New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11564 for NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex/NEMO/subfiles/chap_LDF.tex – NEMO

Ignore:
Timestamp:
2019-09-18T16:11:52+02:00 (5 years ago)
Author:
jchanut
Message:

#2199, merged with trunk

Location:
NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex/NEMO/subfiles/chap_LDF.tex

    r10442 r11564  
    99\label{chap:LDF} 
    1010 
    11 \minitoc 
     11\chaptertoc 
    1212 
    1313\newpage 
    1414 
    15 The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:PE_zdf} and 
     15The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:MB_zdf} and 
    1616their discrete formulation in \autoref{sec:TRA_ldf} and \autoref{sec:DYN_ldf}). 
    1717In this section we further discuss each lateral physics option. 
     
    2222(3) the space and time variations of the eddy coefficients. 
    2323These three aspects of the lateral diffusion are set through namelist parameters 
    24 (see the \ngn{nam\_traldf} and \ngn{nam\_dynldf} below). 
    25 Note that this chapter describes the standard implementation of iso-neutral tracer mixing, 
    26 and Griffies's implementation, which is used if \np{traldf\_grif}\forcode{ = .true.}, 
    27 is described in Appdx\autoref{apdx:triad} 
    28  
    29 %-----------------------------------nam_traldf - nam_dynldf-------------------------------------------- 
    30  
    31 \nlst{namtra_ldf}  
    32  
    33 \nlst{namdyn_ldf}  
     24(see the \nam{tra\_ldf} and \nam{dyn\_ldf} below). 
     25Note that this chapter describes the standard implementation of iso-neutral tracer mixing. 
     26Griffies's implementation, which is used if \np{ln\_traldf\_triad}\forcode{=.true.}, 
     27is described in \autoref{apdx:TRIADS} 
     28 
     29%-----------------------------------namtra_ldf - namdyn_ldf-------------------------------------------- 
     30 
    3431%-------------------------------------------------------------------------------------------------------------- 
    3532 
     33% ================================================================ 
     34% Lateral Mixing Operator 
     35% ================================================================ 
     36\section[Lateral mixing operators] 
     37{Lateral mixing operators} 
     38\label{sec:LDF_op} 
     39We remind here the different lateral mixing operators that can be used. Further details can be found in \autoref{subsec:TRA_ldf_op} and  \autoref{sec:DYN_ldf}. 
     40 
     41\subsection[No lateral mixing (\forcode{ln_traldf_OFF}, \forcode{ln_dynldf_OFF})] 
     42{No lateral mixing (\protect\np{ln\_traldf\_OFF}, \protect\np{ln\_dynldf\_OFF})} 
     43 
     44It is possible to run without explicit lateral diffusion on tracers (\protect\np{ln\_traldf\_OFF}\forcode{=.true.}) and/or 
     45momentum (\protect\np{ln\_dynldf\_OFF}\forcode{=.true.}). The latter option is even recommended if using the 
     46UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{=.true.}, 
     47see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 
     48 
     49\subsection[Laplacian mixing (\forcode{ln_traldf_lap}, \forcode{ln_dynldf_lap})] 
     50{Laplacian mixing (\protect\np{ln\_traldf\_lap}, \protect\np{ln\_dynldf\_lap})} 
     51Setting \protect\np{ln\_traldf\_lap}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_lap}\forcode{=.true.} enables 
     52a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine 
     53Laplacian and Bilaplacian operators for the same variable. 
     54 
     55\subsection[Bilaplacian mixing (\forcode{ln_traldf_blp}, \forcode{ln_dynldf_blp})] 
     56{Bilaplacian mixing (\protect\np{ln\_traldf\_blp}, \protect\np{ln\_dynldf\_blp})} 
     57Setting \protect\np{ln\_traldf\_blp}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_blp}\forcode{=.true.} enables 
     58a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice. 
     59We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed. 
    3660 
    3761% ================================================================ 
    3862% Direction of lateral Mixing 
    3963% ================================================================ 
    40 \section{Direction of lateral mixing (\protect\mdl{ldfslp})} 
     64\section[Direction of lateral mixing (\textit{ldfslp.F90})] 
     65{Direction of lateral mixing (\protect\mdl{ldfslp})} 
    4166\label{sec:LDF_slp} 
    4267 
     
    4469\gmcomment{ 
    4570  we should emphasize here that the implementation is a rather old one. 
    46   Better work can be achieved by using \citet{Griffies_al_JPO98, Griffies_Bk04} iso-neutral scheme. 
     71  Better work can be achieved by using \citet{griffies.gnanadesikan.ea_JPO98, griffies_bk04} iso-neutral scheme. 
    4772} 
    4873 
     
    5479the cell of the quantity to be diffused. 
    5580For a tracer, this leads to the following four slopes: 
    56 $r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:tra_ldf_iso}), 
     81$r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:TRA_ldf_iso}), 
    5782while for momentum the slopes are  $r_{1t}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for $u$ and 
    58 $r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$.  
     83$r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$. 
    5984 
    6085%gm% add here afigure of the slope in i-direction 
     
