New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10419 for NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/chap_LDF.tex – NEMO

Ignore:
Timestamp:
2018-12-19T20:46:30+01:00 (5 years ago)
Author:
smasson
Message:

dev_r10164_HPC09_ESIWACE_PREP_MERGE: merge with trunk@10418, see #2133

Location:
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex

    • Property svn:ignore set to
      *.aux
      *.bbl
      *.blg
      *.dvi
      *.fdb*
      *.fls
      *.idx
      *.ilg
      *.ind
      *.log
      *.maf
      *.mtc*
      *.out
      *.pdf
      *.toc
      _minted-*
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO

    • Property svn:ignore set to
      *.aux
      *.bbl
      *.blg
      *.dvi
      *.fdb*
      *.fls
      *.idx
      *.ilg
      *.ind
      *.log
      *.maf
      *.mtc*
      *.out
      *.pdf
      *.toc
      _minted-*
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles

    • Property svn:ignore set to
      *.aux
      *.bbl
      *.blg
      *.dvi
      *.fdb*
      *.fls
      *.idx
      *.ilg
      *.ind
      *.log
      *.maf
      *.mtc*
      *.out
      *.pdf
      *.toc
      _minted-*
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/chap_LDF.tex

    r10368 r10419  
    1 \documentclass[../tex_main/NEMO_manual]{subfiles} 
     1\documentclass[../main/NEMO_manual]{subfiles} 
     2 
    23\begin{document} 
    34 
    45% ================================================================ 
    5 % Chapter ———  Lateral Ocean Physics (LDF) 
     6% Chapter Lateral Ocean Physics (LDF) 
    67% ================================================================ 
    78\chapter{Lateral Ocean Physics (LDF)} 
    89\label{chap:LDF} 
     10 
    911\minitoc 
    1012 
    11  
    1213\newpage 
    13 $\ $\newline    % force a new ligne 
    14  
    1514 
    1615The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:PE_zdf} and 
     
    4342 
    4443%%% 
    45 \gmcomment{  we should emphasize here that the implementation is a rather old one.  
    46 Better work can be achieved by using \citet{Griffies_al_JPO98, Griffies_Bk04} iso-neutral scheme. } 
     44\gmcomment{ 
     45  we should emphasize here that the implementation is a rather old one. 
     46  Better work can be achieved by using \citet{Griffies_al_JPO98, Griffies_Bk04} iso-neutral scheme. 
     47} 
    4748 
    4849A direction for lateral mixing has to be defined when the desired operator does not act along the model levels. 
     
