New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11564 for NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex/NEMO/subfiles/chap_time_domain.tex – NEMO

Ignore:
Timestamp:
2019-09-18T16:11:52+02:00 (5 years ago)
Author:
jchanut
Message:

#2199, merged with trunk

Location:
NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc
Files:
4 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
        8 *.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
         1figures 
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex/NEMO

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10973_AGRIF-01_jchanut_small_jpi_jpj/doc/latex/NEMO/subfiles/chap_time_domain.tex

    r10501 r11564  
    66% Chapter 2 ——— Time Domain (step.F90) 
    77% ================================================================ 
    8 \chapter{Time Domain (STP)} 
    9 \label{chap:STP} 
    10 \minitoc 
     8\chapter{Time Domain} 
     9\label{chap:TD} 
     10\chaptertoc 
    1111 
    1212% Missing things: 
    13 %  - daymod: definition of the time domain (nit000, nitend andd the calendar) 
     13%  - daymod: definition of the time domain (nit000, nitend and the calendar) 
    1414 
    1515\gmcomment{STEVEN :maybe a picture of the directory structure in the introduction which could be referred to here, 
     
    1919\newpage 
    2020 
    21 Having defined the continuous equations in \autoref{chap:PE}, we need now to choose a time discretization, 
     21Having defined the continuous equations in \autoref{chap:MB}, we need now to choose a time discretization, 
    2222a key feature of an ocean model as it exerts a strong influence on the structure of the computer code 
    23 (\ie on its flowchart). 
    24 In the present chapter, we provide a general description of the \NEMO time stepping strategy and 
     23(\ie\ on its flowchart). 
     24In the present chapter, we provide a general description of the \NEMO\ time stepping strategy and 
    2525the consequences for the order in which the equations are solved. 
    2626 
     
    2929% ================================================================ 
    3030\section{Time stepping environment} 
    31 \label{sec:STP_environment} 
    32  
    33 The time stepping used in \NEMO is a three level scheme that can be represented as follows: 
    34 \begin{equation} 
    35   \label{eq:STP} 
     31\label{sec:TD_environment} 
     32 
     33The time stepping used in \NEMO\ is a three level scheme that can be represented as follows: 
     34\begin{equation} 
     35  \label{eq:TD} 
    3636  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t - \rdt, \, t, \, t + \rdt} 
    37 \end{equation}  
     37\end{equation} 
    3838where $x$ stands for $u$, $v$, $T$ or $S$; 
    3939RHS is the Right-Hand-Side of the corresponding time evolution equation; 
    4040$\rdt$ is the time step; 
    4141and the superscripts indicate the time at which a quantity is evaluated. 
    42 Each term of the RHS is evaluated at a specific time step depending on the physics with which it is associated. 
    43  
    44 The choice of the time step used for this evaluation is discussed below as well as 
     42Each term of the RHS is evaluated at a specific time stepping depending on the physics with which it is associated. 
     43 
     44The choice of the time stepping used for this evaluation is discussed below as well as 
    4545the implications for starting or restarting a model simulation. 
    4646Note that the time stepping calculation is generally performed in a single operation. 
     
    5252The third array, although referred to as $x_a$ (after) in the code, 
    5353is usually not the variable at the after time step; 
    54 but rather it is used to store the time derivative (RHS in \autoref{eq:STP}) prior to time-stepping the equation. 
    55 Generally, the time stepping is performed once at each time step in the \mdl{tranxt} and \mdl{dynnxt} modules, 
    56 except when using implicit vertical diffusion or calculating sea surface height in which 
    57 case time-splitting options are used. 
     54but rather it is used to store the time derivative (RHS in \autoref{eq:TD}) prior to time-stepping the equation. 
     55The time stepping itself is performed once at each time step where implicit vertical diffusion is computed, \ie\ in the \mdl{trazdf} and \mdl{dynzdf} modules. 
    5856 
    5957% ------------------------------------------------------------------------------------------------------------- 
     
    6159% ------------------------------------------------------------------------------------------------------------- 
    6260\section{Non-diffusive part --- Leapfrog scheme} 
    63 \label{sec:STP_leap_frog} 
     61\label{sec:TD_leap_frog} 
    6462 
    6563The time stepping used for processes other than diffusion is the well-known leapfrog scheme 
    66 \citep{Mesinger_Arakawa_Bk76}. 
     64\citep{mesinger.arakawa_bk76}. 
    6765This scheme is widely used for advection processes in low-viscosity fluids. 
    68 It is a time centred scheme, \ie the RHS in \autoref{eq:STP} is evaluated at time step $t$, the now time step. 
     66It is a time centred scheme, \ie\ the RHS in \autoref{eq:TD} is evaluated at time step $t$, the now time step. 
    6967It may be used for momentum and tracer advection, pressure gradient, and Coriolis terms, 
    7068but not for diffusion terms. 
     
