New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11422 for NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_LDF.tex – NEMO

Ignore:
Timestamp:
2019-08-08T15:40:47+02:00 (5 years ago)
Author:
jchanut
Message:

#1791, merge with trunk

Location:
NEMO/branches/2019/fix_vvl_ticket1791/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/fix_vvl_ticket1791/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/fix_vvl_ticket1791/doc/latex/NEMO/subfiles/chap_LDF.tex

    r10442 r11422  
    2323These three aspects of the lateral diffusion are set through namelist parameters 
    2424(see the \ngn{nam\_traldf} and \ngn{nam\_dynldf} below). 
    25 Note that this chapter describes the standard implementation of iso-neutral tracer mixing, 
    26 and Griffies's implementation, which is used if \np{traldf\_grif}\forcode{ = .true.}, 
    27 is described in Appdx\autoref{apdx:triad} 
    28  
    29 %-----------------------------------nam_traldf - nam_dynldf-------------------------------------------- 
     25Note that this chapter describes the standard implementation of iso-neutral tracer mixing.  
     26Griffies's implementation, which is used if \np{ln\_traldf\_triad}\forcode{ = .true.}, 
     27is described in \autoref{apdx:triad} 
     28 
     29%-----------------------------------namtra_ldf - namdyn_ldf-------------------------------------------- 
    3030 
    3131\nlst{namtra_ldf}  
     
    3434%-------------------------------------------------------------------------------------------------------------- 
    3535 
     36% ================================================================ 
     37% Lateral Mixing Operator 
     38% ================================================================ 
     39\section[Lateral mixing operators] 
     40{Lateral mixing operators} 
     41\label{sec:LDF_op} 
     42We remind here the different lateral mixing operators that can be used. Further details can be found in \autoref{subsec:TRA_ldf_op} and  \autoref{sec:DYN_ldf}. 
     43 
     44\subsection[No lateral mixing (\forcode{ln_traldf_OFF}, \forcode{ln_dynldf_OFF})] 
     45{No lateral mixing (\protect\np{ln\_traldf\_OFF}, \protect\np{ln\_dynldf\_OFF})} 
     46 
     47It is possible to run without explicit lateral diffusion on tracers (\protect\np{ln\_traldf\_OFF}\forcode{ = .true.}) and/or  
     48momentum (\protect\np{ln\_dynldf\_OFF}\forcode{ = .true.}). The latter option is even recommended if using the  
     49UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{ = .true.}, 
     50see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 
     51 
     52\subsection[Laplacian mixing (\forcode{ln_traldf_lap}, \forcode{ln_dynldf_lap})] 
     53{Laplacian mixing (\protect\np{ln\_traldf\_lap}, \protect\np{ln\_dynldf\_lap})} 
     54Setting \protect\np{ln\_traldf\_lap}\forcode{ = .true.} and/or \protect\np{ln\_dynldf\_lap}\forcode{ = .true.} enables  
     55a second order diffusion on tracers and momentum respectively. Note that in \NEMO 4, one can not combine  
     56Laplacian and Bilaplacian operators for the same variable. 
     57 
     58\subsection[Bilaplacian mixing (\forcode{ln_traldf_blp}, \forcode{ln_dynldf_blp})] 
     59{Bilaplacian mixing (\protect\np{ln\_traldf\_blp}, \protect\np{ln\_dynldf\_blp})} 
     60Setting \protect\np{ln\_traldf\_blp}\forcode{ = .true.} and/or \protect\np{ln\_dynldf\_blp}\forcode{ = .true.} enables  
     61a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice.  
     62We stress again that from \NEMO 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed. 
    3663 
    3764% ================================================================ 
    3865% Direction of lateral Mixing 
    3966% ================================================================ 
    40 \section{Direction of lateral mixing (\protect\mdl{ldfslp})} 
     67\section[Direction of lateral mixing (\textit{ldfslp.F90})] 
     68{Direction of lateral mixing (\protect\mdl{ldfslp})} 
    4169\label{sec:LDF_slp} 
    4270 
     
