the free surface, 
    9411007since it moves along with the free surface. 
     
    9511017 
    9521018 
    953 \newpage  
     1019\newpage 
     1020 
    9541021% ------------------------------------------------------------------------------------------------------------- 
    9551022% Terrain following  coordinate System 
     
    9941061The horizontal pressure force in $s$-coordinate consists of two terms (see \autoref{apdx:A}), 
    9951062 
    996 \begin{equation} \label{eq:PE_p_sco} 
    997 \left. {\nabla p} \right|_z =\left. {\nabla p} \right|_s -\frac{\partial  
    998 p}{\partial s}\left. {\nabla z} \right|_s  
     1063\begin{equation} 
     1064  \label{eq:PE_p_sco} 
     1065  \left. {\nabla p} \right|_z =\left. {\nabla p} \right|_s -\frac{\partial 
     1066    p}{\partial s}\left. {\nabla z} \right|_s  
    9991067\end{equation} 
    10001068 
     
    10411109 
    10421110 
    1043 \newpage  
     1111\newpage 
     1112 
    10441113% ------------------------------------------------------------------------------------------------------------- 
    10451114% Curvilinear z-tilde coordinate System 
     
    10551124 
    10561125\newpage  
     1126 
    10571127% ================================================================ 
    10581128% Subgrid Scale Physics 
     
    10971167while an accurate consideration of the details of turbulent motions is simply impractical. 
    10981168The resulting vertical momentum and tracer diffusive operators are of second order: 
    1099 \begin{equation} \label{eq:PE_zdf} 
    1100    \begin{split} 
    1101 {\vect{D}}^{v \vect{U}} &=\frac{\partial }{\partial z}\left( {A^{vm}\frac{\partial {\vect{U}}_h }{\partial z}} \right) \ , \\          
    1102 D^{vT}                         &= \frac{\partial }{\partial z}\left( {A^{vT}\frac{\partial T}{\partial z}} \right) \ , 
    1103 \quad 
    1104 D^{vS}=\frac{\partial }{\partial z}\left( {A^{vT}\frac{\partial S}{\partial z}} \right) 
    1105    \end{split} 
     1169\begin{equation} 
     1170  \label{eq:PE_zdf} 
     1171  \begin{split} 
     1172    {\vect{D}}^{v \vect{U}} &=\frac{\partial }{\partial z}\left( {A^{vm}\frac{\partial {\vect{U}}_h }{\partial z}} \right) \ , \\ 
     1173    D^{vT}                         &= \frac{\partial }{\partial z}\left( {A^{vT}\frac{\partial T}{\partial z}} \right) \ , 
     1174    \quad 
     1175    D^{vS}=\frac{\partial }{\partial z}\left( {A^{vT}\frac{\partial S}{\partial z}} \right) 
     1176  \end{split} 
    11061177\end{equation} 
    11071178where $A^{vm}$ and $A^{vT}$ are the vertical eddy viscosity and diffusivity coefficients, respectively. 
     
    11731244 
    11741245The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:B}): 
    1175 \begin{equation} \label{eq:PE_iso_tensor} 
    1176 D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad  
    1177 \mbox{with}\quad \;\;\Re =\left( {{\begin{array}{*{20}c} 
    1178  1 \hfill & 0 \hfill & {-r_1 } \hfill \\ 
    1179  0 \hfill & 1 \hfill & {-r_2 } \hfill \\ 
    1180  {-r_1 } \hfill & {-r_2 } \hfill & {r_1 ^2+r_2 ^2} \hfill \\ 
    1181 \end{array} }} \right) 
     1246\begin{equation} 
     1247  \label{eq:PE_iso_tensor} 
     1248  D^{lT}=\nabla {\rm {\bf .}}\left( {A^{lT}\;\Re \;\nabla T} \right) \qquad 
     1249  \mbox{with}\quad \;\;\Re =\left( {{ 
     1250        \begin{array}{*{20}c} 
     1251          1 \hfill & 0 \hfill & {-r_1 } \hfill \\ 
     1252          0 \hfill & 1 \hfill & {-r_2 } \hfill \\ 
     1253          {-r_1 } \hfill & {-r_2 } \hfill & {r_1 ^2+r_2 ^2} \hfill \\ 
     1254        \end{array} 
     1255      }} \right) 
    11821256\end{equation} 
    11831257where $r_1 \;\mbox{and}\;r_2 $ are the slopes between the surface along which the diffusive operator acts and 
     
