New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11353 for NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/annex_B.tex – NEMO

Ignore:
Timestamp:
2019-07-25T16:55:58+02:00 (5 years ago)
Author:
smasson
Message:

dev_r10984_HPC-13 : merge with trunk@11352, see #2285

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10984_HPC-13_IRRMANN_BDY_optimization/doc/latex/NEMO/subfiles/annex_B.tex

    r11263 r11353  
    5353  { 
    5454  \begin{array}{*{20}l} 
    55     D^T=& \frac{1}{e_1\,e_2\,e_3 }\;\left[ {\ \ \ \ e_2\,e_3\,A^{lT} \;\left. 
    56           {\frac{\partial }{\partial i}\left( {\frac{1}{e_1}\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_1 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.  \\ 
    57         &\qquad \quad \ \ \ +e_1\,e_3\,A^{lT} \;\left. {\frac{\partial }{\partial j}\left( {\frac{1}{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s -\frac{\sigma_2 }{e_3 }\;\frac{\partial T}{\partial s}} \right)} \right|_s \\ 
    58         &\qquad \quad \ \ \ + e_1\,e_2\,A^{lT} \;\frac{\partial }{\partial s}\left( {-\frac{\sigma_1 }{e_1 }\;\left. {\frac{\partial T}{\partial i}} \right|_s -\frac{\sigma_2 }{e_2 }\;\left. {\frac{\partial T}{\partial j}} \right|_s } \right. 
    59           \left. {\left. {+\left( {\varepsilon +\sigma_1^2+\sigma_2 ^2} \right)\;\frac{1}{e_3 }\;\frac{\partial T}{\partial s}} \right)\;\;} \right] 
     55    D^T= \frac{1}{e_1\,e_2\,e_3 } & \left\{ \quad \quad \frac{\partial }{\partial i}  \left. \left[  e_2\,e_3 \, A^{lT} 
     56                               \left( \  \frac{1}{e_1}\; \left. \frac{\partial T}{\partial i} \right|_s  
     57                                       -\frac{\sigma_1 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right]  \right|_s  \right. \\ 
     58        &  \quad \  +   \            \left.   \frac{\partial }{\partial j}  \left. \left[  e_1\,e_3 \, A^{lT} 
     59                               \left( \ \frac{1}{e_2 }\; \left. \frac{\partial T}{\partial j} \right|_s  
     60                                       -\frac{\sigma_2 }{e_3 } \; \frac{\partial T}{\partial s} \right) \right]  \right|_s  \right. \\ 
     61        &  \quad \  +   \           \left.  e_1\,e_2\, \frac{\partial }{\partial s}  \left[ A^{lT} \; \left(  
     62                     -\frac{\sigma_1 }{e_1 } \; \left. \frac{\partial T}{\partial i} \right|_s  
     63                     -\frac{\sigma_2 }{e_2 } \; \left. \frac{\partial T}{\partial j} \right|_s  
     64                          +\left( \varepsilon +\sigma_1^2+\sigma_2 ^2 \right) \; \frac{1}{e_3 } \; \frac{\partial T}{\partial s} \right) \; \right] \;  \right\} . 
    6065  \end{array} 
    6166          } 
    6267\end{align*} 
    6368 
    64 Equation \autoref{apdx:B2} is obtained from \autoref{apdx:B1} without any additional assumption. 
     69\autoref{apdx:B2} is obtained from \autoref{apdx:B1} without any additional assumption. 
    6570Indeed, for the special case $k=z$ and thus $e_3 =1$, 
    6671we introduce an arbitrary vertical coordinate $s = s (i,j,z)$ as in \autoref{apdx:A} and 
     