    4472\gmcomment{ 
    4573  we should emphasize here that the implementation is a rather old one. 
    46   Better work can be achieved by using \citet{Griffies_al_JPO98, Griffies_Bk04} iso-neutral scheme. 
     74  Better work can be achieved by using \citet{griffies.gnanadesikan.ea_JPO98, griffies_bk04} iso-neutral scheme. 
    4775} 
    4876 
     
    87115%gm%  caution I'm not sure the simplification was a good idea!  
    88116 
    89 These slopes are computed once in \rou{ldfslp\_init} when \np{ln\_sco}\forcode{ = .true.}rue, 
     117These slopes are computed once in \rou{ldf\_slp\_init} when \np{ln\_sco}\forcode{ = .true.}, 
    90118and either \np{ln\_traldf\_hor}\forcode{ = .true.} or \np{ln\_dynldf\_hor}\forcode{ = .true.}.  
    91119 
     
    119147%In practice, \autoref{eq:ldfslp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:ldfslp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth.  
    120148 
    121 %By definition, neutral surfaces are tangent to the local $in situ$ density \citep{McDougall1987}, therefore in \autoref{eq:ldfslp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters). 
     149%By definition, neutral surfaces are tangent to the local $in situ$ density \citep{mcdougall_JPO87}, therefore in \autoref{eq:ldfslp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters). 
    122150 
    123151%In the $z$-coordinate, the derivative of the  \autoref{eq:ldfslp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation.  
     
    135163  thus the $in situ$ density can be used. 
    136164  This is not the case for the vertical derivatives: $\delta_{k+1/2}[\rho]$ is replaced by $-\rho N^2/g$, 
    137   where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{McDougall1987} 
     165  where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{mcdougall_JPO87} 
    138166  (see \autoref{subsec:TRA_bn2}).  
    139167 
     
    144172\item[$s$- or hybrid $s$-$z$- coordinate: ] 
    145173  in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if 
    146   the Griffies scheme is used (\np{traldf\_grif}\forcode{ = .true.}; 
    147   see Appdx \autoref{apdx:triad}). 
     174  the Griffies scheme is used (\np{ln\_traldf\_triad}\forcode{ = .true.}; 
     175  see \autoref{apdx:triad}). 
    148176  In other words, iso-neutral mixing will only be accurately represented with a linear equation of state 
    149   (\np{nn\_eos}\forcode{ = 1..2}). 
     177  (\np{ln\_seos}\forcode{ = .true.}). 
    150178  In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:ldfslp_iso} 
    151179  will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes. 
     
    154182  Note: The solution for $s$-coordinate passes trough the use of different (and better) expression for 
    155183  the constraint on iso-neutral fluxes. 
    156   Following \citet{Griffies_Bk04}, instead of specifying directly that there is a zero neutral diffusive flux of 
     184  Following \citet{griffies_bk04}, instead of specifying directly that there is a zero neutral diffusive flux of 
    157185  locally referenced potential density, we stay in the $T$-$S$ plane and consider the balance between 
    158186  the neutral direction diffusive fluxes of potential temperature and salinity: 
     
    197225 
    198226This implementation is a rather old one. 
    199 It is similar to the one proposed by Cox [1987], except for the background horizontal diffusion. 
    200 Indeed, the Cox implementation of isopycnal diffusion in GFDL-type models requires 
     227It is similar to the one proposed by \citet{cox_OM87}, except for the background horizontal diffusion. 
     228Indeed, the \citet{cox_OM87} implementation of isopycnal diffusion in GFDL-type models requires 
    201229a minimum background horizontal diffusion for numerical stability reasons. 
    202230To overcome this problem, several techniques have been proposed in which the numerical schemes of 
    203 the ocean model are modified \citep{Weaver_Eby_JPO97, Griffies_al_JPO98}. 
    204 Griffies's scheme is now available in \NEMO if \np{traldf\_grif\_iso} is set true; see Appdx \autoref{apdx:triad}. 
    205 Here, another strategy is presented \citep{Lazar_PhD97}: 
     231the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}. 
     232Griffies's scheme is now available in \NEMO if \np{ln\_traldf\_triad}=\forcode{= .true.}; see \autoref{apdx:triad}. 
     233Here, another strategy is presented \citep{lazar_phd97}: 
    206234a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of 
    207235grid point noise generated by the iso-neutral diffusion operator (\autoref{fig:LDF_ZDF1}). 
     