    6287\subsection{Slopes for tracer geopotential mixing in the $s$-coordinate} 
    6388 
    64 In $s$-coordinates, geopotential mixing (\ie horizontal mixing) $r_1$ and $r_2$ are the slopes between 
     89In $s$-coordinates, geopotential mixing (\ie\ horizontal mixing) $r_1$ and $r_2$ are the slopes between 
    6590the geopotential and computational surfaces. 
    66 Their discrete formulation is found by locally solving \autoref{eq:tra_ldf_iso} when 
     91Their discrete formulation is found by locally solving \autoref{eq:TRA_ldf_iso} when 
    6792the diffusive fluxes in the three directions are set to zero and $T$ is assumed to be horizontally uniform, 
    68 \ie a linear function of $z_T$, the depth of a $T$-point.  
     93\ie\ a linear function of $z_T$, the depth of a $T$-point. 
    6994%gm { Steven : My version is obviously wrong since I'm left with an arbitrary constant which is the local vertical temperature gradient} 
    7095 
    7196\begin{equation} 
    72   \label{eq:ldfslp_geo} 
     97  \label{eq:LDF_slp_geo} 
    7398  \begin{aligned} 
    7499    r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)} 
     
    85110\end{equation} 
    86111 
    87 %gm%  caution I'm not sure the simplification was a good idea!  
    88  
    89 These slopes are computed once in \rou{ldfslp\_init} when \np{ln\_sco}\forcode{ = .true.}rue, 
    90 and either \np{ln\_traldf\_hor}\forcode{ = .true.} or \np{ln\_dynldf\_hor}\forcode{ = .true.}.  
     112%gm%  caution I'm not sure the simplification was a good idea! 
     113 
     114These slopes are computed once in \rou{ldf\_slp\_init} when \np{ln\_sco}\forcode{=.true.}, 
     115and either \np{ln\_traldf\_hor}\forcode{=.true.} or \np{ln\_dynldf\_hor}\forcode{=.true.}. 
    91116 
    92117\subsection{Slopes for tracer iso-neutral mixing} 
     
    96121Their formulation does not depend on the vertical coordinate used. 
    97122Their discrete formulation is found using the fact that the diffusive fluxes of 
    98 locally referenced potential density (\ie $in situ$ density) vanish. 
    99 So, substituting $T$ by $\rho$ in \autoref{eq:tra_ldf_iso} and setting the diffusive fluxes in 
     123locally referenced potential density (\ie\ $in situ$ density) vanish. 
     124So, substituting $T$ by $\rho$ in \autoref{eq:TRA_ldf_iso} and setting the diffusive fluxes in 
    100125the three directions to zero leads to the following definition for the neutral slopes: 
    101126 
    102127\begin{equation} 
    103   \label{eq:ldfslp_iso} 
     128  \label{eq:LDF_slp_iso} 
    104129  \begin{split} 
    105130    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac{\delta_{i+1/2}[\rho]} 
     
    117142 
    118143%gm% rewrite this as the explanation is not very clear !!! 
    119 %In practice, \autoref{eq:ldfslp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:ldfslp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth.  
    120  
    121 %By definition, neutral surfaces are tangent to the local $in situ$ density \citep{McDougall1987}, therefore in \autoref{eq:ldfslp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters). 
    122  
    123 %In the $z$-coordinate, the derivative of the  \autoref{eq:ldfslp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation.  
    124  
    125 As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:ldfslp_iso} has to 
     144%In practice, \autoref{eq:LDF_slp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:LDF_slp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth. 
     145 
     146%By definition, neutral surfaces are tangent to the local $in situ$ density \citep{mcdougall_JPO87}, therefore in \autoref{eq:LDF_slp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters). 
     147 
     148%In the $z$-coordinate, the derivative of the  \autoref{eq:LDF_slp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation. 
     149 
     150As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:LDF_slp_iso} has to 
    126151be evaluated at the same local pressure 
    127152(which, in decibars, is approximated by the depth in meters in the model). 
    128 Therefore \autoref{eq:ldfslp_iso} cannot be used as such, 
     153Therefore \autoref{eq:LDF_slp_iso} cannot be used as such, 
    129154but further transformation is needed depending on the vertical coordinate used: 
    130155 
     
    132157 
    133158\item[$z$-coordinate with full step: ] 
    134   in \autoref{eq:ldfslp_iso} the densities appearing in the $i$ and $j$ derivatives  are taken at the same depth, 
     159  in \autoref{eq:LDF_slp_iso} the densities appearing in the $i$ and $j$ derivatives  are taken at the same depth, 
    135160  thus the $in situ$ density can be used. 
    136161  This is not the case for the vertical derivatives: $\delta_{k+1/2}[\rho]$ is replaced by $-\rho N^2/g$, 
    137   where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{McDougall1987} 
    138   (see \autoref{subsec:TRA_bn2}).  
     162  where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{mcdougall_JPO87} 
     163  (see \autoref{subsec:TRA_bn2}). 
    139164 
    140165\item[$z$-coordinate with partial step: ] 
     
