New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11151 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex – NEMO

Ignore:
Timestamp:
2019-06-20T14:59:58+02:00 (5 years ago)
Author:
nicolasmartin
Message:

New version of NEMO_manual.tex
New class scrreport for the document (KOMA-script version of default report)
Foreword is now placed before ToC.
All figures are configured with 1.0\textwidth as default.
For compatibilty, \frontmatter, \mainmatter and \backmatter cmds have been removed and old fonts in LaTeX subfiles have been replaced

  • \bf -> \mathbf or \bfseries
  • \it -> \itshape
  • \rm -> \mathrm or \rmfamily
  • \tt -> \ttfamily
File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_DYN.tex

    r11123 r11151  
    309309\begin{figure}[!ht] 
    310310  \begin{center} 
    311     \includegraphics[width=0.70\textwidth]{Fig_DYN_een_triad} 
     311    \includegraphics[width=\textwidth]{Fig_DYN_een_triad} 
    312312    \caption{ 
    313313      \protect\label{fig:DYN_een_triad} 
     
    862862\begin{equation} 
    863863  \label{eq:BT_dyn} 
    864   \frac{\partial {\rm \overline{{\bf U}}_h} }{\partial t}= 
    865   -f\;{\rm {\bf k}}\times {\rm \overline{{\bf U}}_h} 
    866   -g\nabla _h \eta -\frac{c_b^{\textbf U}}{H+\eta} \rm {\overline{{\bf U}}_h} + \rm {\overline{\bf G}} 
     864  \frac{\partial {\mathrm \overline{{\mathbf U}}_h} }{\partial t}= 
     865  -f\;{\mathrm {\mathbf k}}\times {\mathrm \overline{{\mathbf U}}_h} 
     866  -g\nabla _h \eta -\frac{c_b^{\textbf U}}{H+\eta} \mathrm {\overline{{\mathbf U}}_h} + \mathrm {\overline{\mathbf G}} 
    867867\end{equation} 
    868868\[ 
    869869  % \label{eq:BT_ssh} 
    870   \frac{\partial \eta }{\partial t}=-\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\rm{\bf \overline{U}}}_h \,} \right]+P-E 
     870  \frac{\partial \eta }{\partial t}=-\nabla \cdot \left[ {\left( {H+\eta } \right) \; {\mathrm{\mathbf \overline{U}}}_h \,} \right]+P-E 
    871871\] 
    872872% \end{subequations} 
    873 where $\rm {\overline{\bf G}}$ is a forcing term held constant, containing coupling term between modes, 
     873where $\mathrm {\overline{\mathbf G}}$ is a forcing term held constant, containing coupling term between modes, 
    874874surface atmospheric forcing as well as slowly varying barotropic terms not explicitly computed to gain efficiency. 
    875875The third term on the right hand side of \autoref{eq:BT_dyn} represents the bottom stress 
     
    884884\begin{figure}[!t] 
    885885  \begin{center} 
    886     \includegraphics[width=0.7\textwidth]{Fig_DYN_dynspg_ts} 
     886    \includegraphics[width=\textwidth]{Fig_DYN_dynspg_ts} 
    887887    \caption{ 
    888888      \protect\label{fig:DYN_dynspg_ts} 
     
    10921092  \[ 
    10931093    % \label{eq:spg_flt} 
    1094     \frac{\partial {\rm {\bf U}}_h }{\partial t}= {\rm {\bf M}} 
     1094    \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= {\mathrm {\mathbf M}} 
    10951095    - g \nabla \left( \tilde{\rho} \ \eta \right) 
    10961096    - g \ T_c \nabla \left( \widetilde{\rho} \ \partial_t \eta \right) 
     
    10981098  where $T_c$, is a parameter with dimensions of time which characterizes the force, 
    10991099  $\widetilde{\rho} = \rho / \rho_o$ is the dimensionless density, 
    1100   and $\rm {\bf M}$ represents the collected contributions of the Coriolis, hydrostatic pressure gradient, 
     1100  and $\mathrm {\mathbf M}$ represents the collected contributions of the Coriolis, hydrostatic pressure gradient, 
    11011101  non-linear and viscous terms in \autoref{eq:PE_dyn}. 
    11021102}   %end gmcomment 
     
    11521152  \left\{ 
    11531153    \begin{aligned} 
    1154       D_u^{l{\rm {\bf U}}} =\frac{1}{e_{1u} }\delta_{i+1/2} \left[ {A_T^{lm} 
     1154      D_u^{l{\mathrm {\mathbf U}}} =\frac{1}{e_{1u} }\delta_{i+1/2} \left[ {A_T^{lm} 
    11551155          \;\chi } \right]-\frac{1}{e_{2u} {\kern 1pt}e_{3u} }\delta_j \left[  
    11561156        {A_f^{lm} \;e_{3f} \zeta } \right] \\ \\ 
    1157       D_v^{l{\rm {\bf U}}} =\frac{1}{e_{2v} }\delta_{j+1/2} \left[ {A_T^{lm} 
     1157      D_v^{l{\mathrm {\mathbf U}}} =\frac{1}{e_{2v} }\delta_{j+1/2} \left[ {A_T^{lm} 
    11581158          \;\chi } \right]+\frac{1}{e_{1v} {\kern 1pt}e_{3v} }\delta_i \left[  
    11591159        {A_f^{lm} \;e_{3f} \zeta } \right] 
     
    14941494\end{equation} 
    14951495 
    1496 Note a small tolerance ($\mathrm{rn\_wdmin2}$) has been introduced here {\it [Q: Why is 
     1496Note a small tolerance ($\mathrm{rn\_wdmin2}$) has been introduced here {\itshape [Q: Why is 
    14971497this necessary/desirable?]}. Substituting from (\ref{dyn_wd_continuity_coef}) gives an 
    14981498expression for the coefficient needed to multiply the outward flux at this cell in order 
     
    15411541%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    15421542\begin{figure}[!ht] \begin{center} 
    1543 \includegraphics[width=0.8\textwidth]{Fig_WAD_dynhpg} 
     1543\includegraphics[width=\textwidth]{Fig_WAD_dynhpg} 
    15441544\caption{ \label{Fig_WAD_dynhpg} 
    15451545Illustrations of the three possible combinations of the logical variables controlling the 
Note: See TracChangeset for help on using the changeset viewer.