New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11565 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex – NEMO

Ignore:
Timestamp:
2019-09-18T16:58:58+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Cleaning of section titles

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_LDF.tex

    r11561 r11565  
    3434% Lateral Mixing Operator 
    3535% ================================================================ 
    36 \section[Lateral mixing operators] 
    37 {Lateral mixing operators} 
     36\section[Lateral mixing operators]{Lateral mixing operators} 
    3837\label{sec:LDF_op} 
    3938We remind here the different lateral mixing operators that can be used. Further details can be found in \autoref{subsec:TRA_ldf_op} and  \autoref{sec:DYN_ldf}. 
    4039 
    41 \subsection[No lateral mixing (\forcode{ln_traldf_OFF}, \forcode{ln_dynldf_OFF})] 
    42 {No lateral mixing (\protect\np{ln\_traldf\_OFF}, \protect\np{ln\_dynldf\_OFF})} 
     40\subsection[No lateral mixing (\forcode{ln_traldf_OFF} \& \forcode{ln_dynldf_OFF})]{No lateral mixing (\protect\np{ln\_traldf\_OFF} \& \protect\np{ln\_dynldf\_OFF})} 
    4341 
    4442It is possible to run without explicit lateral diffusion on tracers (\protect\np{ln\_traldf\_OFF}\forcode{=.true.}) and/or 
     
    4745see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 
    4846 
    49 \subsection[Laplacian mixing (\forcode{ln_traldf_lap}, \forcode{ln_dynldf_lap})] 
    50 {Laplacian mixing (\protect\np{ln\_traldf\_lap}, \protect\np{ln\_dynldf\_lap})} 
     47\subsection[Laplacian mixing (\forcode{ln_traldf_lap} \& \forcode{ln_dynldf_lap})]{Laplacian mixing (\protect\np{ln\_traldf\_lap} \& \protect\np{ln\_dynldf\_lap})} 
    5148Setting \protect\np{ln\_traldf\_lap}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_lap}\forcode{=.true.} enables 
    5249a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine 
    5350Laplacian and Bilaplacian operators for the same variable. 
    5451 
    55 \subsection[Bilaplacian mixing (\forcode{ln_traldf_blp}, \forcode{ln_dynldf_blp})] 
    56 {Bilaplacian mixing (\protect\np{ln\_traldf\_blp}, \protect\np{ln\_dynldf\_blp})} 
     52\subsection[Bilaplacian mixing (\forcode{ln_traldf_blp} \& \forcode{ln_dynldf_blp})]{Bilaplacian mixing (\protect\np{ln\_traldf\_blp} \& \protect\np{ln\_dynldf\_blp})} 
    5753Setting \protect\np{ln\_traldf\_blp}\forcode{=.true.} and/or \protect\np{ln\_dynldf\_blp}\forcode{=.true.} enables 
    5854a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice. 
     
    6258% Direction of lateral Mixing 
    6359% ================================================================ 
    64 \section[Direction of lateral mixing (\textit{ldfslp.F90})] 
    65 {Direction of lateral mixing (\protect\mdl{ldfslp})} 
     60\section[Direction of lateral mixing (\textit{ldfslp.F90})]{Direction of lateral mixing (\protect\mdl{ldfslp})} 
    6661\label{sec:LDF_slp} 
    6762 
     
    325320% Lateral Mixing Coefficients 
    326321% ================================================================ 
    327 \section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t}, \forcode{nn_ahm_ijk_t})] 
    328 {Lateral mixing coefficient (\protect\np{nn\_aht\_ijk\_t}, \protect\np{nn\_ahm\_ijk\_t})} 
     322\section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t} \& \forcode{nn_ahm_ijk_t})]{Lateral mixing coefficient (\protect\np{nn\_aht\_ijk\_t} \& \protect\np{nn\_ahm\_ijk\_t})} 
    329323\label{sec:LDF_coef} 
    330324 
     
    332326The way the mixing coefficients are set in the reference version can be described as follows: 
    333327 
    334 \subsection[Mixing coefficients read from file (\forcode{nn_aht_ijk_t=-20, -30}, \forcode{nn_ahm_ijk_t=-20,-30})] 
    335 { Mixing coefficients read from file (\protect\np{nn\_aht\_ijk\_t}\forcode{=-20, -30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=-20, -30})} 
     328\subsection[Mixing coefficients read from file (\forcode{=-20, -30})]{ Mixing coefficients read from file (\protect\np{nn\_aht\_ijk\_t}\forcode{=-20, -30} \& \protect\np{nn\_ahm\_ijk\_t}\forcode{=-20, -30})} 
    336329 
    337330Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model, 
     
