New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11544 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex – NEMO

Ignore:
Timestamp:
2019-09-13T16:37:38+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Missing modifications from previous commit

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_conservation.tex

    r11435 r11544  
    77% ================================================================ 
    88\chapter{Invariants of the Primitive Equations} 
    9 \label{chap:Invariant} 
     9\label{chap:CONS} 
     10 
    1011\chaptertoc 
    1112 
     
    4546% ------------------------------------------------------------------------------------------------------------- 
    4647\section{Conservation properties on ocean dynamics} 
    47 \label{sec:Invariant_dyn} 
     48\label{sec:CONS_Invariant_dyn} 
    4849 
    4950The non linear term of the momentum equations has been split into a vorticity term, 
     
    6364The continuous formulation of the vorticity term satisfies following integral constraints: 
    6465\[ 
    65   % \label{eq:vor_vorticity} 
     66  % \label{eq:CONS_vor_vorticity} 
    6667  \int_D {{\textbf {k}}\cdot \frac{1}{e_3 }\nabla \times \left( {\varsigma 
    6768        \;{\mathrm {\mathbf k}}\times {\textbf {U}}_h } \right)\;dv} =0 
     
    6970 
    7071\[ 
    71   % \label{eq:vor_enstrophy} 
     72  % \label{eq:CONS_vor_enstrophy} 
    7273  if\quad \chi =0\quad \quad \int\limits_D {\varsigma \;{\textbf{k}}\cdot 
    7374    \frac{1}{e_3 }\nabla \times \left( {\varsigma {\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =-\int\limits_D {\frac{1}{2}\varsigma ^2\,\chi \;dv} 
     
    7677 
    7778\[ 
    78   % \label{eq:vor_energy} 
     79  % \label{eq:CONS_vor_energy} 
    7980  \int_D {{\textbf{U}}_h \times \left( {\varsigma \;{\textbf{k}}\times {\textbf{U}}_h } \right)\;dv} =0 
    8081\] 
     
    8889Using the symmetry or anti-symmetry properties of the operators (Eqs II.1.10 and 11), 
    8990it can be shown that the scheme (II.2.11) satisfies (II.4.1b) but not (II.4.1c), 
    90 while scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C).  
     91while scheme (II.2.12) satisfies (II.4.1c) but not (II.4.1b) (see appendix C). 
    9192Note that the enstrophy conserving scheme on total vorticity has been chosen as the standard discrete form of 
    9293the vorticity term. 
     
    102103the horizontal gradient of horizontal kinetic energy: 
    103104 
    104 \begin{equation} \label{eq:keg_zad} 
    105 \int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial  
     105\begin{equation} \label{eq:CONS_keg_zad} 
     106\int_D {{\textbf{U}}_h \cdot \nabla _h \left( {1/2\;{\textbf{U}}_h ^2} \right)\;dv} =-\int_D {{\textbf{U}}_h \cdot \frac{w}{e_3 }\;\frac{\partial 
    106107{\textbf{U}}_h }{\partial k}\;dv} 
    107108\end{equation} 
    108109 
    109110Using the discrete form given in {\S}II.2-a and the symmetry or anti-symmetry properties of 
    110 the mean and difference operators, \autoref{eq:keg_zad} is demonstrated in the Appendix C. 
    111 The main point here is that satisfying \autoref{eq:keg_zad} links the choice of the discrete forms of 
     111the mean and difference operators, \autoref{eq:CONS_keg_zad} is demonstrated in the Appendix C. 
     112The main point here is that satisfying \autoref{eq:CONS_keg_zad} links the choice of the discrete forms of 
    112113the vertical advection and of the horizontal gradient of horizontal kinetic energy. 
    113114Choosing one imposes the other. 
     
    127128 
    128129\[ 
    129   % \label{eq:hpg_pe} 
     130  % \label{eq:CONS_hpg_pe} 
    130131  \int_D {-\frac{1}{\rho_o }\left. {\nabla p^h} \right|_z \cdot {\textbf {U}}_h \;dv} \;=\;\int_D {\nabla .\left( {\rho \,{\textbf{U}}} \right)\;g\;z\;\;dv} 
    131132\] 
     
    133134Using the discrete form given in {\S}~II.2-a and the symmetry or anti-symmetry properties of 
    134135the mean and difference operators, (II.4.3) is demonstrated in the Appendix C. 
    135 The main point here is that satisfying (II.4.3) strongly constraints the discrete expression of the depth of  
     136The main point here is that satisfying (II.4.3) strongly constraints the discrete expression of the depth of 
    136137$T$-points and of the term added to the pressure gradient in $s-$coordinates: the depth of a $T$-point, $z_T$, 
    137138is defined as the sum the vertical scale factors at $w$-points starting from the surface. 
     
    145146Nevertheless, the $\psi$-equation is solved numerically by an iterative solver (see {\S}~III.5), 
    146147thus the property is only satisfied with the accuracy required on the solver. 
    147 In addition, with the rigid-lid approximation, the change of horizontal kinetic energy due to the work of  
     148In addition, with the rigid-lid approximation, the change of horizontal kinetic energy due to the work of 
    148149surface pressure forces is exactly zero: 
    149150\[ 
    150   % \label{eq:spg} 
     151  % \label{eq:CONS_spg} 
    151152  \int_D {-\frac{1}{\rho_o }\nabla _h } \left( {p_s } \right)\cdot {\textbf{U}}_h \;dv=0 
    152153\] 
     