    144169\item[$s$- or hybrid $s$-$z$- coordinate: ] 
    145170  in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if 
    146   the Griffies scheme is used (\np{traldf\_grif}\forcode{ = .true.}; 
    147   see Appdx \autoref{apdx:triad}). 
     171  the Griffies scheme is used (\np{ln\_traldf\_triad}\forcode{=.true.}; 
     172  see \autoref{apdx:TRIADS}). 
    148173  In other words, iso-neutral mixing will only be accurately represented with a linear equation of state 
    149   (\np{nn\_eos}\forcode{ = 1..2}). 
    150   In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:ldfslp_iso} 
     174  (\np{ln\_seos}\forcode{=.true.}). 
     175  In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:LDF_slp_iso} 
    151176  will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes. 
    152177 
    153 %gm%  
     178%gm% 
    154179  Note: The solution for $s$-coordinate passes trough the use of different (and better) expression for 
    155180  the constraint on iso-neutral fluxes. 
    156   Following \citet{Griffies_Bk04}, instead of specifying directly that there is a zero neutral diffusive flux of 
     181  Following \citet{griffies_bk04}, instead of specifying directly that there is a zero neutral diffusive flux of 
    157182  locally referenced potential density, we stay in the $T$-$S$ plane and consider the balance between 
    158183  the neutral direction diffusive fluxes of potential temperature and salinity: 
     
    165190 
    166191\[ 
    167   % \label{eq:ldfslp_iso2} 
     192  % \label{eq:LDF_slp_iso2} 
    168193  \begin{split} 
    169194    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac 
     
    197222 
    198223This implementation is a rather old one. 
    199 It is similar to the one proposed by Cox [1987], except for the background horizontal diffusion. 
    200 Indeed, the Cox implementation of isopycnal diffusion in GFDL-type models requires 
     224It is similar to the one proposed by \citet{cox_OM87}, except for the background horizontal diffusion. 
     225Indeed, the \citet{cox_OM87} implementation of isopycnal diffusion in GFDL-type models requires 
    201226a minimum background horizontal diffusion for numerical stability reasons. 
    202227To overcome this problem, several techniques have been proposed in which the numerical schemes of 
    203 the ocean model are modified \citep{Weaver_Eby_JPO97, Griffies_al_JPO98}. 
    204 Griffies's scheme is now available in \NEMO if \np{traldf\_grif\_iso} is set true; see Appdx \autoref{apdx:triad}. 
    205 Here, another strategy is presented \citep{Lazar_PhD97}: 
     228the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}. 
     229Griffies's scheme is now available in \NEMO\ if \np{ln\_traldf\_triad}\forcode{ = .true.}; see \autoref{apdx:TRIADS}. 
     230Here, another strategy is presented \citep{lazar_phd97}: 
    206231a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of 
    207232grid point noise generated by the iso-neutral diffusion operator (\autoref{fig:LDF_ZDF1}). 
     
    212237 
    213238Nevertheless, this iso-neutral operator does not ensure that variance cannot increase, 
    214 contrary to the \citet{Griffies_al_JPO98} operator which has that property.  
     239contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property. 
    215240 
    216241%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    217242\begin{figure}[!ht] 
    218   \begin{center} 
    219     \includegraphics[width=0.70\textwidth]{Fig_LDF_ZDF1} 
    220     \caption { 
    221       \protect\label{fig:LDF_ZDF1} 
    222       averaging procedure for isopycnal slope computation. 
    223     } 
    224   \end{center} 
     243  \centering 
     244  \includegraphics[width=\textwidth]{Fig_LDF_ZDF1} 
     245  \caption{Averaging procedure for isopycnal slope computation} 
     246  \label{fig:LDF_ZDF1} 
    225247\end{figure} 
    226248%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    227249 
    228 %There are three additional questions about the slope calculation.  
    229 %First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes.  
    230 %Second, numerical stability issues also require a bound on slopes.  
     250%There are three additional questions about the slope calculation. 
     251%First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes. 
     252%Second, numerical stability issues also require a bound on slopes. 
    231253%Third, the question of boundary condition specified on slopes... 
    232254 
     