    9095  { 
    9196  \begin{array}{*{20}l} 
    92     \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, it becomes:} 
     97    \intertext{Noting that $\frac{1}{e_1} \left. \frac{\partial e_3 }{\partial i} \right|_s = \frac{\partial \sigma_1 }{\partial s}$, this becomes:} 
    9398    % 
    94     & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
     99    D^T & =\frac{1}{e_1\,e_2\,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2\,e_3 }{e_1}\,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. -\, {e_3 \frac{\partial }{\partial i}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
    95100    & \qquad \qquad \quad -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s -e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
    96     & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial z}} \right)\;\;\;} \right] }\\ 
     101    & \qquad \qquad \quad\shoveright{ \left. { +e_1 \,\sigma_1 \frac{\partial }{\partial s}\left( {\frac{e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] }\\ 
    97102    \\ 
    98103    &=\frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)} \right|_s \left. {-\frac{\partial }{\partial i}\left( {e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
    99104    & \qquad \qquad \quad \left. {+\frac{e_2 \,\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s} \;\frac{\partial e_3 }{\partial i}}  \right|_s -e_2 A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s \\ 
    100105    & \qquad \qquad \quad-e_2 \,\sigma_1 \frac{\partial}{\partial s}\left( {A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}} \right) \\ 
    101     & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} 
     106    & \qquad \qquad \quad\shoveright{ \left. {-\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s} \left( {\frac{\sigma_1 }{e_3}A^{lT}\;\frac{\partial T}{\partial s}} \right) + \frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 }{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} . 
    102107  \end{array} 
    103108      } \\ 
     
    105110  \begin{array}{*{20}l} 
    106111    % 
    107     \intertext{using the same remark as just above, it becomes:} 
     112    \intertext{Using the same remark as just above, $D^T$ becomes:} 
    108113    % 
    109     &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 
     114   D^T &= \frac{1}{e_1 \,e_2 \,e_3 } \left[ {\left. {\;\;\;\frac{\partial }{\partial i} \left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right.\;\;\; \\ 
    110115    & \qquad \qquad \quad+\frac{e_1 \,e_2 \,\sigma_1 }{e_3 }A^{lT}\;\frac{\partial T}{\partial s}\;\frac{\partial \sigma_1 }{\partial s} - \frac {\sigma_1 }{e_3} A^{lT} \;\frac{\partial \left( {e_1 \,e_2 \,\sigma_1 } \right)}{\partial s}\;\frac{\partial T}{\partial s} \\ 
    111116    & \qquad \qquad \quad-e_2 \left( {A^{lT}\;\frac{\partial \sigma_1 }{\partial s}\left. {\frac{\partial T}{\partial i}} \right|_s +\frac{\partial }{\partial s}\left( {\sigma_1 A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right)-\frac{\partial \sigma_1 }{\partial s}\;A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s } \right) \\ 
    112     & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] } 
     117    & \qquad \qquad \quad\shoveright{\left. {+\frac{\partial }{\partial s}\left( {\frac{e_1 \,e_2 \,\sigma_1 ^2}{e_3 }A^{lT}\;\frac{\partial T}{\partial s}+\frac{e_1 \,e_2}{e_3 }A^{vT}\;\frac{\partial T}{\partial s}} \right)\;\;\;} \right] . } 
    113118  \end{array} 
    114119      } \\ 
     
    117122    % 
    118123    \intertext{Since the horizontal scale factors do not depend on the vertical coordinate, 
    119     the last term of the first line and the first term of the last line cancel, while 
    120     the second line reduces to a single vertical derivative, so it becomes:} 
     124    the two terms on the second line cancel, while 
     125    the third line reduces to a single vertical derivative, so it becomes:} 
    121126  % 
    122     & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
     127    D^T & =\frac{1}{e_1 \,e_2 \,e_3 }\left[ {\left. {\;\;\;\frac{\partial }{\partial i}\left( {\frac{e_2 \,e_3 }{e_1 }A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s -e_2 \,\sigma_1 \,A^{lT}\;\frac{\partial T}{\partial s}} \right)} \right|_s } \right. \\ 
    123128    & \qquad \qquad \quad \shoveright{ \left. {+\frac{\partial }{\partial s}\left( {-e_2 \,\sigma_1 \,A^{lT}\;\left. {\frac{\partial T}{\partial i}} \right|_s +A^{lT}\frac{e_1 \,e_2 }{e_3 }\;\left( {\varepsilon +\sigma_1 ^2} \right)\frac{\partial T}{\partial s}} \right)\;\;\;} \right]} \\ 
    124129    % 
    125     \intertext{in other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:} 
     130    \intertext{In other words, the horizontal/vertical Laplacian operator in the ($i$,$s$) plane takes the following form:} 
    126131  \end{array} 
    127132  } \\ 
     
