New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11573 for NEMO/branches/2019/dev_r11233_AGRIF-05_jchanut_vert_coord_interp/doc/latex/NEMO/subfiles/chap_SBC.tex – NEMO

Ignore:
Timestamp:
2019-09-19T11:18:03+02:00 (5 years ago)
Author:
jchanut
Message:

#2222, merged with trunk

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r11233_AGRIF-05_jchanut_vert_coord_interp/doc/latex/NEMO/subfiles/chap_SBC.tex

    r11179 r11573  
    22 
    33\begin{document} 
    4 % ================================================================ 
    5 % Chapter —— Surface Boundary Condition (SBC, ISF, ICB)  
    6 % ================================================================ 
    7 \chapter{Surface Boundary Condition (SBC, ISF, ICB)} 
     4 
     5% ================================================================ 
     6% Chapter —— Surface Boundary Condition (SBC, SAS, ISF, ICB) 
     7% ================================================================ 
     8\chapter{Surface Boundary Condition (SBC, SAS, ISF, ICB)} 
    89\label{chap:SBC} 
    9 \minitoc 
     10\chaptertoc 
    1011 
    1112\newpage 
     
    1314%---------------------------------------namsbc-------------------------------------------------- 
    1415 
    15 \nlst{namsbc} 
     16\begin{listing} 
     17  \nlst{namsbc} 
     18  \caption{\forcode{&namsbc}} 
     19  \label{lst:namsbc} 
     20\end{listing} 
    1621%-------------------------------------------------------------------------------------------------------------- 
    1722 
    18 The ocean needs six fields as surface boundary condition: 
     23The ocean needs seven fields as surface boundary condition: 
     24 
    1925\begin{itemize} 
    2026\item 
     
