New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11263 for NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_SBC.tex – NEMO

Ignore:
Timestamp:
2019-07-12T12:47:53+02:00 (5 years ago)
Author:
smasson
Message:

dev_r10984_HPC-13 : merge with trunk@11242, see #2285

Location:
NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/chap_SBC.tex

    r10614 r11263  
    55% Chapter —— Surface Boundary Condition (SBC, ISF, ICB)  
    66% ================================================================ 
    7 \chapter{Surface Boundary Condition (SBC, ISF, ICB) } 
     7\chapter{Surface Boundary Condition (SBC, ISF, ICB)} 
    88\label{chap:SBC} 
    99\minitoc 
     
    226226% Input Data specification (\mdl{fldread}) 
    227227% ------------------------------------------------------------------------------------------------------------- 
    228 \subsection{Input data specification (\protect\mdl{fldread})} 
     228\subsection[Input data specification (\textit{fldread.F90})] 
     229{Input data specification (\protect\mdl{fldread})} 
    229230\label{subsec:SBC_fldread} 
    230231 
     
    313314The only tricky point is therefore to specify the date at which we need to do the interpolation and 
    314315the date of the records read in the input files. 
    315 Following \citet{Leclair_Madec_OM09}, the date of a time step is set at the middle of the time step. 
     316Following \citet{leclair.madec_OM09}, the date of a time step is set at the middle of the time step. 
    316317For example, for an experiment starting at 0h00'00" with a one hour time-step, 
    317318a time interpolation will be performed at the following time: 0h30'00", 1h30'00", 2h30'00", etc. 
     
    559560% Analytical formulation (sbcana module)  
    560561% ================================================================ 
    561 \section{Analytical formulation (\protect\mdl{sbcana})} 
     562\section[Analytical formulation (\textit{sbcana.F90})] 
     563{Analytical formulation (\protect\mdl{sbcana})} 
    562564\label{sec:SBC_ana} 
    563565 
     
    584586% Flux formulation  
    585587% ================================================================ 
    586 \section{Flux formulation (\protect\mdl{sbcflx})} 
     588\section[Flux formulation (\textit{sbcflx.F90})] 
     589{Flux formulation (\protect\mdl{sbcflx})} 
    587590\label{sec:SBC_flx} 
    588591%------------------------------------------namsbc_flx---------------------------------------------------- 
     
    606609% ================================================================ 
    607610\section[Bulk formulation {(\textit{sbcblk\{\_core,\_clio\}.F90})}] 
    608                         {Bulk formulation {(\protect\mdl{sbcblk\_core}, \protect\mdl{sbcblk\_clio})}} 
     611{Bulk formulation {(\protect\mdl{sbcblk\_core}, \protect\mdl{sbcblk\_clio})}} 
    609612\label{sec:SBC_blk} 
    610613 
     
    625628%        CORE Bulk formulea 
    626629% ------------------------------------------------------------------------------------------------------------- 
    627 \subsection{CORE formulea (\protect\mdl{sbcblk\_core}, \protect\np{ln\_core}\forcode{ = .true.})} 
     630\subsection[CORE formulea (\textit{sbcblk\_core.F90}, \forcode{ln_core = .true.})] 
     631{CORE formulea (\protect\mdl{sbcblk\_core}, \protect\np{ln\_core}\forcode{ = .true.})} 
    628632\label{subsec:SBC_blk_core} 
    629633%------------------------------------------namsbc_core---------------------------------------------------- 
     
    632636%------------------------------------------------------------------------------------------------------------- 
    633637 
    634 The CORE bulk formulae have been developed by \citet{Large_Yeager_Rep04}. 
     638The CORE bulk formulae have been developed by \citet{large.yeager_rpt04}. 
    635639They have been designed to handle the CORE forcing, a mixture of NCEP reanalysis and satellite data. 
    636640They use an inertial dissipative method to compute the turbulent transfer coefficients 
    637641(momentum, sensible heat and evaporation) from the 10 metre wind speed, air temperature and specific humidity. 
    638 This \citet{Large_Yeager_Rep04} dataset is available through 
     642This \citet{large.yeager_rpt04} dataset is available through 
    639643the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html}{GFDL web site}. 
    640644 
    641645Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
    642 This is the so-called DRAKKAR Forcing Set (DFS) \citep{Brodeau_al_OM09}. 
     646This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
    643647 
    644648Options are defined through the  \ngn{namsbc\_core} namelist variables. 
     