    169174  \left[ {{ 
    170175        \begin{array}{*{20}c} 
    171           {1+a_1 ^2} \hfill & {-a_1 a_2 } \hfill & {-a_1 } \hfill \\ 
    172           {-a_1 a_2 } \hfill & {1+a_2 ^2} \hfill & {-a_2 } \hfill \\ 
    173           {-a_1 } \hfill & {-a_2 } \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ 
     176          {1+a_2 ^2 +\varepsilon a_1 ^2} \hfill & {-a_1 a_2 (1-\varepsilon)} \hfill & {-a_1 (1-\varepsilon) } \hfill \\ 
     177          {-a_1 a_2 (1-\varepsilon) } \hfill & {1+a_1 ^2 +\varepsilon a_2 ^2} \hfill & {-a_2 (1-\varepsilon)} \hfill \\ 
     178          {-a_1 (1-\varepsilon)} \hfill & {-a_2 (1-\varepsilon)} \hfill & {\varepsilon +a_1 ^2+a_2 ^2} \hfill \\ 
    174179        \end{array} 
    175180      }} \right] 
    176181\end{equation} 
    177 where ($a_1$, $a_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials: 
     182where ($a_1$, $a_2$) are $(-1) \times$ the isopycnal slopes in 
     183($\textbf{i}$, $\textbf{j}$) directions, relative to geopotentials (or 
     184equivalently the slopes of the geopotential surfaces in the isopycnal 
     185coordinate framework): 
    178186\[ 
    179187  a_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} 
     
    182190  \right)\left( {\frac{\partial \rho }{\partial k}} \right)^{-1} 
    183191\] 
    184  
    185 In practice, isopycnal slopes are generally less than $10^{-2}$ in the ocean, 
    186 so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{cox_OM87}: 
     192and, as before, $\epsilon = A^{vT} / A^{lT}$. 
     193 
     194In practice, $\epsilon$ is small and isopycnal slopes are generally less than $10^{-2}$ in the ocean, 
     195so $\textbf {A}_{\textbf I}$ can be simplified appreciably \citep{cox_OM87}. Keeping leading order terms\footnote{Apart from the (1,0)  
     196and (0,1) elements which are set to zero. See \citet{griffies_bk04}, section 14.1.4.1 for a discussion of this point.}: 
    187197\begin{subequations} 
    188198  \label{apdx:B4} 
     
    226236The isopycnal diffusion operator \autoref{apdx:B4}, 
    227237\autoref{apdx:B_ldfiso} conserves tracer quantity and dissipates its square. 
    228 The demonstration of the first property is trivial as \autoref{apdx:B4} is the divergence of fluxes. 
    229 Let us demonstrate the second one: 
     238As \autoref{apdx:B4} is the divergence of a flux, the demonstration of the first property is trivial, providing that the flux normal to the boundary is zero  
     239(as it is when $A_h$ is zero at the boundary). Let us demonstrate the second one: 
    230240\[ 
    231241  \iiint\limits_D T\;\nabla .\left( {\textbf{A}}_{\textbf{I}} \nabla T \right)\,dv 
     
    246256             j}-a_2 \frac{\partial T}{\partial k}} \right)^2} 
    247257             +\varepsilon \left(\frac{\partial T}{\partial k}\right) ^2\right]      \\ 
    248            & \geq 0 
     258           & \geq 0 .  
    249259  \end{array} 
    250260             } 
     