    6869%gm { Steven : My version is obviously wrong since I'm left with an arbitrary constant which is the local vertical temperature gradient} 
    6970 
    70 \begin{equation} \label{eq:ldfslp_geo} 
    71 \begin{aligned} 
    72  r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)} 
    73            \;\delta_{i+1/2}[z_t]  
    74       &\approx \frac{1}{e_{1u}}\; \delta_{i+1/2}[z_t] \ \ \ 
    75 \\ 
    76  r_{2v} &= \frac{e_{3v}}{\left( e_{2v}\;\overline{\overline{e_{3w}}}^{\,j+1/2,\,k} \right)}  
    77            \;\delta_{j+1/2} [z_t]  
    78       &\approx \frac{1}{e_{2v}}\; \delta_{j+1/2}[z_t] \ \ \ 
    79 \\ 
    80  r_{1w} &= \frac{1}{e_{1w}}\;\overline{\overline{\delta_{i+1/2}[z_t]}}^{\,i,\,k+1/2} 
    81       &\approx \frac{1}{e_{1w}}\; \delta_{i+1/2}[z_{uw}]  
    82  \\ 
    83  r_{2w} &= \frac{1}{e_{2w}}\;\overline{\overline{\delta_{j+1/2}[z_t]}}^{\,j,\,k+1/2} 
    84       &\approx \frac{1}{e_{2w}}\; \delta_{j+1/2}[z_{vw}]  
    85  \\ 
    86 \end{aligned} 
     71\begin{equation} 
     72  \label{eq:ldfslp_geo} 
     73  \begin{aligned} 
     74    r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)} 
     75    \;\delta_{i+1/2}[z_t] 
     76    &\approx \frac{1}{e_{1u}}\; \delta_{i+1/2}[z_t] \ \ \ \\ 
     77    r_{2v} &= \frac{e_{3v}}{\left( e_{2v}\;\overline{\overline{e_{3w}}}^{\,j+1/2,\,k} \right)} 
     78    \;\delta_{j+1/2} [z_t] 
     79    &\approx \frac{1}{e_{2v}}\; \delta_{j+1/2}[z_t] \ \ \ \\ 
     80    r_{1w} &= \frac{1}{e_{1w}}\;\overline{\overline{\delta_{i+1/2}[z_t]}}^{\,i,\,k+1/2} 
     81    &\approx \frac{1}{e_{1w}}\; \delta_{i+1/2}[z_{uw}]  \\ 
     82    r_{2w} &= \frac{1}{e_{2w}}\;\overline{\overline{\delta_{j+1/2}[z_t]}}^{\,j,\,k+1/2} 
     83    &\approx \frac{1}{e_{2w}}\; \delta_{j+1/2}[z_{vw}] 
     84  \end{aligned} 
    8785\end{equation} 
    8886 
     
    9492\subsection{Slopes for tracer iso-neutral mixing} 
    9593\label{subsec:LDF_slp_iso} 
     94 
    9695In iso-neutral mixing  $r_1$ and $r_2$ are the slopes between the iso-neutral and computational surfaces. 
    9796Their formulation does not depend on the vertical coordinate used. 
     
    101100the three directions to zero leads to the following definition for the neutral slopes: 
    102101 
    103 \begin{equation} \label{eq:ldfslp_iso} 
    104 \begin{split} 
    105  r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac{\delta_{i+1/2}[\rho]} 
    106                         {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,i+1/2,\,k}} 
    107 \\ 
    108  r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac{\delta_{j+1/2}\left[\rho \right]} 
    109                         {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,j+1/2,\,k}} 
    110 \\ 
    111  r_{1w} &= \frac{e_{3w}}{e_{1w}}\;  
    112          \frac{\overline{\overline{\delta_{i+1/2}[\rho]}}^{\,i,\,k+1/2}} 
    113              {\delta_{k+1/2}[\rho]} 
    114 \\ 
    115  r_{2w} &= \frac{e_{3w}}{e_{2w}}\;  
    116          \frac{\overline{\overline{\delta_{j+1/2}[\rho]}}^{\,j,\,k+1/2}} 
    117              {\delta_{k+1/2}[\rho]} 
    118 \\ 
    119 \end{split} 
     102\begin{equation} 
     103  \label{eq:ldfslp_iso} 
     104  \begin{split} 
     105    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac{\delta_{i+1/2}[\rho]} 
     106    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,i+1/2,\,k}} \\ 
     107    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac{\delta_{j+1/2}\left[\rho \right]} 
     108    {\overline{\overline{\delta_{k+1/2}[\rho]}}^{\,j+1/2,\,k}} \\ 
     109    r_{1w} &= \frac{e_{3w}}{e_{1w}}\; 
     110    \frac{\overline{\overline{\delta_{i+1/2}[\rho]}}^{\,i,\,k+1/2}} 
     111    {\delta_{k+1/2}[\rho]} \\ 
     112    r_{2w} &= \frac{e_{3w}}{e_{2w}}\; 
     113    \frac{\overline{\overline{\delta_{j+1/2}[\rho]}}^{\,j,\,k+1/2}} 
     114    {\delta_{k+1/2}[\rho]} 
     115  \end{split} 
    120116\end{equation} 
    121117 
     