    688692%        CLIO Bulk formulea 
    689693% ------------------------------------------------------------------------------------------------------------- 
    690 \subsection{CLIO formulea (\protect\mdl{sbcblk\_clio}, \protect\np{ln\_clio}\forcode{ = .true.})} 
     694\subsection[CLIO formulea (\textit{sbcblk\_clio.F90}, \forcode{ln_clio = .true.})] 
     695{CLIO formulea (\protect\mdl{sbcblk\_clio}, \protect\np{ln\_clio}\forcode{ = .true.})} 
    691696\label{subsec:SBC_blk_clio} 
    692697%------------------------------------------namsbc_clio---------------------------------------------------- 
     
    696701 
    697702The CLIO bulk formulae were developed several years ago for the Louvain-la-neuve coupled ice-ocean model 
    698 (CLIO, \cite{Goosse_al_JGR99}).  
     703(CLIO, \cite{goosse.deleersnijder.ea_JGR99}).  
    699704They are simpler bulk formulae. 
    700705They assume the stress to be known and compute the radiative fluxes from a climatological cloud cover.  
     
    729734% Coupled formulation 
    730735% ================================================================ 
    731 \section{Coupled formulation (\protect\mdl{sbccpl})} 
     736\section[Coupled formulation (\textit{sbccpl.F90})] 
     737{Coupled formulation (\protect\mdl{sbccpl})} 
    732738\label{sec:SBC_cpl} 
    733739%------------------------------------------namsbc_cpl---------------------------------------------------- 
     
    770776%        Atmospheric pressure 
    771777% ================================================================ 
    772 \section{Atmospheric pressure (\protect\mdl{sbcapr})} 
     778\section[Atmospheric pressure (\textit{sbcapr.F90})] 
     779{Atmospheric pressure (\protect\mdl{sbcapr})} 
    773780\label{sec:SBC_apr} 
    774781%------------------------------------------namsbc_apr---------------------------------------------------- 
     
    806813%        Surface Tides Forcing 
    807814% ================================================================ 
    808 \section{Surface tides (\protect\mdl{sbctide})} 
     815\section[Surface tides (\textit{sbctide.F90})] 
     816{Surface tides (\protect\mdl{sbctide})} 
    809817\label{sec:SBC_tide} 
    810818 
     
    819827\[ 
    820828  % \label{eq:PE_dyn_tides} 
    821   \frac{\partial {\rm {\bf U}}_h }{\partial t}= ... 
     829  \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= ... 
    822830  +g\nabla (\Pi_{eq} + \Pi_{sal}) 
    823831\] 
     
    839847 
    840848The SAL term should in principle be computed online as it depends on 
    841 the model tidal prediction itself (see \citet{Arbic2004} for a 
     849the model tidal prediction itself (see \citet{arbic.garner.ea_DSR04} for a 
    842850discussion about the practical implementation of this term). 
    843851Nevertheless, the complex calculations involved would make this 
     
    857865%        River runoffs 
    858866% ================================================================ 
    859 \section{River runoffs (\protect\mdl{sbcrnf})} 
     867\section[River runoffs (\textit{sbcrnf.F90})] 
     868{River runoffs (\protect\mdl{sbcrnf})} 
    860869\label{sec:SBC_rnf} 
    861870%------------------------------------------namsbc_rnf---------------------------------------------------- 
     