    11971271For \textit{geopotential} diffusion, 
    11981272$r_1$ and $r_2 $ are the slopes between the geopotential and computational surfaces: 
    1199 they are equal to $\sigma _1$ and $\sigma _2$, respectively (see \autoref{eq:PE_sco_slope}). 
     1273they are equal to $\sigma_1$ and $\sigma_2$, respectively (see \autoref{eq:PE_sco_slope}). 
    12001274 
    12011275For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral and computational surfaces. 
    12021276Therefore, they are different quantities, but have similar expressions in $z$- and $s$-coordinates. 
    12031277In $z$-coordinates: 
    1204 \begin{equation} \label{eq:PE_iso_slopes} 
    1205 r_1 =\frac{e_3 }{e_1 }  \left( \pd[\rho]{i} \right) \left( \pd[\rho]{k} \right)^{-1} \, \quad 
    1206 r_2 =\frac{e_3 }{e_2 }  \left( \pd[\rho]{j} \right) \left( \pd[\rho]{k} \right)^{-1} \, 
     1278\begin{equation} 
     1279  \label{eq:PE_iso_slopes} 
     1280  r_1 =\frac{e_3 }{e_1 }   \left( \pd[\rho]{i} \right) \left( \pd[\rho]{k} \right)^{-1} \, \quad 
     1281  r_2 =\frac{e_3 }{e_2 }   \left( \pd[\rho]{j} \right) \left( \pd[\rho]{k} \right)^{-1} \, 
    12071282\end{equation} 
    12081283while in $s$-coordinates $\pd[]{k}$ is replaced by $\pd[]{s}$. 
     
    12111286When the \textit{eddy induced velocity} parametrisation (eiv) \citep{Gent1990} is used, 
    12121287an additional tracer advection is introduced in combination with the isoneutral diffusion of tracers: 
    1213 \begin{equation} \label{eq:PE_iso+eiv} 
    1214 D^{lT}=\nabla \cdot \left( {A^{lT}\;\Re \;\nabla T} \right) 
    1215            +\nabla \cdot \left( {{\vect{U}}^\ast \,T} \right) 
    1216 \end{equation} 
     1288\[ 
     1289  % \label{eq:PE_iso+eiv} 
     1290  D^{lT}=\nabla \cdot \left( {A^{lT}\;\Re \;\nabla T} \right) 
     1291  +\nabla \cdot \left( {{\vect{U}}^\ast \,T} \right) 
     1292\] 
    12171293where ${\vect{U}}^\ast =\left( {u^\ast ,v^\ast ,w^\ast } \right)$ is a non-divergent, 
    12181294eddy-induced transport velocity. This velocity field is defined by: 
    1219 \begin{equation} \label{eq:PE_eiv} 
    1220    \begin{split} 
    1221  u^\ast  &= +\frac{1}{e_3       }\frac{\partial }{\partial k}\left[ {A^{eiv}\;\tilde{r}_1 } \right] \\  
    1222  v^\ast  &= +\frac{1}{e_3       }\frac{\partial }{\partial k}\left[ {A^{eiv}\;\tilde{r}_2 } \right] \\  
    1223  w^\ast &=  -\frac{1}{e_1 e_2 }\left[  
    1224                       \frac{\partial }{\partial i}\left( {A^{eiv}\;e_2\,\tilde{r}_1 } \right) 
    1225                      +\frac{\partial }{\partial j}\left( {A^{eiv}\;e_1\,\tilde{r}_2 } \right)      \right] 
    1226    \end{split} 
    1227 \end{equation} 
     1295\[ 
     1296  % \label{eq:PE_eiv} 
     1297  \begin{split} 
     1298    u^\ast  &= +\frac{1}{e_3       }\frac{\partial }{\partial k}\left[ {A^{eiv}\;\tilde{r}_1 } \right] \\ 
     1299    v^\ast  &= +\frac{1}{e_3       }\frac{\partial }{\partial k}\left[ {A^{eiv}\;\tilde{r}_2 } \right] \\ 
     1300    w^\ast &=  -\frac{1}{e_1 e_2 }\left[ 
     1301      \frac{\partial }{\partial i}\left( {A^{eiv}\;e_2\,\tilde{r}_1 } \right) 
     1302      +\frac{\partial }{\partial j}\left( {A^{eiv}\;e_1\,\tilde{r}_2 } \right)      \right] 
     1303  \end{split} 
     1304\] 
    12281305where $A^{eiv}$ is the eddy induced velocity coefficient 
    12291306(or equivalently the isoneutral thickness diffusivity coefficient), 
    12301307and $\tilde{r}_1$ and $\tilde{r}_2$ are the slopes between isoneutral and \emph{geopotential} surfaces. 
    12311308Their values are thus independent of the vertical coordinate, but their expression depends on the coordinate:  
    1232 \begin{align} \label{eq:PE_slopes_eiv} 
    1233 \tilde{r}_n = \begin{cases} 
    1234    r_n            &      \text{in $z$-coordinate}    \\ 
    1235    r_n + \sigma_n &      \text{in \textit{z*} and $s$-coordinates}   
    1236               \end{cases} 
    1237 \quad \text{where } n=1,2 
     1309\begin{align} 
     1310  \label{eq:PE_slopes_eiv} 
     1311  \tilde{r}_n = 
     1312  \begin{cases} 
     1313    r_n            &      \text{in $z$-coordinate}    \\ 
     1314    r_n + \sigma_n &      \text{in \textit{z*} and $s$-coordinates} 
     1315  \end{cases} 
     1316                     \quad \text{where } n=1,2 
    12381317\end{align} 
    12391318 
     