    235257 
    236258 
    237 % In addition and also for numerical stability reasons \citep{Cox1987, Griffies_Bk04},  
    238 % the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly  
    239 % to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the  
     259% In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04}, 
     260% the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly 
     261% to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the 
    240262% surface motivates this flattening of isopycnals near the surface). 
    241263 
    242 For numerical stability reasons \citep{Cox1987, Griffies_Bk04}, the slopes must also be bounded by 
    243 $1/100$ everywhere. 
     264For numerical stability reasons \citep{cox_OM87, griffies_bk04}, the slopes must also be bounded by 
     265the namelist scalar \np{rn\_slpmax} (usually $1/100$) everywhere. 
    244266This constraint is applied in a piecewise linear fashion, increasing from zero at the surface to 
    245267$1/100$ at $70$ metres and thereafter decreasing to zero at the bottom of the ocean 
    246268(the fact that the eddies "feel" the surface motivates this flattening of isopycnals near the surface). 
     269\colorbox{yellow}{The way slopes are tapered has be checked. Not sure that this is still what is actually done.} 
    247270 
    248271%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    249272\begin{figure}[!ht] 
    250   \begin{center} 
    251     \includegraphics[width=0.70\textwidth]{Fig_eiv_slp} 
    252     \caption{ 
    253       \protect\label{fig:eiv_slp} 
    254       Vertical profile of the slope used for lateral mixing in the mixed layer: 
    255       \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, 
    256       which has to be adjusted at the surface boundary 
    257       \ie it must tend to zero at the surface since there is no mixing across the air-sea interface: 
    258       wall boundary condition). 
    259       Nevertheless, the profile between the surface zero value and the interior iso-neutral one is unknown, 
    260       and especially the value at the base of the mixed layer; 
    261       \textit{(b)} profile of slope using a linear tapering of the slope near the surface and 
    262       imposing a maximum slope of 1/100; 
    263       \textit{(c)} profile of slope actually used in \NEMO: a linear decrease of the slope from 
    264       zero at the surface to its ocean interior value computed just below the mixed layer. 
    265       Note the huge change in the slope at the base of the mixed layer between \textit{(b)} and \textit{(c)}. 
    266     } 
    267   \end{center} 
     273  \centering 
     274  \includegraphics[width=\textwidth]{Fig_eiv_slp} 
     275  \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{ 
     276    Vertical profile of the slope used for lateral mixing in the mixed layer: 
     277    \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, 
     278    which has to be adjusted at the surface boundary 
     279    \ie\ it must tend to zero at the surface since there is no mixing across the air-sea interface: 
     280    wall boundary condition). 
     281    Nevertheless, 
     282    the profile between the surface zero value and the interior iso-neutral one is unknown, 
     283    and especially the value at the base of the mixed layer; 
     284    \textit{(b)} profile of slope using a linear tapering of the slope near the surface and 
     285    imposing a maximum slope of 1/100; 
     286    \textit{(c)} profile of slope actually used in \NEMO: 
     287    a linear decrease of the slope from zero at the surface to 
     288    its ocean interior value computed just below the mixed layer. 
     289    Note the huge change in the slope at the base of the mixed layer between 
     290    \textit{(b)} and \textit{(c)}.} 
     291  \label{fig:LDF_eiv_slp} 
    268292\end{figure} 
    269293%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    275299The iso-neutral diffusion operator on momentum is the same as the one used on tracers but 
    276300applied to each component of the velocity separately 
    277 (see \autoref{eq:dyn_ldf_iso} in section~\autoref{subsec:DYN_ldf_iso}). 
     301(see \autoref{eq:DYN_ldf_iso} in section~\autoref{subsec:DYN_ldf_iso}). 
    278302The slopes between the surface along which the diffusion operator acts and the surface of computation 
    279303($z$- or $s$-surfaces) are defined at $T$-, $f$-, and \textit{uw}- points for the $u$-component, and $T$-, $f$- and 
    280304\textit{vw}- points for the $v$-component. 
    281305They are computed from the slopes used for tracer diffusion, 
    282 \ie \autoref{eq:ldfslp_geo} and \autoref{eq:ldfslp_iso}: 
     306\ie\ \autoref{eq:LDF_slp_geo} and \autoref{eq:LDF_slp_iso}: 
    283307 
    284308\[ 
    285   % \label{eq:ldfslp_dyn} 
     309  % \label{eq:LDF_slp_dyn} 
    286310  \begin{aligned} 
    287311    &r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\ 
     