    357350%-------------------------------------------------------------------------------------------------------------- 
    358351 
    359 \subsection[Constant mixing coefficients (\forcode{nn_aht_ijk_t=0}, \forcode{nn_ahm_ijk_t=0})] 
    360 { Constant mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=0}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=0})} 
     352\subsection[Constant mixing coefficients (\forcode{=0})]{ Constant mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=0} \& \protect\np{nn\_ahm\_ijk\_t}\forcode{=0})} 
    361353 
    362354If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that: 
     
    374366 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn\_Ud}, \np{rn\_Uv}, \np{rn\_Ld} and \np{rn\_Lv}. 
    375367 
    376 \subsection[Vertically varying mixing coefficients (\forcode{nn_aht_ijk_t=10}, \forcode{nn_ahm_ijk_t=10})] 
    377 {Vertically varying mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=10}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=10})} 
     368\subsection[Vertically varying mixing coefficients (\forcode{=10})]{Vertically varying mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=10} \& \protect\np{nn\_ahm\_ijk\_t}\forcode{=10})} 
    378369 
    379370In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which 
     
    382373This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users. 
    383374 
    384 \subsection[Mesh size dependent mixing coefficients (\forcode{nn_aht_ijk_t=20}, \forcode{nn_ahm_ijk_t=20})] 
    385 {Mesh size dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=20}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=20})} 
     375\subsection[Mesh size dependent mixing coefficients (\forcode{=20})]{Mesh size dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=20} \& \protect\np{nn\_ahm\_ijk\_t}\forcode{=20})} 
    386376 
    387377In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and 
     
    408398\colorbox{yellow}{CASE \np{nn\_aht\_ijk\_t} = 21 to be added} 
    409399 
    410 \subsection[Mesh size and depth dependent mixing coefficients (\forcode{nn_aht_ijk_t=30}, \forcode{nn_ahm_ijk_t=30})] 
    411 {Mesh size and depth dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=30}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=30})} 
     400\subsection[Mesh size and depth dependent mixing coefficients (\forcode{=30})]{Mesh size and depth dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=30} \& \protect\np{nn\_ahm\_ijk\_t}\forcode{=30})} 
    412401 
    413402The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above, 
     
    415404the magnitude of the coefficient. 
    416405 
    417 \subsection[Velocity dependent mixing coefficients (\forcode{nn_aht_ijk_t=31}, \forcode{nn_ahm_ijk_t=31})] 
    418 {Flow dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=31}, \protect\np{nn\_ahm\_ijk\_t}\forcode{=31})} 
     406\subsection[Velocity dependent mixing coefficients (\forcode{=31})]{Flow dependent mixing coefficients (\protect\np{nn\_aht\_ijk\_t}\forcode{=31} \& \protect\np{nn\_ahm\_ijk\_t}\forcode{=31})} 
    419407In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re =  \lvert U \rvert  e / A_l$ is constant (and here hardcoded to $12$): 
    420408\colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?} 
     
    430418\end{equation} 
    431419 
    432 \subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})] 
    433 {Deformation rate dependent viscosities (\protect\np{nn\_ahm\_ijk\_t}\forcode{=32})} 
     420\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np{nn\_ahm\_ijk\_t}\forcode{=32})} 
    434421 
    435422This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a 
     
    483470% Eddy Induced Mixing 
    484471% ================================================================ 
    485 \section[Eddy induced velocity (\forcode{ln_ldfeiv=.true.})] 
    486 {Eddy induced velocity (\protect\np{ln\_ldfeiv}\forcode{=.true.})} 
     472\section[Eddy induced velocity (\forcode{ln_ldfeiv})]{Eddy induced velocity (\protect\np{ln\_ldfeiv})} 
    487473 
    488474\label{sec:LDF_eiv} 
     
    555541% Mixed layer eddies 
    556542% ================================================================ 
    557 \section[Mixed layer eddies (\forcode{ln_mle=.true.})] 
    558 {Mixed layer eddies (\protect\np{ln\_mle}\forcode{=.true.})} 
    559  
     543\section[Mixed layer eddies (\forcode{ln_mle})]{Mixed layer eddies (\protect\np{ln\_mle})} 
    560544\label{sec:LDF_mle} 
    561545 
Note: See TracChangeset for help on using the changeset viewer.