    8078To prevent it, the leapfrog scheme is often used in association with a Robert-Asselin time filter 
    8179(hereafter the LF-RA scheme). 
    82 This filter, first designed by \citet{Robert_JMSJ66} and more comprehensively studied by \citet{Asselin_MWR72}, 
     80This filter, first designed by \citet{robert_JMSJ66} and more comprehensively studied by \citet{asselin_MWR72}, 
    8381is a kind of laplacian diffusion in time that mixes odd and even time steps: 
    8482\begin{equation} 
    85   \label{eq:STP_asselin} 
     83  \label{eq:TD_asselin} 
    8684  x_F^t = x^t + \gamma \, \lt[ x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt] 
    8785\end{equation} 
    8886where the subscript $F$ denotes filtered values and $\gamma$ is the Asselin coefficient. 
    8987$\gamma$ is initialized as \np{rn\_atfp} (namelist parameter). 
    90 Its default value is \np{rn\_atfp}~\forcode{= 10.e-3} (see \autoref{sec:STP_mLF}), 
    91 causing only a weak dissipation of high frequency motions (\citep{Farge1987}). 
     88Its default value is \np{rn\_atfp}\forcode{ = 10.e-3} (see \autoref{sec:TD_mLF}), 
     89causing only a weak dissipation of high frequency motions (\citep{farge-coulombier_phd87}). 
    9290The addition of a time filter degrades the accuracy of the calculation from second to first order. 
    9391However, the second order truncation error is proportional to $\gamma$, which is small compared to 1. 
     
    9795When used with the 2nd order space centred discretisation of the advection terms in 
    9896the momentum and tracer equations, LF-RA avoids implicit numerical diffusion: 
    99 diffusion is set explicitly by the user through the Robert-Asselin  
     97diffusion is set explicitly by the user through the Robert-Asselin 
    10098filter parameter and the viscosity and diffusion coefficients. 
    10199 
     
    104102% ------------------------------------------------------------------------------------------------------------- 
    105103\section{Diffusive part --- Forward or backward scheme} 
    106 \label{sec:STP_forward_imp} 
     104\label{sec:TD_forward_imp} 
    107105 
    108106The leapfrog differencing scheme is unsuitable for the representation of diffusion and damping processes. 
    109 For a tendancy $D_x$, representing a diffusion term or a restoring term to a tracer climatology 
     107For a tendency $D_x$, representing a diffusion term or a restoring term to a tracer climatology 
    110108(when present, see \autoref{sec:TRA_dmp}), a forward time differencing scheme is used : 
    111109\[ 
    112   %\label{eq:STP_euler} 
     110  %\label{eq:TD_euler} 
    113111  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ D_x^{t - \rdt} 
    114112\] 
    115113 
    116114This is diffusive in time and conditionally stable. 
    117 The conditions for stability of second and fourth order horizontal diffusion schemes are \citep{Griffies_Bk04}: 
    118 \begin{equation} 
    119   \label{eq:STP_euler_stability} 
     115The conditions for stability of second and fourth order horizontal diffusion schemes are \citep{griffies_bk04}: 
     116\begin{equation} 
     117  \label{eq:TD_euler_stability} 
    120118  A^h < 
    121119  \begin{cases} 
     