    212240 
    213241Nevertheless, this iso-neutral operator does not ensure that variance cannot increase, 
    214 contrary to the \citet{Griffies_al_JPO98} operator which has that property.  
     242contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property.  
    215243 
    216244%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    217245\begin{figure}[!ht] 
    218246  \begin{center} 
    219     \includegraphics[width=0.70\textwidth]{Fig_LDF_ZDF1} 
     247    \includegraphics[width=\textwidth]{Fig_LDF_ZDF1} 
    220248    \caption { 
    221249      \protect\label{fig:LDF_ZDF1} 
     
    235263 
    236264 
    237 % In addition and also for numerical stability reasons \citep{Cox1987, Griffies_Bk04},  
     265% In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04},  
    238266% the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly  
    239267% to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the  
    240268% surface motivates this flattening of isopycnals near the surface). 
    241269 
    242 For numerical stability reasons \citep{Cox1987, Griffies_Bk04}, the slopes must also be bounded by 
    243 $1/100$ everywhere. 
     270For numerical stability reasons \citep{cox_OM87, griffies_bk04}, the slopes must also be bounded by 
     271the namelist scalar \np{rn\_slpmax} (usually $1/100$) everywhere. 
    244272This constraint is applied in a piecewise linear fashion, increasing from zero at the surface to 
    245273$1/100$ at $70$ metres and thereafter decreasing to zero at the bottom of the ocean 
    246274(the fact that the eddies "feel" the surface motivates this flattening of isopycnals near the surface). 
     275\colorbox{yellow}{The way slopes are tapered has be checked. Not sure that this is still what is actually done.} 
    247276 
    248277%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    249278\begin{figure}[!ht] 
    250279  \begin{center} 
    251     \includegraphics[width=0.70\textwidth]{Fig_eiv_slp} 
     280    \includegraphics[width=\textwidth]{Fig_eiv_slp} 
    252281    \caption{ 
    253282      \protect\label{fig:eiv_slp} 
     