    294318The major issue remaining is in the specification of the boundary conditions. 
    295319The same boundary conditions are chosen as those used for lateral diffusion along model level surfaces, 
    296 \ie using the shear computed along the model levels and with no additional friction at the ocean bottom 
     320\ie\ using the shear computed along the model levels and with no additional friction at the ocean bottom 
    297321(see \autoref{sec:LBC_coast}). 
    298322 
    299323 
    300324% ================================================================ 
    301 % Lateral Mixing Operator 
    302 % ================================================================ 
    303 \section{Lateral mixing operators (\protect\mdl{traldf}, \protect\mdl{traldf}) } 
    304 \label{sec:LDF_op} 
    305  
    306  
    307     
    308 % ================================================================ 
    309325% Lateral Mixing Coefficients 
    310326% ================================================================ 
    311 \section{Lateral mixing coefficient (\protect\mdl{ldftra}, \protect\mdl{ldfdyn}) } 
     327\section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t}, \forcode{nn_ahm_ijk_t})] 
     328{Lateral mixing coefficient (\protect\np{nn\_aht\_ijk\_t}, \protect\np{nn\_ahm\_ijk\_t})} 
    312329\label{sec:LDF_coef} 
    313330 
    314 Introducing a space variation in the lateral eddy mixing coefficients changes the model core memory requirement, 
    315 adding up to four extra three-dimensional arrays for the geopotential or isopycnal second order operator applied to  
    316 momentum. 
    317 Six CPP keys control the space variation of eddy coefficients: three for momentum and three for tracer. 
    318 The three choices allow: 
    319 a space variation in the three space directions (\key{traldf\_c3d},  \key{dynldf\_c3d}), 
    320 in the horizontal plane (\key{traldf\_c2d},  \key{dynldf\_c2d}), 
    321 or in the vertical only (\key{traldf\_c1d},  \key{dynldf\_c1d}). 
    322 The default option is a constant value over the whole ocean on both momentum and tracers.  
    323     
    324 The number of additional arrays that have to be defined and the gridpoint position at which 
    325 they are defined depend on both the space variation chosen and the type of operator used. 
    326 The resulting eddy viscosity and diffusivity coefficients can be a function of more than one variable. 
    327 Changes in the computer code when switching from one option to another have been minimized by 
    328 introducing the eddy coefficients as statement functions 
    329 (include file \textit{ldftra\_substitute.h90} and \textit{ldfdyn\_substitute.h90}). 
    330 The functions are replaced by their actual meaning during the preprocessing step (CPP). 
    331 The specification of the space variation of the coefficient is made in \mdl{ldftra} and \mdl{ldfdyn}, 
    332 or more precisely in include files \textit{traldf\_cNd.h90} and \textit{dynldf\_cNd.h90}, with N=1, 2 or 3. 
    333 The user can modify these include files as he/she wishes. 
    334 The way the mixing coefficient are set in the reference version can be briefly described as follows: 
    335  
    336 \subsubsection{Constant mixing coefficients (default option)} 
    337 When none of the \key{dynldf\_...} and \key{traldf\_...} keys are defined, 
    338 a constant value is used over the whole ocean for momentum and tracers, 
    339 which is specified through the \np{rn\_ahm0} and \np{rn\_aht0} namelist parameters. 
    340  
    341 \subsubsection{Vertically varying mixing coefficients (\protect\key{traldf\_c1d} and \key{dynldf\_c1d})}  
    342 The 1D option is only available when using the $z$-coordinate with full step. 
    343 Indeed in all the other types of vertical coordinate, 
    344 the depth is a 3D function of (\textbf{i},\textbf{j},\textbf{k}) and therefore, 
    345 introducing depth-dependent mixing coefficients will require 3D arrays. 
    346 In the 1D option, a hyperbolic variation of the lateral mixing coefficient is introduced in which 
    347 the surface value is \np{rn\_aht0} (\np{rn\_ahm0}), the bottom value is 1/4 of the surface value, 
    348 and the transition takes place around z=300~m with a width of 300~m 
    349 (\ie both the depth and the width of the inflection point are set to 300~m). 
    350 This profile is hard coded in file \textit{traldf\_c1d.h90}, but can be easily modified by users. 
    351  
    352 \subsubsection{Horizontally varying mixing coefficients (\protect\key{traldf\_c2d} and \protect\key{dynldf\_c2d})} 
    353 By default the horizontal variation of the eddy coefficient depends on the local mesh size and 
     331The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}. 
     332The way the mixing coefficients are set in the reference version can be described as follows: 
     333 
     334\subsection[Mixing coefficients read from file (\forcode{nn_aht_ijk_t=-20, -30}, \forcode{nn_ahm_ijk_t=-20,-30})] 
     335{ Mixing coefficients read from file (\protect\np{nn\_aht\_ijk\_t}\forcode{=-20, -30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=-20, -30})} 
     336 
     337Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model, 
     338the laplacian viscosity operator uses $A^l$~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and 
     339decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}. 
     340Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05. 
     341The provided fields can either be 2d (\np{nn\_aht\_ijk\_t}\forcode{=-20}, \np{nn\_ahm\_ijk\_t}\forcode{=-20}) or 3d (\np{nn\_aht\_ijk\_t}\forcode{=-30},  \np{nn\_ahm\_ijk\_t}\forcode{=-30}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}). 
     342 
     343%-------------------------------------------------TABLE--------------------------------------------------- 
     344\begin{table}[htb] 
     345  \centering 
     346  \begin{tabular}{|l|l|l|l|} 
     347    \hline 
     348    Namelist parameter                       & Input filename                               & dimensions & variable names                      \\  \hline 
     349    \np{nn\_ahm\_ijk\_t}\forcode{=-20}     & \forcode{eddy_viscosity_2D.nc }            &     $(i,j)$         & \forcode{ahmt_2d, ahmf_2d}  \\  \hline 
     350    \np{nn\_aht\_ijk\_t}\forcode{=-20}           & \forcode{eddy_diffusivity_2D.nc }           &     $(i,j)$           & \forcode{ahtu_2d, ahtv_2d}    \\   \hline 
     351    \np{nn\_ahm\_ijk\_t}\forcode{=-30}        & \forcode{eddy_viscosity_3D.nc }            &     $(i,j,k)$          & \forcode{ahmt_3d, ahmf_3d}  \\  \hline 
     352    \np{nn\_aht\_ijk\_t}\forcode{=-30}     & \forcode{eddy_diffusivity_3D.nc }           &     $(i,j,k)$         & \forcode{ahtu_3d, ahtv_3d}    \\   \hline 
     353  \end{tabular} 
     354  \caption{Description of expected input files if mixing coefficients are read from NetCDF files} 
     355  \label{tab:LDF_files} 
     356\end{table} 
     357%-------------------------------------------------------------------------------------------------------------- 
     358 
     359\subsection[Constant mixing coefficients (\forcode{nn_aht_ijk_t=0}, \forcode{nn_ahm_ijk_t=0})] 
     360{ Constant mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=0}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=0})} 
     361 
     362If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that: 
     363 
     364\begin{equation} 
     365  \label{eq:LDF_constantah} 
     366  A_o^l = \left\{ 
     367    \begin{aligned} 
     368      & \frac{1}{2} U_{scl} L_{scl}            & \text{for laplacian operator } \\ 
     369      & \frac{1}{12} U_{scl} L_{scl}^3                    & \text{for bilaplacian operator } 
     370    \end{aligned} 
     371  \right. 
     372\end{equation} 
     373 
     374 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn\_Ud}, \np{rn\_Uv}, \np{rn\_Ld} and \np{rn\_Lv}. 
     375 
     376\subsection[Vertically varying mixing coefficients (\forcode{nn_aht_ijk_t=10}, \forcode{nn_ahm_ijk_t=10})] 
     377{Vertically varying mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=10}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=10})} 
     378 
     379In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which 
     380the surface value is given by \autoref{eq:LDF_constantah}, the bottom value is 1/4 of the surface value, 
     381and the transition takes place around z=500~m with a width of 200~m. 
     382This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users. 
     383 
     384\subsection[Mesh size dependent mixing coefficients (\forcode{nn_aht_ijk_t=20}, \forcode{nn_ahm_ijk_t=20})] 
     385{Mesh size dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=20}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=20})} 
     386 
     387In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and 
    354388the type of operator used: 
    355389\begin{equation} 
    356   \label{eq:title} 
     390  \label{eq:LDF_title} 
    357391  A_l = \left\{ 
    358392    \begin{aligned} 
    359       & \frac{\max(e_1,e_2)}{e_{max}} A_o^l           & \text{for laplacian operator } \\ 
    360       & \frac{\max(e_1,e_2)^{3}}{e_{max}^{3}} A_o^l          & \text{for bilaplacian operator } 
     393      & \frac{1}{2} U_{scl}  \max(e_1,e_2)         & \text{for laplacian operator } \\ 
     394      & \frac{1}{12} U_{scl}  \max(e_1,e_2)^{3}             & \text{for bilaplacian operator } 
    361395    \end{aligned} 
    362396  \right. 
    363397\end{equation} 
    364 where $e_{max}$ is the maximum of $e_1$ and $e_2$ taken over the whole masked ocean domain, 