    871880%coastal modelling and becomes more and more often open ocean and climate modelling  
    872881%\footnote{At least a top cells thickness of 1~meter and a 3 hours forcing frequency are 
    873 %required to properly represent the diurnal cycle \citep{Bernie_al_JC05}. see also \autoref{fig:SBC_dcy}.}. 
     882%required to properly represent the diurnal cycle \citep{bernie.woolnough.ea_JC05}. see also \autoref{fig:SBC_dcy}.}. 
    874883 
    875884 
     
    892901\footnote{ 
    893902  At least a top cells thickness of 1~meter and a 3 hours forcing frequency are required to 
    894   properly represent the diurnal cycle \citep{Bernie_al_JC05}. 
     903  properly represent the diurnal cycle \citep{bernie.woolnough.ea_JC05}. 
    895904  see also \autoref{fig:SBC_dcy}.}. 
    896905 
     
    982991%        Ice shelf melting 
    983992% ================================================================ 
    984 \section{Ice shelf melting (\protect\mdl{sbcisf})} 
     993\section[Ice shelf melting (\textit{sbcisf.F90})] 
     994{Ice shelf melting (\protect\mdl{sbcisf})} 
    985995\label{sec:SBC_isf} 
    986996%------------------------------------------namsbc_isf---------------------------------------------------- 
     
    989999%-------------------------------------------------------------------------------------------------------- 
    9901000The namelist variable in \ngn{namsbc}, \np{nn\_isf}, controls the ice shelf representation. 
    991 Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{Mathiot2017}.  
     1001Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{mathiot.jenkins.ea_GMD17}.  
    9921002The different options are illustrated in \autoref{fig:SBC_isf}. 
    9931003 
     
    10011011   \item[\np{nn\_isfblk}\forcode{ = 1}]: 
    10021012     The melt rate is based on a balance between the upward ocean heat flux and 
    1003      the latent heat flux at the ice shelf base. A complete description is available in \citet{Hunter2006}. 
     1013     the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_rpt06}. 
    10041014   \item[\np{nn\_isfblk}\forcode{ = 2}]: 
    10051015     The melt rate and the heat flux are based on a 3 equations formulation 
    10061016     (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation).  
    1007      A complete description is available in \citet{Jenkins1991}. 
     1017     A complete description is available in \citet{jenkins_JGR91}. 
    10081018   \end{description} 
    10091019 
    1010      Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{Losch2008}.  
     1020     Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{losch_JGR08}.  
    10111021     Its thickness is defined by \np{rn\_hisf\_tbl}. 
    10121022     The fluxes and friction velocity are computed using the mean temperature, salinity and velocity in the the first \np{rn\_hisf\_tbl} m. 
     
    10381048\] 
    10391049     where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn\_hisf\_tbl} meters). 
    1040      See \citet{Jenkins2010} for all the details on this formulation. It is the recommended formulation for realistic application. 
     1050     See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application. 
    10411051   \item[\np{nn\_gammablk}\forcode{ = 2}]: 
    10421052     The salt and heat exchange coefficients are velocity and stability dependent and defined as: 
     
    10471057     $\Gamma_{Turb}$ the contribution of the ocean stability and 
    10481058     $\Gamma^{T,S}_{Mole}$ the contribution of the molecular diffusion. 
    1049      See \citet{Holland1999} for all the details on this formulation.  
     1059     See \citet{holland.jenkins_JPO99} for all the details on this formulation.  
    10501060     This formulation has not been extensively tested in NEMO (not recommended). 
    10511061   \end{description} 
    10521062 \item[\np{nn\_isf}\forcode{ = 2}]: 
    10531063   The ice shelf cavity is not represented. 
    1054    The fwf and heat flux are computed using the \citet{Beckmann2003} parameterisation of isf melting. 
     1064   The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 
    10551065   The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 
    10561066   (\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front 
     