    297326(see \autoref{sec:LBC_coast}). 
    298327 
    299  
    300 % ================================================================ 
    301 % Lateral Mixing Operator 
    302 % ================================================================ 
    303 \section{Lateral mixing operators (\protect\mdl{traldf}, \protect\mdl{traldf}) } 
    304 \label{sec:LDF_op} 
    305  
    306  
    307328    
    308329% ================================================================ 
    309330% Lateral Mixing Coefficients 
    310331% ================================================================ 
    311 \section{Lateral mixing coefficient (\protect\mdl{ldftra}, \protect\mdl{ldfdyn}) } 
     332\section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t}, \forcode{nn_ahm_ijk_t})] 
     333{Lateral mixing coefficient (\protect\np{nn\_aht\_ijk\_t}, \protect\np{nn\_ahm\_ijk\_t})} 
    312334\label{sec:LDF_coef} 
    313335 
    314 Introducing a space variation in the lateral eddy mixing coefficients changes the model core memory requirement, 
    315 adding up to four extra three-dimensional arrays for the geopotential or isopycnal second order operator applied to  
    316 momentum. 
    317 Six CPP keys control the space variation of eddy coefficients: three for momentum and three for tracer. 
    318 The three choices allow: 
    319 a space variation in the three space directions (\key{traldf\_c3d},  \key{dynldf\_c3d}), 
    320 in the horizontal plane (\key{traldf\_c2d},  \key{dynldf\_c2d}), 
    321 or in the vertical only (\key{traldf\_c1d},  \key{dynldf\_c1d}). 
    322 The default option is a constant value over the whole ocean on both momentum and tracers.  
    323     
    324 The number of additional arrays that have to be defined and the gridpoint position at which 
    325 they are defined depend on both the space variation chosen and the type of operator used. 
    326 The resulting eddy viscosity and diffusivity coefficients can be a function of more than one variable. 
    327 Changes in the computer code when switching from one option to another have been minimized by 
    328 introducing the eddy coefficients as statement functions 
    329 (include file \textit{ldftra\_substitute.h90} and \textit{ldfdyn\_substitute.h90}). 
    330 The functions are replaced by their actual meaning during the preprocessing step (CPP). 
    331 The specification of the space variation of the coefficient is made in \mdl{ldftra} and \mdl{ldfdyn}, 
    332 or more precisely in include files \textit{traldf\_cNd.h90} and \textit{dynldf\_cNd.h90}, with N=1, 2 or 3. 
    333 The user can modify these include files as he/she wishes. 
    334 The way the mixing coefficient are set in the reference version can be briefly described as follows: 
    335  
    336 \subsubsection{Constant mixing coefficients (default option)} 
    337 When none of the \key{dynldf\_...} and \key{traldf\_...} keys are defined, 
    338 a constant value is used over the whole ocean for momentum and tracers, 
    339 which is specified through the \np{rn\_ahm0} and \np{rn\_aht0} namelist parameters. 
    340  
    341 \subsubsection{Vertically varying mixing coefficients (\protect\key{traldf\_c1d} and \key{dynldf\_c1d})}  
    342 The 1D option is only available when using the $z$-coordinate with full step. 
    343 Indeed in all the other types of vertical coordinate, 
    344 the depth is a 3D function of (\textbf{i},\textbf{j},\textbf{k}) and therefore, 
    345 introducing depth-dependent mixing coefficients will require 3D arrays. 
    346 In the 1D option, a hyperbolic variation of the lateral mixing coefficient is introduced in which 
    347 the surface value is \np{rn\_aht0} (\np{rn\_ahm0}), the bottom value is 1/4 of the surface value, 
    348 and the transition takes place around z=300~m with a width of 300~m 
    349 (\ie both the depth and the width of the inflection point are set to 300~m). 
    350 This profile is hard coded in file \textit{traldf\_c1d.h90}, but can be easily modified by users. 
    351  
    352 \subsubsection{Horizontally varying mixing coefficients (\protect\key{traldf\_c2d} and \protect\key{dynldf\_c2d})} 
    353 By default the horizontal variation of the eddy coefficient depends on the local mesh size and 
     336The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}.  