    2632\item 
    2733  the surface salt flux associated with freezing/melting of seawater $\left( {\textit{sfx}} \right)$ 
     34\item 
     35  the atmospheric pressure at the ocean surface $\left( p_a \right)$ 
    2836\end{itemize} 
    29 plus an optional field: 
     37 
     38Four different ways are available to provide the seven fields to the ocean. They are controlled by 
     39namelist \nam{sbc} variables: 
     40 
    3041\begin{itemize} 
    31    \item the atmospheric pressure at the ocean surface $\left( p_a \right)$ 
     42\item 
     43  a bulk formulation (\np{ln\_blk}\forcode{=.true.} with four possible bulk algorithms), 
     44\item 
     45  a flux formulation (\np{ln\_flx}\forcode{=.true.}), 
     46\item 
     47  a coupled or mixed forced/coupled formulation (exchanges with a atmospheric model via the OASIS coupler), 
     48(\np{ln\_cpl} or \np{ln\_mixcpl}\forcode{=.true.}), 
     49\item 
     50  a user defined formulation (\np{ln\_usr}\forcode{=.true.}). 
    3251\end{itemize} 
    3352 
    34 Four different ways to provide the first six fields to the ocean are available which are controlled by 
    35 namelist \ngn{namsbc} variables: 
    36 an analytical formulation (\np{ln\_ana}\forcode{ = .true.}), 
    37 a flux formulation (\np{ln\_flx}\forcode{ = .true.}), 
    38 a bulk formulae formulation (CORE (\np{ln\_blk\_core}\forcode{ = .true.}), 
    39 CLIO (\np{ln\_blk\_clio}\forcode{ = .true.}) bulk formulae) and 
    40 a coupled or mixed forced/coupled formulation (exchanges with a atmospheric model via the OASIS coupler) 
    41 (\np{ln\_cpl} or \np{ln\_mixcpl}\forcode{ = .true.}).  
    42 When used (\ie \np{ln\_apr\_dyn}\forcode{ = .true.}), 
    43 the atmospheric pressure forces both ocean and ice dynamics. 
    44  
    4553The frequency at which the forcing fields have to be updated is given by the \np{nn\_fsbc} namelist parameter. 
    46 When the fields are supplied from data files (flux and bulk formulations), 
    47 the input fields need not be supplied on the model grid. 
    48 Instead a file of coordinates and weights can be supplied which maps the data from the supplied grid to 
     54 
     55When the fields are supplied from data files (bulk, flux and mixed formulations), 
     56the input fields do not need to be supplied on the model grid. 
     57Instead, a file of coordinates and weights can be supplied to map the data from the input fields grid to 
    4958the model points (so called "Interpolation on the Fly", see \autoref{subsec:SBC_iof}). 
    50 If the Interpolation on the Fly option is used, input data belonging to land points (in the native grid), 
    51 can be masked to avoid spurious results in proximity of the coasts as 
     59If the "Interpolation on the Fly" option is used, input data belonging to land points (in the native grid) 
     60should be masked or filled to avoid spurious results in proximity of the coasts, as 
    5261large sea-land gradients characterize most of the atmospheric variables. 
    5362 
    5463In addition, the resulting fields can be further modified using several namelist options. 
    55 These options control  
     64These options control: 
     65 
    5666\begin{itemize} 
    5767\item 
    5868  the rotation of vector components supplied relative to an east-north coordinate system onto 
    59   the local grid directions in the model; 
    60 \item 
    61   the addition of a surface restoring term to observed SST and/or SSS (\np{ln\_ssr}\forcode{ = .true.}); 
    62 \item 
    63   the modification of fluxes below ice-covered areas (using observed ice-cover or a sea-ice model) 
    64   (\np{nn\_ice}\forcode{ = 0..3}); 
    65 \item 
    66   the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np{ln\_rnf}\forcode{ = .true.}); 
    67 \item 
    68   the addition of isf melting as lateral inflow (parameterisation) or 
    69   as fluxes applied at the land-ice ocean interface (\np{ln\_isf}) ;  
     69  the local grid directions in the model, 
     70\item 
     71  the use of a land/sea mask for input fields (\np{nn\_lsm}\forcode{=.true.}), 
     72\item 
     73  the addition of a surface restoring term to observed SST and/or SSS (\np{ln\_ssr}\forcode{=.true.}), 
     74\item 
     75  the modification of fluxes below ice-covered areas (using climatological ice-cover or a sea-ice model) 
     76  (\np{nn\_ice}\forcode{=0..3}), 
     77\item 
     78  the addition of river runoffs as surface freshwater fluxes or lateral inflow (\np{ln\_rnf}\forcode{=.true.}), 
     79\item 
     80  the addition of ice-shelf melting as lateral inflow (parameterisation) or 
     81  as fluxes applied at the land-ice ocean interface (\np{ln\_isf}\forcode{=.true.}), 
    7082\item 
    7183  the addition of a freshwater flux adjustment in order to avoid a mean sea-level drift 
    72   (\np{nn\_fwb}\forcode{ = 0..2}); 
    73 \item 
    74   the transformation of the solar radiation (if provided as daily mean) into a diurnal cycle 
    75   (\np{ln\_dm2dc}\forcode{ = .true.}); 
    76 \item 
    77   a neutral drag coefficient can be read from an external wave model (\np{ln\_cdgw}\forcode{ = .true.}); 
    78 \item 
    79   the Stokes drift rom an external wave model can be accounted (\np{ln\_sdw}\forcode{ = .true.});  
    80 \item 
    81   the Stokes-Coriolis term can be included (\np{ln\_stcor}\forcode{ = .true.}); 
    82 \item 