    161157  locally referenced potential density, we stay in the $T$-$S$ plane and consider the balance between 
    162158  the neutral direction diffusive fluxes of potential temperature and salinity: 
    163 \begin{equation} 
    164 \alpha \ \textbf{F}(T) = \beta \ \textbf{F}(S) 
    165 \end{equation} 
    166 %gm{  where vector F is ....} 
     159  \[ 
     160    \alpha \ \textbf{F}(T) = \beta \ \textbf{F}(S) 
     161  \] 
     162  % gm{  where vector F is ....} 
    167163 
    168164This constraint leads to the following definition for the slopes: 
    169165 
    170 \begin{equation} \label{eq:ldfslp_iso2} 
    171 \begin{split} 
    172  r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac 
    173       {\alpha_u \;\delta_{i+1/2}[T] - \beta_u \;\delta_{i+1/2}[S]} 
    174       {\alpha_u \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,i+1/2,\,k} 
    175        -\beta_u  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,i+1/2,\,k} } 
    176 \\ 
    177  r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac 
    178       {\alpha_v \;\delta_{j+1/2}[T] - \beta_v \;\delta_{j+1/2}[S]} 
    179       {\alpha_v \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,j+1/2,\,k} 
    180        -\beta_v  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,j+1/2,\,k} } 
    181 \\ 
    182  r_{1w} &= \frac{e_{3w}}{e_{1w}}\; \frac 
    183       {\alpha_w \;\overline{\overline{\delta_{i+1/2}[T]}}^{\,i,\,k+1/2} 
    184        -\beta_w  \;\overline{\overline{\delta_{i+1/2}[S]}}^{\,i,\,k+1/2} } 
    185       {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} 
    186 \\ 
    187  r_{2w} &= \frac{e_{3w}}{e_{2w}}\; \frac 
    188       {\alpha_w \;\overline{\overline{\delta_{j+1/2}[T]}}^{\,j,\,k+1/2} 
    189        -\beta_w  \;\overline{\overline{\delta_{j+1/2}[S]}}^{\,j,\,k+1/2} } 
    190       {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} 
    191 \\ 
    192 \end{split} 
    193 \end{equation} 
     166\[ 
     167  % \label{eq:ldfslp_iso2} 
     168  \begin{split} 
     169    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac 
     170    {\alpha_u \;\delta_{i+1/2}[T] - \beta_u \;\delta_{i+1/2}[S]} 
     171    {\alpha_u \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,i+1/2,\,k} 
     172      -\beta_u  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,i+1/2,\,k} } \\ 
     173    r_{2v} &= \frac{e_{3v}}{e_{2v}}\; \frac 
     174    {\alpha_v \;\delta_{j+1/2}[T] - \beta_v \;\delta_{j+1/2}[S]} 
     175    {\alpha_v \;\overline{\overline{\delta_{k+1/2}[T]}}^{\,j+1/2,\,k} 
     176      -\beta_v  \;\overline{\overline{\delta_{k+1/2}[S]}}^{\,j+1/2,\,k} }    \\ 
     177    r_{1w} &= \frac{e_{3w}}{e_{1w}}\; \frac 
     178    {\alpha_w \;\overline{\overline{\delta_{i+1/2}[T]}}^{\,i,\,k+1/2} 
     179      -\beta_w  \;\overline{\overline{\delta_{i+1/2}[S]}}^{\,i,\,k+1/2} } 
     180    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\ 
     181    r_{2w} &= \frac{e_{3w}}{e_{2w}}\; \frac 
     182    {\alpha_w \;\overline{\overline{\delta_{j+1/2}[T]}}^{\,j,\,k+1/2} 
     183      -\beta_w  \;\overline{\overline{\delta_{j+1/2}[S]}}^{\,j,\,k+1/2} } 
     184    {\alpha_w \;\delta_{k+1/2}[T] - \beta_w \;\delta_{k+1/2}[S]} \\ 
     185  \end{split} 
     186\] 
    194187where $\alpha$ and $\beta$, the thermal expansion and saline contraction coefficients introduced in 
    195188\autoref{subsec:TRA_bn2}, have to be evaluated at the three velocity points. 
     