    275285\end{equation} 
    276286 
    277 where ($r_1$, $r_2$) are the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, 
    278 relative to $s$-coordinate surfaces: 
     287where ($r_1$, $r_2$) are $(-1)\times$ the isopycnal slopes in ($\textbf{i}$, $\textbf{j}$) directions, 
     288relative to $s$-coordinate surfaces (or equivalently the slopes of the 
     289$s$-coordinate surfaces in the isopycnal coordinate framework): 
    279290\[ 
    280291  r_1 =\frac{e_3 }{e_1 }\left( {\frac{\partial \rho }{\partial i}} \right)\left( {\frac{\partial \rho }{\partial s}} \right)^{-1} 
     
    284295\] 
    285296 
    286 To prove \autoref{apdx:B5} by direct re-expression of \autoref{apdx:B_ldfiso} is straightforward, but laborious. 
     297To prove \autoref{apdx:B_ldfiso_s} by direct re-expression of \autoref{apdx:B_ldfiso} is straightforward, but laborious. 
    287298An easier way is first to note (by reversing the derivation of \autoref{sec:B_2} from \autoref{sec:B_1} ) that 
    288299the weak-slope operator may be \emph{exactly} reexpressed in non-orthogonal $i,j,\rho$-coordinates as 
     
    306317the (rotated,orthogonal) isoneutral axes to the non-orthogonal $i,j,\rho$-coordinates. 
    307318The further transformation into $i,j,s$-coordinates is exact, whatever the steepness of the $s$-surfaces, 
    308 in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates, 
     319in the same way as the transformation of horizontal/vertical Laplacian diffusion in $z$-coordinates in 
    309320\autoref{sec:B_1} onto $s$-coordinates is exact, however steep the $s$-surfaces. 
    310321 
     
    316327\label{sec:B_3} 
    317328 
    318 The second order momentum diffusion operator (Laplacian) in the $z$-coordinate is found by 
     329The second order momentum diffusion operator (Laplacian) in $z$-coordinates is found by 
    319330applying \autoref{eq:PE_lap_vector}, the expression for the Laplacian of a vector, 
    320331to the horizontal velocity vector: 
     
    361372\end{align*} 
    362373Using \autoref{eq:PE_div}, the definition of the horizontal divergence, 
    363 the third componant of the second vector is obviously zero and thus : 
     374the third component of the second vector is obviously zero and thus : 
    364375\[ 
    365   \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) 
     376  \Delta {\textbf{U}}_h = \nabla _h \left( \chi \right) - \nabla _h \times \left( \zeta \textbf{k} \right) + \frac {1}{e_3 } \frac {\partial }{\partial k} \left( {\frac {1}{e_3 } \frac{\partial {\textbf{ U}}_h }{\partial k}} \right) .  
    366377\] 
    367378 
     
    379390  - \nabla _h \times \left( {A^{lm}\;\zeta \;{\textbf{k}}} \right) 
    380391  + \frac{1}{e_3 }\frac{\partial }{\partial k}\left( {\frac{A^{vm}\;}{e_3 } 
    381       \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) \\ 
     392      \frac{\partial {\mathrm {\mathbf U}}_h }{\partial k}} \right) , \\ 
    382393\end{equation} 
    383394that is, in expanded form: 
     
    386397  & = \frac{1}{e_1} \frac{\partial \left( {A^{lm}\chi   } \right)}{\partial i} 
    387398    -\frac{1}{e_2} \frac{\partial \left( {A^{lm}\zeta } \right)}{\partial j} 
    388     +\frac{1}{e_3} \frac{\partial u}{\partial k}      \\ 
     399    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial u}{\partial k} \right)   ,   \\ 
    389400  D^{\textbf{U}}_v 
    390401  & = \frac{1}{e_2 }\frac{\partial \left( {A^{lm}\chi   } \right)}{\partial j} 
    391402    +\frac{1}{e_1 }\frac{\partial \left( {A^{lm}\zeta } \right)}{\partial i} 
    392     +\frac{1}{e_3} \frac{\partial v}{\partial k} 
     403    +\frac{1}{e_3} \frac{\partial }{\partial k} \left( \frac{A^{vm}}{e_3} \frac{\partial v}{\partial k} \right) . 
    393404\end{align*} 
    394405 
Note: See TracChangeset for help on using the changeset viewer.