New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 10419 for NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/chap_conservation.tex – NEMO

Ignore:
Timestamp:
2018-12-19T20:46:30+01:00 (5 years ago)
Author:
smasson
Message:

dev_r10164_HPC09_ESIWACE_PREP_MERGE: merge with trunk@10418, see #2133

Location:
NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex

    • Property svn:ignore set to
      *.aux
      *.bbl
      *.blg
      *.dvi
      *.fdb*
      *.fls
      *.idx
      *.ilg
      *.ind
      *.log
      *.maf
      *.mtc*
      *.out
      *.pdf
      *.toc
      _minted-*
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO

    • Property svn:ignore set to
      *.aux
      *.bbl
      *.blg
      *.dvi
      *.fdb*
      *.fls
      *.idx
      *.ilg
      *.ind
      *.log
      *.maf
      *.mtc*
      *.out
      *.pdf
      *.toc
      _minted-*
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles

    • Property svn:ignore set to
      *.aux
      *.bbl
      *.blg
      *.dvi
      *.fdb*
      *.fls
      *.idx
      *.ilg
      *.ind
      *.log
      *.maf
      *.mtc*
      *.out
      *.pdf
      *.toc
      _minted-*
  • NEMO/branches/2018/dev_r10164_HPC09_ESIWACE_PREP_MERGE/doc/latex/NEMO/subfiles/chap_conservation.tex

    r10368 r10419  
    1 \documentclass[../tex_main/NEMO_manual]{subfiles} 
     1\documentclass[../main/NEMO_manual]{subfiles} 
     2 
    23\begin{document} 
    34 
     
    6162Let us define as either the relative, planetary and total potential vorticity, i.e. ?, ?, and ?, respectively. 
    6263The continuous formulation of the vorticity term satisfies following integral constraints: 
    63 \begin{equation} \label{eq:vor_vorticity} 
    64 \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma  
    65 \;{\rm {\bf k}}\times {\textbf {U}}_h } \right)\;dv} =0 
    66 \end{equation} 
    67  
    68 \begin{equation} \label{eq:vor_enstrophy} 
    69 if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot  
    70 \frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv}  
    71 =0 
    72 \end{equation} 
    73  
    74 \begin{equation} \label{eq:vor_energy} 
    75 \int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0 
    76 \end{equation} 
     64\[ 
     65  % \label{eq:vor_vorticity} 
     66  \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma 
     67        \;{\rm {\bf k}}\times {\textbf {U}}_h } \right)\;dv} =0 
     68\] 
     69 
     70\[ 
     71  % \label{eq:vor_enstrophy} 
     72  if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot 
     73    \frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv} 
     74  =0 
     75\] 
     76 
     77\[ 
     78  % \label{eq:vor_energy} 
     79  \int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0 
     80\] 
    7781where $dv = e_1\, e_2\, e_3\, di\, dj\, dk$ is the volume element. 
    7882(II.4.1a) means that $\varsigma $ is conserved. (II.4.1b) is obtained by an integration by part. 
     
    122126potential energy due to buoyancy forces: 
    123127 
    124 \begin{equation} \label{eq:hpg_pe} 
    125 \int_D {-\frac{1}{\rho _o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv} 
    126 \end{equation} 
     128\[ 
     129  % \label{eq:hpg_pe} 
     130  \int_D {-\frac{1}{\rho_o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv} 
     131\] 
    127132 
    128133Using the discrete form given in {\S}~II.2-a and the symmetry or anti-symmetry properties of 
     
    142147In addition, with the rigid-lid approximation, the change of horizontal kinetic energy due to the work of  
    143148surface pressure forces is exactly zero: 
    144 \begin{equation} \label{eq:spg} 
    145 \int_D {-\frac{1}{\rho _o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0 
    146 \end{equation} 
     149\[ 
     150  % \label{eq:spg} 
     151  \int_D {-\frac{1}{\rho_o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0 
     152\] 
    147153 
    148154(II.4.4) is satisfied in discrete form only if 
     
    159165In continuous formulation, the advective terms of the tracer equations conserve the tracer content and 
    160166the quadratic form of the tracer, $i.e.$ 
    161 \begin{equation} \label{eq:tra_tra2} 
    162 \int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0 
    163 \;\text{and} 
    164 \int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0 
    165 \end{equation} 
     167\[ 
     168  % \label{eq:tra_tra2} 
     169  \int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0 
     170  \;\text{and} 
     171  \int_D {T\;\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0 
     172\] 
    166173 
    167174The numerical scheme used ({\S}II.2-b) (equations in flux form, second order centred finite differences) satisfies 
     