     337The way the mixing coefficients are set in the reference version can be described as follows: 
     338 
     339\subsection[Mixing coefficients read from file (\forcode{nn_aht_ijk_t = -20, -30}, \forcode{nn_ahm_ijk_t = -20,-30})] 
     340{ Mixing coefficients read from file (\protect\np{nn\_aht\_ijk\_t}\forcode{ = -20, -30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ = -20, -30})} 
     341 
     342Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model,  
     343the laplacian viscosity operator uses $A^l$~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and 
     344decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}.  
     345Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05.  
     346The provided fields can either be 2d (\np{nn\_aht\_ijk\_t}\forcode{ = -20}, \np{nn\_ahm\_ijk\_t}\forcode{ = -20}) or 3d (\np{nn\_aht\_ijk\_t}\forcode{ = -30},  \np{nn\_ahm\_ijk\_t}\forcode{ = -30}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}). 
     347 
     348%-------------------------------------------------TABLE--------------------------------------------------- 
     349\begin{table}[htb] 
     350  \begin{center} 
     351    \begin{tabular}{|l|l|l|l|} 
     352      \hline 
     353      Namelist parameter                        & Input filename                               & dimensions & variable names                      \\  \hline 
     354      \np{nn\_ahm\_ijk\_t}\forcode{ = -20}       & \forcode{eddy_viscosity_2D.nc }            &     $(i,j)$         & \forcode{ahmt_2d, ahmf_2d}  \\  \hline 
     355      \np{nn\_aht\_ijk\_t}\forcode{ = -20}           & \forcode{eddy_diffusivity_2D.nc }           &     $(i,j)$          & \forcode{ahtu_2d, ahtv_2d}    \\   \hline 
     356      \np{nn\_ahm\_ijk\_t}\forcode{ = -30}       & \forcode{eddy_viscosity_3D.nc }            &     $(i,j,k)$          & \forcode{ahmt_3d, ahmf_3d}  \\  \hline 
     357      \np{nn\_aht\_ijk\_t}\forcode{ = -30}       & \forcode{eddy_diffusivity_3D.nc }           &     $(i,j,k)$         & \forcode{ahtu_3d, ahtv_3d}    \\   \hline 
     358    \end{tabular} 
     359    \caption{ 
     360      \protect\label{tab:LDF_files} 
     361      Description of expected input files if mixing coefficients are read from NetCDF files. 
     362    } 
     363  \end{center} 
     364\end{table} 
     365%-------------------------------------------------------------------------------------------------------------- 
     366 
     367\subsection[Constant mixing coefficients (\forcode{nn_aht_ijk_t = 0}, \forcode{nn_ahm_ijk_t = 0})] 
     368{ Constant mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 0}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ = 0})} 
     369 
     370If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that: 
     371 
     372\begin{equation} 
     373  \label{eq:constantah} 
     374  A_o^l = \left\{ 
     375    \begin{aligned} 
     376      & \frac{1}{2} U_{scl} L_{scl}            & \text{for laplacian operator } \\ 
     377      & \frac{1}{12} U_{scl} L_{scl}^3                    & \text{for bilaplacian operator } 
     378    \end{aligned} 
     379  \right. 
     380\end{equation} 
     381 
     382 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn\_Ud}, \np{rn\_Uv}, \np{rn\_Ld} and \np{rn\_Lv}. 
     383 
     384\subsection[Vertically varying mixing coefficients (\forcode{nn_aht_ijk_t = 10}, \forcode{nn_ahm_ijk_t = 10})] 
     385{Vertically varying mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 10}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ = 10})} 
     386 
     387In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which 
     388the surface value is given by \autoref{eq:constantah}, the bottom value is 1/4 of the surface value, 
     389and the transition takes place around z=500~m with a width of 200~m. 
     390This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users. 
     391 
     392\subsection[Mesh size dependent mixing coefficients (\forcode{nn_aht_ijk_t = 20}, \forcode{nn_ahm_ijk_t = 20})] 
     393{Mesh size dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 20}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ = 20})} 
     394 
     395In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and 
    354396the type of operator used: 
    355397\begin{equation} 
     