    12461325 
    12471326The lateral bilaplacian tracer diffusive operator is defined by: 
    1248 \begin{equation} \label{eq:PE_bilapT} 
    1249 D^{lT}= - \Delta \left( \;\Delta T \right)  
    1250 \qquad \text{where} \;\; \Delta \bullet = \nabla \left( {\sqrt{B^{lT}\,}\;\Re \;\nabla \bullet} \right) 
    1251 \end{equation} 
     1327\[ 
     1328  % \label{eq:PE_bilapT} 
     1329  D^{lT}= - \Delta \left( \;\Delta T \right) 
     1330  \qquad \text{where} \;\; \Delta \bullet = \nabla \left( {\sqrt{B^{lT}\,}\;\Re \;\nabla \bullet} \right) 
     1331\] 
    12521332It is the Laplacian operator given by \autoref{eq:PE_iso_tensor} applied twice with 
    12531333the harmonic eddy diffusion coefficient set to the square root of the biharmonic one.  
     
    12581338The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by 
    12591339applying \autoref{eq:PE_lap_vector} to the horizontal velocity vector (see \autoref{apdx:B}): 
    1260 \begin{equation} \label{eq:PE_lapU} 
    1261 \begin{split} 
    1262 {\rm {\bf D}}^{l{\rm {\bf U}}}  
    1263 &= \quad \  \nabla _h \left( {A^{lm}\chi } \right) 
    1264    \ - \ \nabla _h \times \left( {A^{lm}\,\zeta \;{\rm {\bf k}}} \right)     \\ 
    1265 &=   \left(      \begin{aligned} 
    1266              \frac{1}{e_1      } \frac{\partial \left( A^{lm} \chi          \right)}{\partial i}  
    1267          &-\frac{1}{e_2 e_3}\frac{\partial \left( {A^{lm} \;e_3 \zeta} \right)}{\partial j}  \\ 
    1268              \frac{1}{e_2      }\frac{\partial \left( {A^{lm} \chi         } \right)}{\partial j}    
    1269          &+\frac{1}{e_1 e_3}\frac{\partial \left( {A^{lm} \;e_3 \zeta} \right)}{\partial i} 
    1270         \end{aligned}    \right) 
    1271 \end{split} 
    1272 \end{equation} 
     1340\[ 
     1341  % \label{eq:PE_lapU} 
     1342  \begin{split} 
     1343    {\rm {\bf D}}^{l{\rm {\bf U}}} 
     1344    &= \quad \  \nabla _h \left( {A^{lm}\chi } \right) 
     1345    \ - \ \nabla _h \times \left( {A^{lm}\,\zeta \;{\rm {\bf k}}} \right)     \\ 
     1346    &=   \left( 
     1347      \begin{aligned} 
     1348        \frac{1}{e_1      } \frac{\partial \left( A^{lm} \chi          \right)}{\partial i} 
     1349        &-\frac{1}{e_2 e_3}\frac{\partial \left( {A^{lm} \;e_3 \zeta} \right)}{\partial j}  \\ 
     1350        \frac{1}{e_2      }\frac{\partial \left( {A^{lm} \chi         } \right)}{\partial j} 
     1351        &+\frac{1}{e_1 e_3}\frac{\partial \left( {A^{lm} \;e_3 \zeta} \right)}{\partial i} 
     1352      \end{aligned} 
     1353    \right) 
     1354  \end{split} 
     1355\] 
    12731356 
    12741357Such a formulation ensures a complete separation between the vorticity and horizontal divergence fields 
     
    12781361($i.e.$ geopotential diffusion in $s-$coordinates or isoneutral diffusion in both $z$- and $s$-coordinates), 
    12791362the $u$ and $v-$fields are considered as independent scalar fields, so that the diffusive operator is given by: 
    1280 \begin{equation} \label{eq:PE_lapU_iso} 
    1281 \begin{split} 
    1282  D_u^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla u} \right) \\  
    1283  D_v^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla v} \right) 
    1284 \end{split} 
    1285 \end{equation} 
     1363\[ 
     1364  % \label{eq:PE_lapU_iso} 
     1365  \begin{split} 
     1366    D_u^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla u} \right) \\ 
     1367    D_v^{l{\rm {\bf U}}} &= \nabla .\left( {A^{lm} \;\Re \;\nabla v} \right) 
     1368  \end{split} 
     1369\] 
    12861370where $\Re$ is given by \autoref{eq:PE_iso_tensor}. 
    12871371It is the same expression as those used for diffusive operator on tracers. 
     
    12971381Nevertheless it is currently not available in the iso-neutral case. 
    12981382 
     1383\biblio 
     1384 
    12991385\end{document} 
    13001386 
Note: See TracChangeset for help on using the changeset viewer.