New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11263 for NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_DIU.tex – NEMO

Ignore:
Timestamp:
2019-07-12T12:47:53+02:00 (5 years ago)
Author:
smasson
Message:

dev_r10984_HPC-13 : merge with trunk@11242, see #2285

Location:
NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_DIU.tex

    r10442 r11263  
    3333(\ie from the temperature of the top few model levels) or from some other source.   
    3434It must be noted that both the cool skin and warm layer models produce estimates of the change in temperature 
    35 ($\Delta T_{\rm{cs}}$ and $\Delta T_{\rm{wl}}$) and 
     35($\Delta T_{\mathrm{cs}}$ and $\Delta T_{\mathrm{wl}}$) and 
    3636both must be added to a foundation SST to obtain the true skin temperature. 
    3737 
     
    6060%=============================================================== 
    6161 
    62 The warm layer is calculated using the model of \citet{Takaya_al_JGR10} (TAKAYA10 model hereafter). 
     62The warm layer is calculated using the model of \citet{takaya.bidlot.ea_JGR10} (TAKAYA10 model hereafter). 
    6363This is a simple flux based model that is defined by the equations 
    6464\begin{align} 
    65 \frac{\partial{\Delta T_{\rm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p 
     65\frac{\partial{\Delta T_{\mathrm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p 
    6666\nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,} 
    6767\label{eq:ecmwf1} \\ 
    6868L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:ecmwf2} 
    6969\end{align} 
    70 where $\Delta T_{\rm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal. 
     70where $\Delta T_{\mathrm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal. 
    7171In equation (\autoref{eq:ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water, 
    7272$\kappa=0.4$ is von K\'{a}rm\'{a}n's constant, $c_p$ is the heat capacity at constant pressure of sea water, 
    7373$\rho_w$ is the water density, and $L$ is the Monin-Obukhov length. 
    7474The tunable variable $\nu$ is a shape parameter that defines the expected subskin temperature profile via 
    75 $T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\rm{wl}}$, 
     75$T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\mathrm{wl}}$, 
    7676where $T$ is the absolute temperature and $z\le D_T$ is the depth below the top of the warm layer. 
    7777The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity of the water $u^*_{w}$, 
     
    8282the diurnal layer, \ie 
    8383\[ 
    84   Q = Q_{\rm{sol}} + Q_{\rm{lw}} + Q_{\rm{h}}\mbox{,} 
     84  Q = Q_{\mathrm{sol}} + Q_{\mathrm{lw}} + Q_{\mathrm{h}}\mbox{,} 
    8585  % \label{eq:e_flux_eqn} 
    8686\] 
    87 where $Q_{\rm{h}}$ is the sensible and latent heat flux, $Q_{\rm{lw}}$ is the long wave flux, 
    88 and $Q_{\rm{sol}}$ is the solar flux absorbed within the diurnal warm layer. 
    89 For $Q_{\rm{sol}}$ the 9 term representation of \citet{Gentemann_al_JGR09} is used. 
     87where $Q_{\mathrm{h}}$ is the sensible and latent heat flux, $Q_{\mathrm{lw}}$ is the long wave flux, 
     88and $Q_{\mathrm{sol}}$ is the solar flux absorbed within the diurnal warm layer. 
     89For $Q_{\mathrm{sol}}$ the 9 term representation of \citet{gentemann.minnett.ea_JGR09} is used. 
    9090In equation \autoref{eq:ecmwf1} the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$, 
    9191where $L_a=0.3$\footnote{ 
     
    118118%=============================================================== 
    119119 
    120 The cool skin is modelled using the framework of \citet{Saunders_JAS82} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. 
    121 As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\rm{cs}}$ becomes 
     120The cool skin is modelled using the framework of \citet{saunders_JAS67} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. 
     121As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\mathrm{cs}}$ becomes 
    122122\[ 
    123123  % \label{eq:sunders_eqn} 
    124   \Delta T_{\rm{cs}}=\frac{Q_{\rm{ns}}\delta}{k_t} \mbox{,} 
     124  \Delta T_{\mathrm{cs}}=\frac{Q_{\mathrm{ns}}\delta}{k_t} \mbox{,} 
    125125\] 
    126 where $Q_{\rm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and 
     126where $Q_{\mathrm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and 
    127127$k_t$ is the thermal conductivity of sea water. 
    128128$\delta$ is the thickness of the skin layer and is given by 
     
    132132\end{equation} 
    133133where $\mu$ is the kinematic viscosity of sea water and $\lambda$ is a constant of proportionality which 
    134 \citet{Saunders_JAS82} suggested varied between 5 and 10. 
     134\citet{saunders_JAS67} suggested varied between 5 and 10. 
    135135 
    136 The value of $\lambda$ used in equation (\autoref{eq:sunders_thick_eqn}) is that of \citet{Artale_al_JGR02}, 
    137 which is shown in \citet{Tu_Tsuang_GRL05} to outperform a number of other parametrisations at 
     136The value of $\lambda$ used in equation (\autoref{eq:sunders_thick_eqn}) is that of \citet{artale.iudicone.ea_JGR02}, 
     137which is shown in \citet{tu.tsuang_GRL05} to outperform a number of other parametrisations at 
    138138both low and high wind speeds. 
    139139Specifically, 
Note: See TracChangeset for help on using the changeset viewer.