    357399  A_l = \left\{ 
    358400    \begin{aligned} 
    359       & \frac{\max(e_1,e_2)}{e_{max}} A_o^l           & \text{for laplacian operator } \\ 
    360       & \frac{\max(e_1,e_2)^{3}}{e_{max}^{3}} A_o^l          & \text{for bilaplacian operator } 
     401      & \frac{1}{2} U_{scl}  \max(e_1,e_2)         & \text{for laplacian operator } \\ 
     402      & \frac{1}{12} U_{scl}  \max(e_1,e_2)^{3}             & \text{for bilaplacian operator } 
    361403    \end{aligned} 
    362404  \right. 
    363405\end{equation} 
    364 where $e_{max}$ is the maximum of $e_1$ and $e_2$ taken over the whole masked ocean domain, 
    365 and $A_o^l$ is the \np{rn\_ahm0} (momentum) or \np{rn\_aht0} (tracer) namelist parameter. 
     406where $U_{scl}$ is a user defined velocity scale (\np{rn\_Ud}, \np{rn\_Uv}). 
    366407This variation is intended to reflect the lesser need for subgrid scale eddy mixing where 
    367408the grid size is smaller in the domain. 
    368 It was introduced in the context of the DYNAMO modelling project \citep{Willebrand_al_PO01}. 
    369 Note that such a grid scale dependance of mixing coefficients significantly increase the range of stability of 
    370 model configurations presenting large changes in grid pacing such as global ocean models. 
     409It was introduced in the context of the DYNAMO modelling project \citep{willebrand.barnier.ea_PO01}. 
     410Note that such a grid scale dependance of mixing coefficients significantly increases the range of stability of 
     411model configurations presenting large changes in grid spacing such as global ocean models. 
    371412Indeed, in such a case, a constant mixing coefficient can lead to a blow up of the model due to 
    372413large coefficient compare to the smallest grid size (see \autoref{sec:STP_forward_imp}), 
    373414especially when using a bilaplacian operator. 
    374415 
    375 Other formulations can be introduced by the user for a given configuration. 
    376 For example, in the ORCA2 global ocean model (see Configurations), 
    377 the laplacian viscosity operator uses \np{rn\_ahm0}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and 
    378 decreases linearly to \np{rn\_aht0}~= 2.10$^3$ m$^2$/s at the equator \citep{Madec_al_JPO96, Delecluse_Madec_Bk00}. 
    379 This modification can be found in routine \rou{ldf\_dyn\_c2d\_orca} defined in \mdl{ldfdyn\_c2d}. 
    380 Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of 
    381 ORCA2 and ORCA05 (see \&namcfg namelist). 
    382  
    383 \subsubsection{Space varying mixing coefficients (\protect\key{traldf\_c3d} and \key{dynldf\_c3d})} 
    384  
    385 The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases, 
     416\colorbox{yellow}{CASE \np{nn\_aht\_ijk\_t} = 21 to be added} 
     417 
     418\subsection[Mesh size and depth dependent mixing coefficients (\forcode{nn_aht_ijk_t = 30}, \forcode{nn_ahm_ijk_t = 30})] 
     419{Mesh size and depth dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ = 30})} 
     420 
     421The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above, 
    386422\ie a hyperbolic tangent variation with depth associated with a grid size dependence of 
    387423the magnitude of the coefficient.  
    388424 
    389 \subsubsection{Space and time varying mixing coefficients} 
    390  
    391 There is no default specification of space and time varying mixing coefficient.  
    392 The only case available is specific to the ORCA2 and ORCA05 global ocean configurations. 
    393 It provides only a tracer mixing coefficient for eddy induced velocity (ORCA2) or both iso-neutral and 
    394 eddy induced velocity (ORCA05) that depends on the local growth rate of baroclinic instability. 
    395 This specification is actually used when an ORCA key and both \key{traldf\_eiv} and \key{traldf\_c2d} are defined. 
     425\subsection[Velocity dependent mixing coefficients (\forcode{nn_aht_ijk_t = 31}, \forcode{nn_ahm_ijk_t = 31})] 
     426{Flow dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{ = 31}, \protect\np{nn\_ahm\_ijk\_t}\forcode{ = 31})} 
     427In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re =  \lvert U \rvert  e / A_l$ is constant (and here hardcoded to $12$): 
     428\colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?} 
     429 
     430\begin{equation} 
     431  \label{eq:flowah} 
     432  A_l = \left\{ 
     433    \begin{aligned} 
     434      & \frac{1}{12} \lvert U \rvert e          & \text{for laplacian operator } \\ 
     435      & \frac{1}{12} \lvert U \rvert e^3             & \text{for bilaplacian operator }  
     436    \end{aligned} 
     437  \right. 
     438\end{equation} 
     439 
     440\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t = 32})] 
     441{Deformation rate dependent viscosities (\protect\np{nn\_ahm\_ijk\_t}\forcode{ = 32})} 
     442 
     443This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a  
     444characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.: 
     445 
     446\begin{equation} 
     447  \label{eq:smag1} 
     448  \begin{split} 
     449    T_{smag}^{-1} & = \sqrt{\left( \partial_x u - \partial_y v\right)^2 + \left( \partial_y u + \partial_x v\right)^2  } \\ 
     450    L_{smag} & = \frac{1}{\pi}\frac{e_1 e_2}{e_1 + e_2} 
     451  \end{split} 
     452\end{equation} 
     453 
     454Introducing a user defined constant $C$ (given in the namelist as \np{rn\_csmc}), one can deduce the mixing coefficients as follows: 
     455 
     456\begin{equation} 
     457  \label{eq:smag2} 
     458  A_{smag} = \left\{ 
     459    \begin{aligned} 
     460      & C^2  T_{smag}^{-1}  L_{smag}^2       & \text{for laplacian operator } \\ 
     461      & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4        & \text{for bilaplacian operator }  
     462    \end{aligned} 
     463  \right. 
     464\end{equation} 
     465 
     466For stability reasons, upper and lower limits are applied on the resulting coefficient (see \autoref{sec:STP_forward_imp}) so that: 
     467\begin{equation} 
     468  \label{eq:smag3} 
     469    \begin{aligned} 
     470      & C_{min} \frac{1}{2}   \lvert U \rvert  e    < A_{smag} < C_{max} \frac{e^2}{   8\rdt}                 & \text{for laplacian operator } \\ 
     471      & C_{min} \frac{1}{12} \lvert U \rvert  e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt}                 & \text{for bilaplacian operator }  
     472    \end{aligned} 
     473\end{equation} 
     474 
     475where $C_{min}$ and $C_{max}$ are adimensional namelist parameters given by \np{rn\_minfac} and \np{rn\_maxfac} respectively. 
     476 
     477\subsection{About space and time varying mixing coefficients} 
    396478 
    397479The following points are relevant when the eddy coefficient varies spatially: 
     