    365 and $A_o^l$ is the \np{rn\_ahm0} (momentum) or \np{rn\_aht0} (tracer) namelist parameter. 
     398where $U_{scl}$ is a user defined velocity scale (\np{rn\_Ud}, \np{rn\_Uv}). 
    366399This variation is intended to reflect the lesser need for subgrid scale eddy mixing where 
    367400the grid size is smaller in the domain. 
    368 It was introduced in the context of the DYNAMO modelling project \citep{Willebrand_al_PO01}. 
    369 Note that such a grid scale dependance of mixing coefficients significantly increase the range of stability of 
    370 model configurations presenting large changes in grid pacing such as global ocean models. 
     401It was introduced in the context of the DYNAMO modelling project \citep{willebrand.barnier.ea_PO01}. 
     402Note that such a grid scale dependance of mixing coefficients significantly increases the range of stability of 
     403model configurations presenting large changes in grid spacing such as global ocean models. 
    371404Indeed, in such a case, a constant mixing coefficient can lead to a blow up of the model due to 
    372 large coefficient compare to the smallest grid size (see \autoref{sec:STP_forward_imp}), 
     405large coefficient compare to the smallest grid size (see \autoref{sec:TD_forward_imp}), 
    373406especially when using a bilaplacian operator. 
    374407 
    375 Other formulations can be introduced by the user for a given configuration. 
    376 For example, in the ORCA2 global ocean model (see Configurations), 
    377 the laplacian viscosity operator uses \np{rn\_ahm0}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and 
    378 decreases linearly to \np{rn\_aht0}~= 2.10$^3$ m$^2$/s at the equator \citep{Madec_al_JPO96, Delecluse_Madec_Bk00}. 
    379 This modification can be found in routine \rou{ldf\_dyn\_c2d\_orca} defined in \mdl{ldfdyn\_c2d}. 
    380 Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of 
    381 ORCA2 and ORCA05 (see \&namcfg namelist). 
    382  
    383 \subsubsection{Space varying mixing coefficients (\protect\key{traldf\_c3d} and \key{dynldf\_c3d})} 
    384  
    385 The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases, 
    386 \ie a hyperbolic tangent variation with depth associated with a grid size dependence of 
    387 the magnitude of the coefficient.  
    388  
    389 \subsubsection{Space and time varying mixing coefficients} 
    390  
    391 There is no default specification of space and time varying mixing coefficient.  
    392 The only case available is specific to the ORCA2 and ORCA05 global ocean configurations. 
    393 It provides only a tracer mixing coefficient for eddy induced velocity (ORCA2) or both iso-neutral and 
    394 eddy induced velocity (ORCA05) that depends on the local growth rate of baroclinic instability. 
    395 This specification is actually used when an ORCA key and both \key{traldf\_eiv} and \key{traldf\_c2d} are defined. 
     408\colorbox{yellow}{CASE \np{nn\_aht\_ijk\_t} = 21 to be added} 
     409 
     410\subsection[Mesh size and depth dependent mixing coefficients (\forcode{nn_aht_ijk_t=30}, \forcode{nn_ahm_ijk_t=30})] 
     411{Mesh size and depth dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=30})} 
     412 
     413The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above, 
     414\ie\ a hyperbolic tangent variation with depth associated with a grid size dependence of 
     415the magnitude of the coefficient. 
     416 
     417\subsection[Velocity dependent mixing coefficients (\forcode{nn_aht_ijk_t=31}, \forcode{nn_ahm_ijk_t=31})] 
     418{Flow dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=31}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=31})} 
     419In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re =  \lvert U \rvert  e / A_l$ is constant (and here hardcoded to $12$): 
     420\colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?} 
     421 
     422\begin{equation} 
     423  \label{eq:LDF_flowah} 
     424  A_l = \left\{ 
     425    \begin{aligned} 
     426      & \frac{1}{12} \lvert U \rvert e          & \text{for laplacian operator } \\ 
     427      & \frac{1}{12} \lvert U \rvert e^3             & \text{for bilaplacian operator } 
     428    \end{aligned} 
     429  \right. 
     430\end{equation} 
     431 
     432\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})] 
     433{Deformation rate dependent viscosities (\protect\np{nn\_ahm\_ijk\_t}\forcode{=32})} 
     434 
     435This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a 
     436characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.: 
     437 
     438\begin{equation} 
     439  \label{eq:LDF_smag1} 
     440  \begin{split} 
     441    T_{smag}^{-1} & = \sqrt{\left( \partial_x u - \partial_y v\right)^2 + \left( \partial_y u + \partial_x v\right)^2  } \\ 
     442    L_{smag} & = \frac{1}{\pi}\frac{e_1 e_2}{e_1 + e_2} 
     443  \end{split} 
     444\end{equation} 
     445 
     446Introducing a user defined constant $C$ (given in the namelist as \np{rn\_csmc}), one can deduce the mixing coefficients as follows: 
     447 
     448\begin{equation} 
     449  \label{eq:LDF_smag2} 
     450  A_{smag} = \left\{ 
     451    \begin{aligned} 
     452      & C^2  T_{smag}^{-1}  L_{smag}^2       & \text{for laplacian operator } \\ 
     453      & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4        & \text{for bilaplacian operator } 
     454    \end{aligned} 
     455  \right. 
     456\end{equation} 
     457 
     458For stability reasons, upper and lower limits are applied on the resulting coefficient (see \autoref{sec:TD_forward_imp}) so that: 
     459\begin{equation} 
     460  \label{eq:LDF_smag3} 
     461    \begin{aligned} 
     462      & C_{min} \frac{1}{2}   \lvert U \rvert  e    < A_{smag} < C_{max} \frac{e^2}{   8\rdt}                 & \text{for laplacian operator } \\ 
     463      & C_{min} \frac{1}{12} \lvert U \rvert  e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt}                 & \text{for bilaplacian operator } 
     464    \end{aligned} 
     465\end{equation} 
     466 
     467where $C_{min}$ and $C_{max}$ are adimensional namelist parameters given by \np{rn\_minfac} and \np{rn\_maxfac} respectively. 
     468 
     469\subsection{About space and time varying mixing coefficients} 
    396470 
    397471The following points are relevant when the eddy coefficient varies spatially: 
    398472 
    399473(1) the momentum diffusion operator acting along model level surfaces is written in terms of curl and 
    400 divergent components of the horizontal current (see \autoref{subsec:PE_ldf}). 
     474divergent components of the horizontal current (see \autoref{subsec:MB_ldf}). 
    401475Although the eddy coefficient could be set to different values in these two terms, 
    402 this option is not currently available.  
     476this option is not currently available. 
    403477 
    404478(2) with an horizontally varying viscosity, the quadratic integral constraints on enstrophy and on the square of 
    405479the horizontal divergence for operators acting along model-surfaces are no longer satisfied 
    406 (\autoref{sec:dynldf_properties}). 
    407  
    408 (3) for isopycnal diffusion on momentum or tracers, an additional purely horizontal background diffusion with 
    409 uniform coefficient can be added by setting a non zero value of \np{rn\_ahmb0} or \np{rn\_ahtb0}, 
    410 a background horizontal eddy viscosity or diffusivity coefficient 
    411 (namelist parameters whose default values are $0$). 
    412 However, the technique used to compute the isopycnal slopes is intended to get rid of such a background diffusion, 
    413 since it introduces spurious diapycnal diffusion (see \autoref{sec:LDF_slp}). 
    414  
    415 (4) when an eddy induced advection term is used (\key{traldf\_eiv}), 
    416 $A^{eiv}$, the eddy induced coefficient has to be defined. 
    417 Its space variations are controlled by the same CPP variable as for the eddy diffusivity coefficient 
    418 (\ie \key{traldf\_cNd}).  
    419  
    420 (5) the eddy coefficient associated with a biharmonic operator must be set to a \emph{negative} value. 
    421  
    422 (6) it is possible to use both the laplacian and biharmonic operators concurrently. 
    423  
    424 (7) it is possible to run without explicit lateral diffusion on momentum 
    425 (\np{ln\_dynldf\_lap}\forcode{ = .?.}\np{ln\_dynldf\_bilap}\forcode{ = .false.}). 
    426 This is recommended when using the UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{ = .true.}, 
    427 see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 
     480(\autoref{sec:INVARIANTS_dynldf_properties}). 
    428481 
    429482% ================================================================ 
    430483% Eddy Induced Mixing 
    431484% ================================================================ 
    432 \section{Eddy induced velocity (\protect\mdl{traadv\_eiv}, \protect\mdl{ldfeiv})} 
     485\section[Eddy induced velocity (\forcode{ln_ldfeiv=.true.})] 
     486{Eddy induced velocity (\protect\np{ln\_ldfeiv}\forcode{=.true.})} 
     487 
    433488\label{sec:LDF_eiv} 
     489 
     490%--------------------------------------------namtra_eiv--------------------------------------------------- 
     491 
     492\begin{listing} 
     493  \nlst{namtra_eiv} 
     494  \caption{\texttt{namtra\_eiv}} 
     495  \label{lst:namtra_eiv} 
     496\end{listing} 
     497 
     498%-------------------------------------------------------------------------------------------------------------- 
     499 
    434500 
    435501%%gm  from Triad appendix  : to be incorporated.... 
     