    125123\end{equation} 
    126124where $e$ is the smallest grid size in the two horizontal directions and $A^h$ is the mixing coefficient. 
    127 The linear constraint \autoref{eq:STP_euler_stability} is a necessary condition, but not sufficient. 
     125The linear constraint \autoref{eq:TD_euler_stability} is a necessary condition, but not sufficient. 
    128126If it is not satisfied, even mildly, then the model soon becomes wildly unstable. 
    129127The instability can be removed by either reducing the length of the time steps or reducing the mixing coefficient. 
    130128 
    131129For the vertical diffusion terms, a forward time differencing scheme can be used, 
    132 but usually the numerical stability condition imposes a strong constraint on the time step. 
    133 Two solutions are available in \NEMO to overcome the stability constraint: 
    134 $(a)$ a forward time differencing scheme using a time splitting technique (\np{ln\_zdfexp}~\forcode{= .true.}) or 
    135 $(b)$ a backward (or implicit) time differencing scheme                   (\np{ln\_zdfexp}~\forcode{= .false.}). 
    136 In $(a)$, the master time step $\Delta$t is cut into $N$ fractional time steps so that 
    137 the stability criterion is reduced by a factor of $N$. 
    138 The computation is performed as follows: 
    139 \begin{alignat*}{2} 
    140   % \label{eq:STP_ts} 
    141   &x_\ast^{t - \rdt}                      &= &x^{t - \rdt} \\ 
    142   &x_\ast^{t - \rdt + L \frac{2 \rdt}{N}} &=   &x_\ast ^{t - \rdt + (L - 1) \frac{2 \rdt}{N}} 
    143                                              + \frac{2 \rdt}{N} \; DF^{t - \rdt + (L - 1) \frac{2 \rdt}{N}} 
    144   \quad \text{for $L = 1$ to $N$} \\ 
    145   &x^{t + \rdt}                           &= &x_\ast^{t + \rdt} 
    146 \end{alignat*} 
    147 with DF a vertical diffusion term. 
    148 The number of fractional time steps, $N$, is given by setting \np{nn\_zdfexp}, (namelist parameter). 
    149 The scheme $(b)$ is unconditionally stable but diffusive. It can be written as follows: 
    150 \begin{equation} 
    151   \label{eq:STP_imp} 
     130but usually the numerical stability condition imposes a strong constraint on the time step. To overcome the stability constraint, a 
     131backward (or implicit) time differencing scheme is used. This scheme is unconditionally stable but diffusive and can be written as follows: 
     132\begin{equation} 
     133  \label{eq:TD_imp} 
    152134  x^{t + \rdt} = x^{t - \rdt} + 2 \, \rdt \ \text{RHS}_x^{t + \rdt} 
    153135\end{equation} 
     
    157139%%gm 
    158140 
    159 This scheme is rather time consuming since it requires a matrix inversion, 
    160 but it becomes attractive since a value of 3 or more is needed for N in the forward time differencing scheme. 
    161 For example, the finite difference approximation of the temperature equation is: 
     141This scheme is rather time consuming since it requires a matrix inversion. For example, the finite difference approximation of the temperature equation is: 
    162142\[ 
    163   % \label{eq:STP_imp_zdf} 
     143  % \label{eq:TD_imp_zdf} 
    164144  \frac{T(k)^{t + 1} - T(k)^{t - 1}}{2 \; \rdt} 
    165145  \equiv 
     
    167147\] 
    168148where RHS is the right hand side of the equation except for the vertical diffusion term. 
    169 We rewrite \autoref{eq:STP_imp} as: 
    170 \begin{equation} 
    171   \label{eq:STP_imp_mat} 
     149We rewrite \autoref{eq:TD_imp} as: 
     150\begin{equation} 
     151  \label{eq:TD_imp_mat} 
    172152  -c(k + 1) \; T^{t + 1}(k + 1) + d(k) \; T^{t + 1}(k) - \; c(k) \; T^{t + 1}(k - 1) \equiv b(k) 
    173153\end{equation} 
    174 where  
    175 \begin{align*}  
     154where 
     155\begin{align*} 
    176156  c(k) &= A_w^{vT} (k) \, / \, e_{3w} (k)     \\ 
    177157  d(k) &= e_{3t}   (k)       \, / \, (2 \rdt) + c_k + c_{k + 1}    \\ 
     
    179159\end{align*} 
    180160 
    181 \autoref{eq:STP_imp_mat} is a linear system of equations with an associated matrix which is tridiagonal. 
     161\autoref{eq:TD_imp_mat} is a linear system of equations with an associated matrix which is tridiagonal. 
    182162Moreover, 
    183163$c(k)$ and $d(k)$ are positive and the diagonal term is greater than the sum of the two extra-diagonal terms, 
    184164therefore a special adaptation of the Gauss elimination procedure is used to find the solution 
    185 (see for example \citet{Richtmyer1967}). 
     165(see for example \citet{richtmyer.morton_bk67}). 
    186166 
    187167% ------------------------------------------------------------------------------------------------------------- 
     