    406488(\autoref{sec:dynldf_properties}). 
    407489 
    408 (3) for isopycnal diffusion on momentum or tracers, an additional purely horizontal background diffusion with 
    409 uniform coefficient can be added by setting a non zero value of \np{rn\_ahmb0} or \np{rn\_ahtb0}, 
    410 a background horizontal eddy viscosity or diffusivity coefficient 
    411 (namelist parameters whose default values are $0$). 
    412 However, the technique used to compute the isopycnal slopes is intended to get rid of such a background diffusion, 
    413 since it introduces spurious diapycnal diffusion (see \autoref{sec:LDF_slp}). 
    414  
    415 (4) when an eddy induced advection term is used (\key{traldf\_eiv}), 
    416 $A^{eiv}$, the eddy induced coefficient has to be defined. 
    417 Its space variations are controlled by the same CPP variable as for the eddy diffusivity coefficient 
    418 (\ie \key{traldf\_cNd}).  
    419  
    420 (5) the eddy coefficient associated with a biharmonic operator must be set to a \emph{negative} value. 
    421  
    422 (6) it is possible to use both the laplacian and biharmonic operators concurrently. 
    423  
    424 (7) it is possible to run without explicit lateral diffusion on momentum 
    425 (\np{ln\_dynldf\_lap}\forcode{ = .?.}\np{ln\_dynldf\_bilap}\forcode{ = .false.}). 
    426 This is recommended when using the UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{ = .true.}, 
    427 see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 
    428  
    429490% ================================================================ 
    430491% Eddy Induced Mixing 
    431492% ================================================================ 
    432 \section{Eddy induced velocity (\protect\mdl{traadv\_eiv}, \protect\mdl{ldfeiv})} 
     493\section[Eddy induced velocity (\forcode{ln_ldfeiv = .true.})] 
     494{Eddy induced velocity (\protect\np{ln\_ldfeiv}\forcode{ = .true.})} 
     495 
    433496\label{sec:LDF_eiv} 
     497 
     498%--------------------------------------------namtra_eiv--------------------------------------------------- 
     499 
     500\nlst{namtra_eiv} 
     501 
     502%-------------------------------------------------------------------------------------------------------------- 
     503 
    434504 
    435505%%gm  from Triad appendix  : to be incorporated.... 
     