    453519} 
    454520 
    455 When Gent and McWilliams [1990] diffusion is used (\key{traldf\_eiv} defined), 
     521When  \citet{gent.mcwilliams_JPO90} diffusion is used (\np{ln\_ldfeiv}\forcode{=.true.}), 
    456522an eddy induced tracer advection term is added, 
    457523the formulation of which depends on the slopes of iso-neutral surfaces. 
    458524Contrary to the case of iso-neutral mixing, the slopes used here are referenced to the geopotential surfaces, 
    459 \ie \autoref{eq:ldfslp_geo} is used in $z$-coordinates, 
    460 and the sum \autoref{eq:ldfslp_geo} + \autoref{eq:ldfslp_iso} in $s$-coordinates. 
    461 The eddy induced velocity is given by:  
    462 \begin{equation} 
    463   \label{eq:ldfeiv} 
     525\ie\ \autoref{eq:LDF_slp_geo} is used in $z$-coordinates, 
     526and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $s$-coordinates. 
     527 
     528If isopycnal mixing is used in the standard way, \ie\ \np{ln\_traldf\_triad}\forcode{=.false.}, the eddy induced velocity is given by: 
     529\begin{equation} 
     530  \label{eq:LDF_eiv} 
    464531  \begin{split} 
    465532    u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\ 
     