    222215 
    223216%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    224 \begin{figure}[!ht]      \begin{center} 
    225 \includegraphics[width=0.70\textwidth]{Fig_LDF_ZDF1} 
    226 \caption {    \protect\label{fig:LDF_ZDF1} 
    227   averaging procedure for isopycnal slope computation.} 
    228 \end{center}    \end{figure} 
     217\begin{figure}[!ht] 
     218  \begin{center} 
     219    \includegraphics[width=0.70\textwidth]{Fig_LDF_ZDF1} 
     220    \caption { 
     221      \protect\label{fig:LDF_ZDF1} 
     222      averaging procedure for isopycnal slope computation. 
     223    } 
     224  \end{center} 
     225\end{figure} 
    229226%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    230227 
     
    253250  \begin{center} 
    254251    \includegraphics[width=0.70\textwidth]{Fig_eiv_slp} 
    255     \caption {     \protect\label{fig:eiv_slp} 
     252    \caption{ 
     253      \protect\label{fig:eiv_slp} 
    256254      Vertical profile of the slope used for lateral mixing in the mixed layer: 
    257255      \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, 
     
    265263      \textit{(c)} profile of slope actually used in \NEMO: a linear decrease of the slope from 
    266264      zero at the surface to its ocean interior value computed just below the mixed layer. 
    267       Note the huge change in the slope at the base of the mixed layer between \textit{(b)} and \textit{(c)}.} 
     265      Note the huge change in the slope at the base of the mixed layer between \textit{(b)} and \textit{(c)}. 
     266    } 
    268267  \end{center} 
    269268\end{figure} 
     
    283282$i.e.$ \autoref{eq:ldfslp_geo} and \autoref{eq:ldfslp_iso} : 
    284283 
    285 \begin{equation} \label{eq:ldfslp_dyn} 
    286 \begin{aligned} 
    287 &r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\ 
    288 &r_{2f} \ \ = \overline{r_{2v}}^{\,j+1/2} &&&   r_{2t}\ &= \overline{r_{2v}}^{\,j} \\ 
    289 &r_{1uw}  = \overline{r_{1w}}^{\,i+1/2} &&\ \ \text{and} \ \ &   r_{1vw}&= \overline{r_{1w}}^{\,j+1/2} \\ 
    290 &r_{2uw}= \overline{r_{2w}}^{\,j+1/2} &&&         r_{2vw}&= \overline{r_{2w}}^{\,j+1/2}\\ 
    291 \end{aligned} 
    292 \end{equation} 
     284\[ 
     285  % \label{eq:ldfslp_dyn} 
     286  \begin{aligned} 
     287    &r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\ 
     288    &r_{2f} \ \ = \overline{r_{2v}}^{\,j+1/2} &&&  r_{2t}\ &= \overline{r_{2v}}^{\,j} \\ 
     289    &r_{1uw}  = \overline{r_{1w}}^{\,i+1/2} &&\ \ \text{and} \ \ &   r_{1vw}&= \overline{r_{1w}}^{\,j+1/2} \\ 
     290    &r_{2uw}= \overline{r_{2w}}^{\,j+1/2} &&&         r_{2vw}&= \overline{r_{2w}}^{\,j+1/2}\\ 
     291  \end{aligned} 
     292\] 
    293293 
    294294The major issue remaining is in the specification of the boundary conditions. 
     