    453523} 
    454524 
    455 When Gent and McWilliams [1990] diffusion is used (\key{traldf\_eiv} defined), 
     525When  \citet{gent.mcwilliams_JPO90} diffusion is used (\np{ln\_ldfeiv}\forcode{ = .true.}), 
    456526an eddy induced tracer advection term is added, 
    457527the formulation of which depends on the slopes of iso-neutral surfaces. 
     
    459529\ie \autoref{eq:ldfslp_geo} is used in $z$-coordinates, 
    460530and the sum \autoref{eq:ldfslp_geo} + \autoref{eq:ldfslp_iso} in $s$-coordinates. 
    461 The eddy induced velocity is given by:  
     531 
     532If isopycnal mixing is used in the standard way, \ie \np{ln\_traldf\_triad}\forcode{ = .false.}, the eddy induced velocity is given by:  
    462533\begin{equation} 
    463534  \label{eq:ldfeiv} 
     
    468539  \end{split} 
    469540\end{equation} 
    470 where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{rn\_aeiv}, 
    471 a \textit{nam\_traldf} namelist parameter. 
    472 The three components of the eddy induced velocity are computed and 
    473 add to the eulerian velocity in \mdl{traadv\_eiv}. 
     541where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn\_aei\_ijk\_t} \ngn{namtra\_eiv} namelist parameter.  
     542The three components of the eddy induced velocity are computed in \rou{ldf\_eiv\_trp} and 
     543added to the eulerian velocity in \rou{tra\_adv} where tracer advection is performed. 
    474544This has been preferred to a separate computation of the advective trends associated with the eiv velocity, 
    475545since it allows us to take advantage of all the advection schemes offered for the tracers 
    476546(see \autoref{sec:TRA_adv}) and not just the $2^{nd}$ order advection scheme as in 
    477 previous releases of OPA \citep{Madec1998}. 
     547previous releases of OPA \citep{madec.delecluse.ea_NPM98}. 
    478548This is particularly useful for passive tracers where \emph{positivity} of the advection scheme is of 
    479549paramount importance.  
     
    481551At the surface, lateral and bottom boundaries, the eddy induced velocity, 
    482552and thus the advective eddy fluxes of heat and salt, are set to zero.  
     553The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn\_aei\_ijk\_t}, \np{rn\_Ue}, \np{rn\_Le} namelist parameters).  
     554\colorbox{yellow}{CASE \np{nn\_aei\_ijk\_t} = 21 to be added} 
     555 
     556In case of setting \np{ln\_traldf\_triad}\forcode{ = .true.}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:triad}. 
     557 
     558% ================================================================ 
     559% Mixed layer eddies 
     560% ================================================================ 
     561\section[Mixed layer eddies (\forcode{ln_mle = .true.})] 
     562{Mixed layer eddies (\protect\np{ln\_mle}\forcode{ = .true.})} 
     563 
     564\label{sec:LDF_mle} 
     565 
     566%--------------------------------------------namtra_eiv--------------------------------------------------- 
     567 
     568\nlst{namtra_mle} 
     569 
     570%-------------------------------------------------------------------------------------------------------------- 
     571 
     572If  \np{ln\_mle}\forcode{ = .true.} in \ngn{namtra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection. 
     573 
     574\colorbox{yellow}{TBC} 
    483575 
    484576\biblio 
Note: See TracChangeset for help on using the changeset viewer.