    10891099\begin{figure}[!t] 
    10901100  \begin{center} 
    1091     \includegraphics[width=0.8\textwidth]{Fig_SBC_isf} 
     1101    \includegraphics[width=\textwidth]{Fig_SBC_isf} 
    10921102    \caption{ 
    10931103      \protect\label{fig:SBC_isf} 
     
    11661176%------------------------------------------------------------------------------------------------------------- 
    11671177 
    1168 Icebergs are modelled as lagrangian particles in NEMO \citep{Marsh_GMD2015}. 
    1169 Their physical behaviour is controlled by equations as described in \citet{Martin_Adcroft_OM10} ). 
     1178Icebergs are modelled as lagrangian particles in NEMO \citep{marsh.ivchenko.ea_GMD15}. 
     1179Their physical behaviour is controlled by equations as described in \citet{martin.adcroft_OM10} ). 
    11701180(Note that the authors kindly provided a copy of their code to act as a basis for implementation in NEMO). 
    11711181Icebergs are initially spawned into one of ten classes which have specific mass and thickness as 
     
    12271237%        Interactions with waves (sbcwave.F90, ln_wave) 
    12281238% ------------------------------------------------------------------------------------------------------------- 
    1229 \section{Interactions with waves (\protect\mdl{sbcwave}, \protect\np{ln\_wave})} 
     1239\section[Interactions with waves (\textit{sbcwave.F90}, \texttt{ln\_wave})] 
     1240{Interactions with waves (\protect\mdl{sbcwave}, \protect\np{ln\_wave})} 
    12301241\label{sec:SBC_wave} 
    12311242%------------------------------------------namsbc_wave-------------------------------------------------------- 
     
    12581269 
    12591270% ================================================================ 
    1260 \subsection{Neutral drag coefficient from wave model (\protect\np{ln\_cdgw})} 
     1271\subsection[Neutral drag coefficient from wave model (\texttt{ln\_cdgw})] 
     1272{Neutral drag coefficient from wave model (\protect\np{ln\_cdgw})} 
    12611273\label{subsec:SBC_wave_cdgw} 
    12621274 
     
    12651277Then using the routine \rou{turb\_ncar} and starting from the neutral drag coefficent provided,  
    12661278the drag coefficient is computed according to the stable/unstable conditions of the  
    1267 air-sea interface following \citet{Large_Yeager_Rep04}.  
     1279air-sea interface following \citet{large.yeager_rpt04}.  
    12681280 
    12691281 
     
    12711283% 3D Stokes Drift (ln_sdw, nn_sdrift) 
    12721284% ================================================================ 
    1273 \subsection{3D Stokes Drift (\protect\np{ln\_sdw, nn\_sdrift})} 
     1285\subsection[3D Stokes Drift (\texttt{ln\_sdw}, \texttt{nn\_sdrift})] 
     1286{3D Stokes Drift (\protect\np{ln\_sdw, nn\_sdrift})} 
    12741287\label{subsec:SBC_wave_sdw} 
    12751288 
    1276 The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{Stokes_1847}.  
     1289The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{stokes_ibk09}.  
    12771290It is defined as the difference between the average velocity of a fluid parcel (Lagrangian velocity)  
    12781291and the current measured at a fixed point (Eulerian velocity).  
     
    13071320\begin{description} 
    13081321\item[\np{nn\_sdrift} = 0]: exponential integral profile parameterization proposed by  
    1309 \citet{Breivik_al_JPO2014}: 
     1322\citet{breivik.janssen.ea_JPO14}: 
    13101323 
    13111324\[ 
     
    13271340\item[\np{nn\_sdrift} = 1]: velocity profile based on the Phillips spectrum which is considered to be a  
    13281341reasonable estimate of the part of the spectrum most contributing to the Stokes drift velocity near the surface 
    1329 \citep{Breivik_al_OM2016}: 
     1342\citep{breivik.bidlot.ea_OM16}: 
    13301343 
    13311344\[ 
     