    468535  \end{split} 
    469536\end{equation} 
    470 where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{rn\_aeiv}, 
    471 a \textit{nam\_traldf} namelist parameter. 
    472 The three components of the eddy induced velocity are computed and 
    473 add to the eulerian velocity in \mdl{traadv\_eiv}. 
     537where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn\_aei\_ijk\_t} \nam{tra\_eiv} namelist parameter. 
     538The three components of the eddy induced velocity are computed in \rou{ldf\_eiv\_trp} and 
     539added to the eulerian velocity in \rou{tra\_adv} where tracer advection is performed. 
    474540This has been preferred to a separate computation of the advective trends associated with the eiv velocity, 
    475541since it allows us to take advantage of all the advection schemes offered for the tracers 
    476542(see \autoref{sec:TRA_adv}) and not just the $2^{nd}$ order advection scheme as in 
    477 previous releases of OPA \citep{Madec1998}. 
     543previous releases of OPA \citep{madec.delecluse.ea_NPM98}. 
    478544This is particularly useful for passive tracers where \emph{positivity} of the advection scheme is of 
    479 paramount importance.  
     545paramount importance. 
    480546 
    481547At the surface, lateral and bottom boundaries, the eddy induced velocity, 
    482 and thus the advective eddy fluxes of heat and salt, are set to zero.  
     548and thus the advective eddy fluxes of heat and salt, are set to zero. 
     549The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn\_aei\_ijk\_t}, \np{rn\_Ue}, \np{rn\_Le} namelist parameters). 
     550\colorbox{yellow}{CASE \np{nn\_aei\_ijk\_t} = 21 to be added} 
     551 
     552In case of setting \np{ln\_traldf\_triad}\forcode{ = .true.}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}. 
     553 
     554% ================================================================ 
     555% Mixed layer eddies 
     556% ================================================================ 
     557\section[Mixed layer eddies (\forcode{ln_mle=.true.})] 
     558{Mixed layer eddies (\protect\np{ln\_mle}\forcode{=.true.})} 
     559 
     560\label{sec:LDF_mle} 
     561 
     562%--------------------------------------------namtra_eiv--------------------------------------------------- 
     563 
     564\begin{listing} 
     565  \nlst{namtra_mle} 
     566  \caption{\texttt{namtra\_mle}} 
     567  \label{lst:namtra_mle} 
     568\end{listing} 
     569 
     570%-------------------------------------------------------------------------------------------------------------- 
     571 
     572If  \np{ln\_mle}\forcode{=.true.} in \nam{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection. 
     573 
     574\colorbox{yellow}{TBC} 
    483575 
    484576\biblio 
Note: See TracChangeset for help on using the changeset viewer.