    353353By default the horizontal variation of the eddy coefficient depends on the local mesh size and 
    354354the type of operator used: 
    355 \begin{equation} \label{eq:title} 
    356   A_l = \left\{      
    357    \begin{aligned} 
    358          & \frac{\max(e_1,e_2)}{e_{max}} A_o^l           & \text{for laplacian operator } \\ 
    359          & \frac{\max(e_1,e_2)^{3}}{e_{max}^{3}} A_o^l          & \text{for bilaplacian operator }  
    360    \end{aligned}    \right. 
     355\begin{equation} 
     356  \label{eq:title} 
     357  A_l = \left\{ 
     358    \begin{aligned} 
     359      & \frac{\max(e_1,e_2)}{e_{max}} A_o^l           & \text{for laplacian operator } \\ 
     360      & \frac{\max(e_1,e_2)^{3}}{e_{max}^{3}} A_o^l          & \text{for bilaplacian operator } 
     361    \end{aligned} 
     362  \right. 
    361363\end{equation} 
    362364where $e_{max}$ is the maximum of $e_1$ and $e_2$ taken over the whole masked ocean domain, 
     
    393395This specification is actually used when an ORCA key and both \key{traldf\_eiv} and \key{traldf\_c2d} are defined. 
    394396 
    395 $\ $\newline    % force a new ligne 
    396  
    397397The following points are relevant when the eddy coefficient varies spatially: 
    398398 
     
    439439  GM diffusivity $A_e$ are directly set by \np{rn\_aeih\_0} and \np{rn\_aeiv\_0}. 
    440440  If 2D-varying coefficients are set with \key{traldf\_c2d} then $A_l$ is reduced in proportion with horizontal 
    441   scale factor according to \autoref{eq:title} \footnote{ 
     441  scale factor according to \autoref{eq:title} 
     442  \footnote{ 
    442443    Except in global ORCA  $0.5^{\circ}$ runs with \key{traldf\_eiv}, 
    443444    where $A_l$ is set like $A_e$ but with a minimum vale of $100\;\mathrm{m}^2\;\mathrm{s}^{-1}$ 
     
    445446  In idealised setups with \key{traldf\_c2d}, $A_e$ is reduced similarly, but if \key{traldf\_eiv} is set in 
    446447  the global configurations with \key{traldf\_c2d}, a horizontally varying $A_e$ is instead set from 
    447   the Held-Larichev parameterisation \footnote{ 
     448  the Held-Larichev parameterisation 
     449  \footnote{ 
    448450    In this case, $A_e$ at low latitudes $|\theta|<20^{\circ}$ is further reduced by a factor $|f/f_{20}|$, 
    449451    where $f_{20}$ is the value of $f$ at $20^{\circ}$~N 
     
    458460and the sum \autoref{eq:ldfslp_geo} + \autoref{eq:ldfslp_iso} in $s$-coordinates. 
    459461The eddy induced velocity is given by:  
    460 \begin{equation} \label{eq:ldfeiv} 
    461 \begin{split} 
    462  u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\ 
    463 v^* & = \frac{1}{e_{1u}e_{3v}}\; \delta_k \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right]\\ 
    464 w^* & = \frac{1}{e_{1w}e_{2w}}\; \left\{ \delta_i \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right] + \delta_j \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right] \right\} \\ 
    465 \end{split} 
     462\begin{equation} 
     463  \label{eq:ldfeiv} 
     464  \begin{split} 
     465    u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\ 
     466    v^* & = \frac{1}{e_{1u}e_{3v}}\; \delta_k \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right]\\ 
     467    w^* & = \frac{1}{e_{1w}e_{2w}}\; \left\{ \delta_i \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right] + \delta_j \left[e_{1v} \, A_{vw}^{eiv} \; \overline{r_{2w}}^{\,j+1/2} \right] \right\} \\ 
     468  \end{split} 
    466469\end{equation} 
    467470where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{rn\_aeiv}, 
     
    479482and thus the advective eddy fluxes of heat and salt, are set to zero.  
    480483 
    481  
    482  
     484\biblio 
    483485 
    484486\end{document} 
Note: See TracChangeset for help on using the changeset viewer.