    13671380% Stokes-Coriolis term (ln_stcor) 
    13681381% ================================================================ 
    1369 \subsection{Stokes-Coriolis term (\protect\np{ln\_stcor})} 
     1382\subsection[Stokes-Coriolis term (\texttt{ln\_stcor})] 
     1383{Stokes-Coriolis term (\protect\np{ln\_stcor})} 
    13701384\label{subsec:SBC_wave_stcor} 
    13711385 
     
    13811395% Waves modified stress (ln_tauwoc, ln_tauw) 
    13821396% ================================================================ 
    1383 \subsection{Wave modified sress (\protect\np{ln\_tauwoc, ln\_tauw})}  
     1397\subsection[Wave modified sress (\texttt{ln\_tauwoc}, \texttt{ln\_tauw})] 
     1398{Wave modified sress (\protect\np{ln\_tauwoc, ln\_tauw})} 
    13841399\label{subsec:SBC_wave_tauw} 
    13851400 
    13861401The surface stress felt by the ocean is the atmospheric stress minus the net stress going  
    1387 into the waves \citep{Janssen_al_TM13}. Therefore, when waves are growing, momentum and energy is spent and is not  
     1402into the waves \citep{janssen.breivik.ea_rpt13}. Therefore, when waves are growing, momentum and energy is spent and is not  
    13881403available for forcing the mean circulation, while in the opposite case of a decaying sea  
    13891404state more momentum is available for forcing the ocean.  
     
    14281443%        Diurnal cycle 
    14291444% ------------------------------------------------------------------------------------------------------------- 
    1430 \subsection{Diurnal cycle (\protect\mdl{sbcdcy})} 
     1445\subsection[Diurnal cycle (\textit{sbcdcy.F90})] 
     1446{Diurnal cycle (\protect\mdl{sbcdcy})} 
    14311447\label{subsec:SBC_dcy} 
    14321448%------------------------------------------namsbc_rnf---------------------------------------------------- 
     
    14381454\begin{figure}[!t] 
    14391455  \begin{center} 
    1440     \includegraphics[width=0.8\textwidth]{Fig_SBC_diurnal} 
     1456    \includegraphics[width=\textwidth]{Fig_SBC_diurnal} 
    14411457    \caption{ 
    14421458      \protect\label{fig:SBC_diurnal} 
     
    14451461      the mean value of the analytical cycle (blue line) over a time step, 
    14461462      not as the mid time step value of the analytically cycle (red square). 
    1447       From \citet{Bernie_al_CD07}. 
     1463      From \citet{bernie.guilyardi.ea_CD07}. 
    14481464    } 
    14491465  \end{center} 
     
    14511467%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    14521468 
    1453 \cite{Bernie_al_JC05} have shown that to capture 90$\%$ of the diurnal variability of SST requires a vertical resolution in upper ocean of 1~m or better and a temporal resolution of the surface fluxes of 3~h or less. 
     1469\cite{bernie.woolnough.ea_JC05} have shown that to capture 90$\%$ of the diurnal variability of SST requires a vertical resolution in upper ocean of 1~m or better and a temporal resolution of the surface fluxes of 3~h or less. 
    14541470Unfortunately high frequency forcing fields are rare, not to say inexistent. 
    14551471Nevertheless, it is possible to obtain a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at 
    1456 high frequency \citep{Bernie_al_CD07}. 
     1472high frequency \citep{bernie.guilyardi.ea_CD07}. 
    14571473Furthermore, only the knowledge of daily mean value of SWF is needed, 
    14581474as higher frequency variations can be reconstructed from them, 
    14591475assuming that the diurnal cycle of SWF is a scaling of the top of the atmosphere diurnal cycle of incident SWF. 
    1460 The \cite{Bernie_al_CD07} reconstruction algorithm is available in \NEMO by 
     1476The \cite{bernie.guilyardi.ea_CD07} reconstruction algorithm is available in \NEMO by 
    14611477setting \np{ln\_dm2dc}\forcode{ = .true.} (a \textit{\ngn{namsbc}} namelist variable) when 
    14621478using CORE bulk formulea (\np{ln\_blk\_core}\forcode{ = .true.}) or 
    14631479the flux formulation (\np{ln\_flx}\forcode{ = .true.}). 
    14641480The reconstruction is performed in the \mdl{sbcdcy} module. 
    1465 The detail of the algoritm used can be found in the appendix~A of \cite{Bernie_al_CD07}. 
     1481The detail of the algoritm used can be found in the appendix~A of \cite{bernie.guilyardi.ea_CD07}. 
    14661482The algorithm preserve the daily mean incoming SWF as the reconstructed SWF at 
    14671483a given time step is the mean value of the analytical cycle over this time step (\autoref{fig:SBC_diurnal}). 
     