    180187 
    181188The continuous formulation of the horizontal diffusion of momentum satisfies the following integral constraints~: 
    182 \begin{equation} \label{eq:dynldf_dyn} 
    183 \int\limits_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left[ {\nabla  
    184 _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta  
    185 \;{\rm {\bf k}}} \right)} \right]\;dv} =0 
    186 \end{equation} 
    187  
    188 \begin{equation} \label{eq:dynldf_div} 
    189 \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }  
    190 \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)}  
    191 \right]\;dv} =0 
    192 \end{equation} 
    193  
    194 \begin{equation} \label{eq:dynldf_curl} 
    195 \int_D {{\rm {\bf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi }  
    196 \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)}  
    197 \right]\;dv} \leqslant 0 
    198 \end{equation} 
    199  
    200 \begin{equation} \label{eq:dynldf_curl2} 
    201 \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\rm {\bf k}}\cdot  
    202 \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h  
    203 \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv}  
    204 \leqslant 0 
    205 \end{equation} 
    206  
    207 \begin{equation} \label{eq:dynldf_div2} 
    208 \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[  
    209 {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left(  
    210 {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} \leqslant 0 
    211 \end{equation} 
     189\[ 
     190  % \label{eq:dynldf_dyn} 
     191  \int\limits_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left[ {\nabla 
     192        _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta 
     193            \;{\rm {\bf k}}} \right)} \right]\;dv} =0 
     194\] 
     195 
     196\[ 
     197  % \label{eq:dynldf_div} 
     198  \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
     199        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
     200    \right]\;dv} =0 
     201\] 
     202 
     203\[ 
     204  % \label{eq:dynldf_curl} 
     205  \int_D {{\rm {\bf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
     206        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} 
     207    \right]\;dv} \leqslant 0 
     208\] 
     209 
     210\[ 
     211  % \label{eq:dynldf_curl2} 
     212  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\rm {\bf k}}\cdot 
     213    \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h 
     214        \times \left( {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} 
     215  \leqslant 0 
     216\] 
     217 
     218\[ 
     219  % \label{eq:dynldf_div2} 
     220  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[ 
     221      {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( 
     222          {A^{lm}\;\zeta \;{\rm {\bf k}}} \right)} \right]\;dv} \leqslant 0 
     223\] 
    212224 
    213225 
     
    237249conservation of momentum, dissipation of horizontal kinetic energy 
    238250 
    239 \begin{equation} \label{eq:dynzdf_dyn} 
    240 \begin{aligned} 
    241 & \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\  
    242 & \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\  
    243  \end{aligned}  
    244  \end{equation} 
     251\[ 
     252  % \label{eq:dynzdf_dyn} 
     253  \begin{aligned} 
     254    & \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\ 
     255    & \int_D \textbf{U}_h \cdot \frac{1}{e_3} \frac{\partial}{\partial k} \left( {\frac{A^{vm}}{e_3 }}{\frac{\partial \textbf{U}_h }{\partial k}} \right) \;dv \leq 0 \\ 
     256  \end{aligned} 
     257\] 
    245258conservation of vorticity, dissipation of enstrophy 
    246 \begin{equation} \label{eq:dynzdf_vor} 
    247 \begin{aligned} 
    248 & \int_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3  
    249 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm  
    250 {\bf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\  
    251 & \int_D {\zeta \,{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3  
    252 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm  
    253 {\bf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\  
    254 \end{aligned} 
    255 \end{equation} 
     259\[ 
     260  % \label{eq:dynzdf_vor} 
     261  \begin{aligned} 
     262    & \int_D {\frac{1}{e_3 }{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3 
     263          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
     264                  {\bf U}}_h }{\partial k}} \right)} \right)\;dv} =0 \\ 
     265    & \int_D {\zeta \,{\rm {\bf k}}\cdot \nabla \times \left( {\frac{1}{e_3 
     266          }\frac{\partial }{\partial k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm 
     267                  {\bf U}}_h }{\partial k}} \right)} \right)\;dv} \leq 0 \\ 
     268  \end{aligned} 
     269\] 
    256270conservation of horizontal divergence, dissipation of square of the horizontal divergence 
    257 \begin{equation} \label{eq:dynzdf_div} 
    258 \begin{aligned} 
    259  &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial  
    260 k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}}  
    261 \right)} \right)\;dv} =0 \\  
    262 & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial  
    263 k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}}  
    264 \right)} \right)\;dv} \leq 0 \\  
    265 \end{aligned} 
    266 \end{equation} 
     271\[ 
     272  % \label{eq:dynzdf_div} 
     273  \begin{aligned} 
     274    &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
     275            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
     276          \right)} \right)\;dv} =0 \\ 
     277    & \int_D {\chi \;\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
     278            k}\left( {\frac{A^{vm}}{e_3 }\frac{\partial {\rm {\bf U}}_h }{\partial k}} 
     279          \right)} \right)\;dv} \leq 0 \\ 
     280  \end{aligned} 
     281\] 
    267282 
    268283In discrete form, all these properties are satisfied in $z$-coordinate (see Appendix C). 
     
    286301variance, i.e. 
    287302 
    288 \begin{equation} \label{eq:traldf_t_t2} 
    289 \begin{aligned} 
    290 &\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\  
    291 &\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\  
    292 \end{aligned} 
    293 \end{equation} 
     303\[ 
     304  % \label{eq:traldf_t_t2} 
     305  \begin{aligned} 
     306    &\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\ 
     307    &\int_D \,T\, \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv \leq 0 \\ 
     308  \end{aligned} 
     309\] 
    294310 
    295311\textbf{* vertical physics: }conservation of tracer, dissipation of tracer variance, $i.e.$ 
    296312 
    297 \begin{equation} \label{eq:trazdf_t_t2} 
    298 \begin{aligned} 
    299 & \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\  
    300 & \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\  
    301 \end{aligned} 
    302 \end{equation} 
     313\[ 
     314  % \label{eq:trazdf_t_t2} 
     315  \begin{aligned} 
     316    & \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\ 
     317    & \int_D \,T \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv \leq 0 \\ 
     318  \end{aligned} 
     319\] 
    303320 
    304321Using the symmetry or anti-symmetry properties of the mean and difference operators, 
     
    311328It has not been implemented. 
    312329 
     330\biblio 
     331 
    313332\end{document} 
Note: See TracChangeset for help on using the changeset viewer.