    161162% ------------------------------------------------------------------------------------------------------------- 
    162163\section{Conservation properties on ocean thermodynamics} 
    163 \label{sec:Invariant_tra} 
     164\label{sec:CONS_Invariant_tra} 
    164165 
    165166In continuous formulation, the advective terms of the tracer equations conserve the tracer content and 
    166167the quadratic form of the tracer, \ie 
    167168\[ 
    168   % \label{eq:tra_tra2} 
     169  % \label{eq:CONS_tra_tra2} 
    169170  \int_D {\nabla .\left( {T\;{\textbf{U}}} \right)\;dv} =0 
    170171  \;\text{and} 
     
    176177Note that in both continuous and discrete formulations, there is generally no strict conservation of mass, 
    177178since the equation of state is non linear with respect to $T$ and $S$. 
    178 In practice, the mass is conserved with a very good accuracy.  
     179In practice, the mass is conserved with a very good accuracy. 
    179180 
    180181% ------------------------------------------------------------------------------------------------------------- 
     
    182183% ------------------------------------------------------------------------------------------------------------- 
    183184\subsection{Conservation properties on momentum physics} 
    184 \label{subsec:Invariant_dyn_physics} 
     185\label{subsec:CONS_Invariant_dyn_physics} 
    185186 
    186187\textbf{* lateral momentum diffusion term} 
     
    188189The continuous formulation of the horizontal diffusion of momentum satisfies the following integral constraints~: 
    189190\[ 
    190   % \label{eq:dynldf_dyn} 
     191  % \label{eq:CONS_dynldf_dyn} 
    191192  \int\limits_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left[ {\nabla 
    192193        _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( {A^{lm}\;\zeta 
     
    195196 
    196197\[ 
    197   % \label{eq:dynldf_div} 
     198  % \label{eq:CONS_dynldf_div} 
    198199  \int\limits_D {\nabla _h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
    199200        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} 
     
    202203 
    203204\[ 
    204   % \label{eq:dynldf_curl} 
     205  % \label{eq:CONS_dynldf_curl} 
    205206  \int_D {{\mathrm {\mathbf U}}_h \cdot \left[ {\nabla _h \left( {A^{lm}\;\chi } 
    206207        \right)-\nabla _h \times \left( {A^{lm}\;\zeta \;{\mathrm {\mathbf k}}} \right)} 
     
    209210 
    210211\[ 
    211   % \label{eq:dynldf_curl2} 
     212  % \label{eq:CONS_dynldf_curl2} 
    212213  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\zeta \;{\mathrm {\mathbf k}}\cdot 
    213214    \nabla \times \left[ {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h 
     
    217218 
    218219\[ 
    219   % \label{eq:dynldf_div2} 
     220  % \label{eq:CONS_dynldf_div2} 
    220221  \mbox{if}\quad A^{lm}=cste\quad \quad \int_D {\chi \;\nabla _h \cdot \left[ 
    221222      {\nabla _h \left( {A^{lm}\;\chi } \right)-\nabla _h \times \left( 
     
    250251 
    251252\[ 
    252   % \label{eq:dynzdf_dyn} 
     253  % \label{eq:CONS_dynzdf_dyn} 
    253254  \begin{aligned} 
    254255    & \int_D {\frac{1}{e_3 }}  \frac{\partial }{\partial k}\left( \frac{A^{vm}}{e_3 }\frac{\partial {\textbf{U}}_h }{\partial k} \right) \;dv = \overrightarrow{\textbf{0}} \\ 
     
    258259conservation of vorticity, dissipation of enstrophy 
    259260\[ 
    260   % \label{eq:dynzdf_vor} 
     261  % \label{eq:CONS_dynzdf_vor} 
    261262  \begin{aligned} 
    262263    & \int_D {\frac{1}{e_3 }{\mathrm {\mathbf k}}\cdot \nabla \times \left( {\frac{1}{e_3 
     
    270271conservation of horizontal divergence, dissipation of square of the horizontal divergence 
    271272\[ 
    272   % \label{eq:dynzdf_div} 
     273  % \label{eq:CONS_dynzdf_div} 
    273274  \begin{aligned} 
    274275    &\int_D {\nabla \cdot \left( {\frac{1}{e_3 }\frac{\partial }{\partial 
     
    289290% ------------------------------------------------------------------------------------------------------------- 
    290291\subsection{Conservation properties on tracer physics} 
    291 \label{subsec:Invariant_tra_physics} 
     292\label{subsec:CONS_Invariant_tra_physics} 
    292293 
    293294The numerical schemes used for tracer subgridscale physics are written in such a way that 
     
    296297the quadratic form of these quantities (\ie\ their variance) globally tends to diminish. 
    297298As for the advective term, there is generally no strict conservation of mass even if, 
    298 in practice, the mass is conserved with a very good accuracy.  
    299  
    300 \textbf{* lateral physics: }conservation of tracer, dissipation of tracer  
     299in practice, the mass is conserved with a very good accuracy. 
     300 
     301\textbf{* lateral physics: }conservation of tracer, dissipation of tracer 
    301302variance, i.e. 
    302303 
    303304\[ 
    304   % \label{eq:traldf_t_t2} 
     305  % \label{eq:CONS_traldf_t_t2} 
    305306  \begin{aligned} 
    306307    &\int_D \nabla\, \cdot\, \left( A^{lT} \,\Re \,\nabla \,T \right)\;dv = 0 \\ 
     
    312313 
    313314\[ 
    314   % \label{eq:trazdf_t_t2} 
     315  % \label{eq:CONS_trazdf_t_t2} 
    315316  \begin{aligned} 
    316317    & \int_D \frac{1}{e_3 } \frac{\partial }{\partial k}\left( \frac{A^{vT}}{e_3 }  \frac{\partial T}{\partial k}  \right)\;dv = 0 \\ 
Note: See TracChangeset for help on using the changeset viewer.