    189169% ------------------------------------------------------------------------------------------------------------- 
    190170\section{Surface pressure gradient} 
    191 \label{sec:STP_spg_ts} 
    192  
    193 ===>>>>  TO BE written....  :-) 
    194  
    195 %\gmcomment{  
     171\label{sec:TD_spg_ts} 
     172 
     173The leapfrog environment supports a centred in time computation of the surface pressure, \ie\ evaluated 
     174at \textit{now} time step. This refers to as the explicit free surface case in the code (\np{ln\_dynspg\_exp}\forcode{=.true.}). 
     175This choice however imposes a strong constraint on the time step which should be small enough to resolve the propagation 
     176of external gravity waves. As a matter of fact, one rather use in a realistic setup, a split-explicit free surface 
     177(\np{ln\_dynspg\_ts}\forcode{=.true.}) in which barotropic and baroclinic dynamical equations are solved separately with ad-hoc 
     178time steps. The use of the time-splitting (in combination with non-linear free surface) imposes some constraints on the design of 
     179the overall flowchart, in particular to ensure exact tracer conservation (see \autoref{fig:TD_TimeStep_flowchart}). 
     180 
     181Compared to the former use of the filtered free surface in \NEMO\ v3.6 (\citet{roullet.madec_JGR00}), the use of a split-explicit free surface is advantageous 
     182on massively parallel computers. Indeed, no global computations are anymore required by the elliptic solver which saves a substantial amount of communication 
     183time. Fast barotropic motions (such as tides) are also simulated with a better accuracy. 
     184 
     185%\gmcomment{ 
    196186%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    197187\begin{figure}[!t] 
    198   \begin{center} 
    199     \includegraphics[]{Fig_TimeStepping_flowchart} 
    200     \caption{ 
    201       \protect\label{fig:TimeStep_flowchart} 
    202       Sketch of the leapfrog time stepping sequence in \NEMO from \citet{Leclair_Madec_OM09}. 
    203       The use of a semi -implicit computation of the hydrostatic pressure gradient requires the tracer equation to 
    204       be stepped forward prior to the momentum equation. 
    205       The need for knowledge of the vertical scale factor (here denoted as $h$) requires the sea surface height and 
    206       the continuity equation to be stepped forward prior to the computation of the tracer equation. 
    207       Note that the method for the evaluation of the surface pressure gradient $\nabla p_s$ is not presented here 
    208       (see \autoref{sec:DYN_spg}). 
    209     } 
    210   \end{center} 
     188  \centering 
     189  \includegraphics[width=\textwidth]{Fig_TimeStepping_flowchart_v4} 
     190  \caption[Leapfrog time stepping sequence with split-explicit free surface]{ 
     191    Sketch of the leapfrog time stepping sequence in \NEMO\ with split-explicit free surface. 
     192    The latter combined with non-linear free surface requires the dynamical tendency being 
     193    updated prior tracers tendency to ensure conservation. 
     194    Note the use of time integrated fluxes issued from the barotropic loop in 
     195    subsequent calculations of tracer advection and in the continuity equation. 
     196    Details about the time-splitting scheme can be found in \autoref{subsec:DYN_spg_ts}.} 
     197  \label{fig:TD_TimeStep_flowchart} 
    211198\end{figure} 
    212199%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    217204% ------------------------------------------------------------------------------------------------------------- 
    218205\section{Modified Leapfrog -- Asselin filter scheme} 
    219 \label{sec:STP_mLF} 
    220  
    221 Significant changes have been introduced by \cite{Leclair_Madec_OM09} in the LF-RA scheme in order to 
     206\label{sec:TD_mLF} 
     207 
     208Significant changes have been introduced by \cite{leclair.madec_OM09} in the LF-RA scheme in order to 
    222209ensure tracer conservation and to allow the use of a much smaller value of the Asselin filter parameter. 
    223210The modifications affect both the forcing and filtering treatments in the LF-RA scheme. 
    224211 
    225212In a classical LF-RA environment, the forcing term is centred in time, 
    226 \ie it is time-stepped over a $2 \rdt$ period: 
     213\ie\ it is time-stepped over a $2 \rdt$ period: 
    227214$x^t = x^t + 2 \rdt Q^t$ where $Q$ is the forcing applied to $x$, 
    228 and the time filter is given by \autoref{eq:STP_asselin} so that $Q$ is redistributed over several time step. 
     215and the time filter is given by \autoref{eq:TD_asselin} so that $Q$ is redistributed over several time step. 
    229216In the modified LF-RA environment, these two formulations have been replaced by: 
    230217\begin{gather} 
    231   \label{eq:STP_forcing} 
     218  \label{eq:TD_forcing} 
    232219  x^{t + \rdt} = x^{t - \rdt} + \rdt \lt( Q^{t - \rdt / 2} + Q^{t + \rdt / 2} \rt)  \\ 
    233   \label{eq:STP_RA} 
     220  \label{eq:TD_RA} 
    234221  x_F^t       = x^t + \gamma \, \lt( x_F^{t - \rdt} - 2 x^t + x^{t + \rdt} \rt) 
    235222                    - \gamma \, \rdt \, \lt( Q^{t + \rdt / 2} - Q^{t - \rdt / 2} \rt) 