    14761492\begin{figure}[!t] 
    14771493  \begin{center} 
    1478     \includegraphics[width=0.7\textwidth]{Fig_SBC_dcy} 
     1494    \includegraphics[width=\textwidth]{Fig_SBC_dcy} 
    14791495    \caption{ 
    14801496      \protect\label{fig:SBC_dcy} 
     
    15141530%        Surface restoring to observed SST and/or SSS 
    15151531% ------------------------------------------------------------------------------------------------------------- 
    1516 \subsection{Surface restoring to observed SST and/or SSS (\protect\mdl{sbcssr})} 
     1532\subsection[Surface restoring to observed SST and/or SSS (\textit{sbcssr.F90})] 
     1533{Surface restoring to observed SST and/or SSS (\protect\mdl{sbcssr})} 
    15171534\label{subsec:SBC_ssr} 
    15181535%------------------------------------------namsbc_ssr---------------------------------------------------- 
     
    15461563(observed, climatological or an atmospheric model product), 
    15471564\textit{SSS}$_{Obs}$ is a sea surface salinity 
    1548 (usually a time interpolation of the monthly mean Polar Hydrographic Climatology \citep{Steele2001}), 
     1565(usually a time interpolation of the monthly mean Polar Hydrographic Climatology \citep{steele.morley.ea_JC01}), 
    15491566$\left.S\right|_{k=1}$ is the model surface layer salinity and 
    15501567$\gamma_s$ is a negative feedback coefficient which is provided as a namelist parameter. 
    15511568Unlike heat flux, there is no physical justification for the feedback term in \autoref{eq:sbc_dmp_emp} as 
    1552 the atmosphere does not care about ocean surface salinity \citep{Madec1997}. 
     1569the atmosphere does not care about ocean surface salinity \citep{madec.delecluse_IWN97}. 
    15531570The SSS restoring term should be viewed as a flux correction on freshwater fluxes to 
    15541571reduce the uncertainties we have on the observed freshwater budget. 
     
    15931610% {Description of Ice-ocean interface to be added here or in LIM 2 and 3 doc ?} 
    15941611 
    1595 \subsection{Interface to CICE (\protect\mdl{sbcice\_cice})} 
     1612\subsection[Interface to CICE (\textit{sbcice\_cice.F90})] 
     1613{Interface to CICE (\protect\mdl{sbcice\_cice})} 
    15961614\label{subsec:SBC_cice} 
    15971615 
     
    16261644%        Freshwater budget control  
    16271645% ------------------------------------------------------------------------------------------------------------- 
    1628 \subsection{Freshwater budget control (\protect\mdl{sbcfwb})} 
     1646\subsection[Freshwater budget control (\textit{sbcfwb.F90})] 
     1647{Freshwater budget control (\protect\mdl{sbcfwb})} 
    16291648\label{subsec:SBC_fwb} 
    16301649 
Note: See TracChangeset for help on using the changeset viewer.