    236223\end{gather} 
    237 The change in the forcing formulation given by \autoref{eq:STP_forcing} (see \autoref{fig:MLF_forcing}) 
     224The change in the forcing formulation given by \autoref{eq:TD_forcing} (see \autoref{fig:TD_MLF_forcing}) 
    238225has a significant effect: 
    239 the forcing term no longer excites the divergence of odd and even time steps \citep{Leclair_Madec_OM09}. 
     226the forcing term no longer excites the divergence of odd and even time steps \citep{leclair.madec_OM09}. 
    240227% forcing seen by the model.... 
    241 This property improves the LF-RA scheme in two respects. 
     228This property improves the LF-RA scheme in two aspects. 
    242229First, the LF-RA can now ensure the local and global conservation of tracers. 
    243230Indeed, time filtering is no longer required on the forcing part. 
    244 The influence of the Asselin filter on the forcing is be removed by adding a new term in the filter 
    245 (last term in \autoref{eq:STP_RA} compared to \autoref{eq:STP_asselin}). 
     231The influence of the Asselin filter on the forcing is explicitly removed by adding a new term in the filter 
     232(last term in \autoref{eq:TD_RA} compared to \autoref{eq:TD_asselin}). 
    246233Since the filtering of the forcing was the source of non-conservation in the classical LF-RA scheme, 
    247 the modified formulation becomes conservative \citep{Leclair_Madec_OM09}. 
     234the modified formulation becomes conservative \citep{leclair.madec_OM09}. 
    248235Second, the LF-RA becomes a truly quasi -second order scheme. 
    249 Indeed, \autoref{eq:STP_forcing} used in combination with a careful treatment of static instability 
    250 (\autoref{subsec:ZDF_evd}) and of the TKE physics (\autoref{subsec:ZDF_tke_ene}), 
    251 the two other main sources of time step divergence, 
     236Indeed, \autoref{eq:TD_forcing} used in combination with a careful treatment of static instability 
     237(\autoref{subsec:ZDF_evd}) and of the TKE physics (\autoref{subsec:ZDF_tke_ene}) 
     238(the two other main sources of time step divergence), 
    252239allows a reduction by two orders of magnitude of the Asselin filter parameter. 
    253240 
    254241Note that the forcing is now provided at the middle of a time step: 
    255242$Q^{t + \rdt / 2}$ is the forcing applied over the $[t,t + \rdt]$ time interval. 
    256 This and the change in the time filter, \autoref{eq:STP_RA}, 
    257 allows an exact evaluation of the contribution due to the forcing term between any two time steps, 
     243This and the change in the time filter, \autoref{eq:TD_RA}, 
     244allows for an exact evaluation of the contribution due to the forcing term between any two time steps, 
    258245even if separated by only $\rdt$ since the time filter is no longer applied to the forcing term. 
    259246 
    260247%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    261248\begin{figure}[!t] 
    262   \begin{center} 
    263     \includegraphics[]{Fig_MLF_forcing} 
    264     \caption{ 
    265       \protect\label{fig:MLF_forcing} 
    266       Illustration of forcing integration methods. 
    267       (top) ''Traditional'' formulation: 
    268       the forcing is defined at the same time as the variable to which it is applied 
    269       (integer value of the time step index) and it is applied over a $2 \rdt$ period. 
    270       (bottom)  modified formulation: 
    271       the forcing is defined in the middle of the time (integer and a half value of the time step index) and 
    272       the mean of two successive forcing values ($n - 1 / 2$, $n + 1 / 2$) is applied over a $2 \rdt$ period. 
    273     } 
    274   \end{center} 
     249  \centering 
     250  \includegraphics[width=\textwidth]{Fig_MLF_forcing} 
     251  \caption[Forcing integration methods for modified leapfrog (top and bottom)]{ 
     252    Illustration of forcing integration methods. 
     253    (top) ''Traditional'' formulation: 
     254    the forcing is defined at the same time as the variable to which it is applied 
     255    (integer value of the time step index) and it is applied over a $2 \rdt$ period. 
     256    (bottom)  modified formulation: 
     257    the forcing is defined in the middle of the time 
     258    (integer and a half value of the time step index) and 
     259    the mean of two successive forcing values ($n - 1 / 2$, $n + 1 / 2$) is applied over 
     260    a $2 \rdt$ period.} 
     261  \label{fig:TD_MLF_forcing} 
    275262\end{figure} 
    276263%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    280267% ------------------------------------------------------------------------------------------------------------- 
    281268\section{Start/Restart strategy} 
    282 \label{sec:STP_rst} 
     269\label{sec:TD_rst} 
    283270 
    284271%--------------------------------------------namrun------------------------------------------- 
    285 \nlst{namrun} 
     272\begin{listing} 
     273  \nlst{namrun} 
     274  \caption{\texttt{namrun}} 
     275  \label{lst:namrun} 
     276\end{listing} 
    286277%-------------------------------------------------------------------------------------------------------------- 
    287278 
     
    289280(Euler time integration): 
    290281\[ 
    291   % \label{eq:DOM_euler} 
     282  % \label{eq:TD_DOM_euler} 
    292283  x^1 = x^0 + \rdt \ \text{RHS}^0 
    293284\] 
    294 This is done simply by keeping the leapfrog environment (\ie the \autoref{eq:STP} three level time stepping) but 
     285This is done simply by keeping the leapfrog environment (\ie\ the \autoref{eq:TD} three level time stepping) but 
    295286setting all $x^0$ (\textit{before}) and $x^1$ (\textit{now}) fields equal at the first time step and 
    296 using half the value of $\rdt$. 
     287using half the value of a leapfrog time step ($2 \rdt$). 
    297288 
    298289It is also possible to restart from a previous computation, by using a restart file. 
     
    303294This requires saving two time levels and many auxiliary data in the restart files in machine precision. 
    304295 
    305 Note that when a semi -implicit scheme is used to evaluate the hydrostatic pressure gradient 
    306 (see \autoref{subsec:DYN_hpg_imp}), an extra three-dimensional field has to 
    307 be added to the restart file to ensure an exact restartability. 
    308 This is done optionally via the  \np{nn\_dynhpg\_rst} namelist parameter, 
    309 so that the size of the restart file can be reduced when restartability is not a key issue 
    310 (operational oceanography or in ensemble simulations for seasonal forecasting). 
    311  
    312 Note the size of the time step used, $\rdt$, is also saved in the restart file. 
    313 When restarting, if the the time step has been changed, a restart using an Euler time stepping scheme is imposed. 
    314 Options are defined through the  \ngn{namrun} namelist variables. 
     296Note that the time step $\rdt$, is also saved in the restart file. 
     297When restarting, if the time step has been changed, or one of the prognostic variables at \textit{before} time step 
     298is missing, an Euler time stepping scheme is imposed. A forward initial step can still be enforced by the user by setting 
     299the namelist variable \np{nn\_euler}\forcode{=0}. Other options to control the time integration of the model 
     300are defined through the  \nam{run} namelist variables. 
    315301%%% 
    316302\gmcomment{ 
     
    319305add also the idea of writing several restart for seasonal forecast : how is it done ? 
    320306 
    321 verify that all namelist pararmeters are truly described  
     307verify that all namelist pararmeters are truly described 
    322308 
    323309a word on the check of restart  ..... 
     
    325311%%% 
    326312 
    327 \gmcomment{       % add a subsection here   
     313\gmcomment{       % add a subsection here 
    328314 
    329315%------------------------------------------------------------------------------------------------------------- 
     
    331317% ------------------------------------------------------------------------------------------------------------- 
    332318\subsection{Time domain} 
    333 \label{subsec:STP_time} 
     319\label{subsec:TD_time} 
    334320%--------------------------------------------namrun------------------------------------------- 
    335321 
    336 \nlst{namdom}          
    337322%-------------------------------------------------------------------------------------------------------------- 
    338323 
    339 Options are defined through the  \ngn{namdom} namelist variables. 
     324Options are defined through the  \nam{dom} namelist variables. 
    340325 \colorbox{yellow}{add here a few word on nit000 and nitend} 
    341326 
     
    349334 
    350335%% 
    351 \gmcomment{       % add implicit in vvl case  and Crant-Nicholson scheme    
     336\gmcomment{       % add implicit in vvl case  and Crant-Nicholson scheme 
    352337 
    353338Implicit time stepping in case of variable volume thickness. 
Note: See TracChangeset for help on using the changeset viewer.