    83   the surface stress felt by the ocean can be modified by surface waves (\np{ln\_tauwoc}\forcode{ = .true.}). 
     84  (\np{nn\_fwb}\forcode{=0..2}), 
     85\item 
     86  the transformation of the solar radiation (if provided as daily mean) into an analytical diurnal cycle 
     87  (\np{ln\_dm2dc}\forcode{=.true.}), 
     88\item 
     89  the activation of wave effects from an external wave model  (\np{ln\_wave}\forcode{=.true.}), 
     90\item 
     91  a neutral drag coefficient is read from an external wave model (\np{ln\_cdgw}\forcode{=.true.}), 
     92\item 
     93  the Stokes drift from an external wave model is accounted for (\np{ln\_sdw}\forcode{=.true.}), 
     94\item 
     95  the choice of the Stokes drift profile parameterization (\np{nn\_sdrift}\forcode{=0..2}), 
     96\item 
     97  the surface stress given to the ocean is modified by surface waves (\np{ln\_tauwoc}\forcode{=.true.}), 
     98\item 
     99  the surface stress given to the ocean is read from an external wave model (\np{ln\_tauw}\forcode{=.true.}), 
     100\item 
     101  the Stokes-Coriolis term is included (\np{ln\_stcor}\forcode{=.true.}), 
     102\item 
     103  the light penetration in the ocean (\np{ln\_traqsr}\forcode{=.true.} with namelist \nam{tra\_qsr}), 
     104\item 
     105  the atmospheric surface pressure gradient effect on ocean and ice dynamics (\np{ln\_apr\_dyn}\forcode{=.true.} with namelist \nam{sbc\_apr}), 
     106\item 
     107  the effect of sea-ice pressure on the ocean (\np{ln\_ice\_embd}\forcode{=.true.}). 
    84108\end{itemize} 
    85109 
    86 In this chapter, we first discuss where the surface boundary condition appears in the model equations. 
    87 Then we present the five ways of providing the surface boundary condition,  
    88 followed by the description of the atmospheric pressure and the river runoff.  
    89 Next the scheme for interpolation on the fly is described. 
     110In this chapter, we first discuss where the surface boundary conditions appear in the model equations. 
     111Then we present the three ways of providing the surface boundary conditions, 
     112followed by the description of the atmospheric pressure and the river runoff. 
     113Next, the scheme for interpolation on the fly is described. 
    90114Finally, the different options that further modify the fluxes applied to the ocean are discussed. 
    91 One of these is modification by icebergs (see \autoref{sec:ICB_icebergs}), 
     115One of these is modification by icebergs (see \autoref{sec:SBC_ICB_icebergs}), 
    92116which act as drifting sources of fresh water. 
    93 Another example of modification is that due to the ice shelf melting/freezing (see \autoref{sec:SBC_isf}),  
     117Another example of modification is that due to the ice shelf melting/freezing (see \autoref{sec:SBC_isf}), 
    94118which provides additional sources of fresh water. 
    95119 
    96120 
     121 
    97122% ================================================================ 
    98123% Surface boundary condition for the ocean 
    99124% ================================================================ 
    100125\section{Surface boundary condition for the ocean} 
    101 \label{sec:SBC_general} 
     126\label{sec:SBC_ocean} 
    102127 
    103128The surface ocean stress is the stress exerted by the wind and the sea-ice on the ocean. 
    104129It is applied in \mdl{dynzdf} module as a surface boundary condition of the computation of 
    105 the momentum vertical mixing trend (see \autoref{eq:dynzdf_sbc} in \autoref{sec:DYN_zdf}). 
     130the momentum vertical mixing trend (see \autoref{eq:DYN_zdf_sbc} in \autoref{sec:DYN_zdf}). 
    106131As such, it has to be provided as a 2D vector interpolated onto the horizontal velocity ocean mesh, 
    107 \ie resolved onto the model (\textbf{i},\textbf{j}) direction at $u$- and $v$-points. 
     132\ie\ resolved onto the model (\textbf{i},\textbf{j}) direction at $u$- and $v$-points. 
    108133 
    109134The surface heat flux is decomposed into two parts, a non solar and a solar heat flux, 
    110135$Q_{ns}$ and $Q_{sr}$, respectively. 
    111136The former is the non penetrative part of the heat flux 
    112 (\ie the sum of sensible, latent and long wave heat fluxes plus 
    113 the heat content of the mass exchange with the atmosphere and sea-ice). 
     137(\ie\ the sum of sensible, latent and long wave heat fluxes plus 
     138the heat content of the mass exchange between the ocean and sea-ice). 
    114139It is applied in \mdl{trasbc} module as a surface boundary condition trend of 
    115140the first level temperature time evolution equation 
    116 (see \autoref{eq:tra_sbc} and \autoref{eq:tra_sbc_lin} in \autoref{subsec:TRA_sbc}).  
     141(see \autoref{eq:TRA_sbc} and \autoref{eq:TRA_sbc_lin} in \autoref{subsec:TRA_sbc}). 
    117142The latter is the penetrative part of the heat flux. 
    118 It is applied as a 3D trends of the temperature equation (\mdl{traqsr} module) when 
    119 \np{ln\_traqsr}\forcode{ = .true.}. 
     143It is applied as a 3D trend of the temperature equation (\mdl{traqsr} module) when 
     144\np{ln\_traqsr}\forcode{=.true.}. 
    120145The way the light penetrates inside the water column is generally a sum of decreasing exponentials 
    121 (see \autoref{subsec:TRA_qsr}).  
     146(see \autoref{subsec:TRA_qsr}). 
    122147 
    123148The surface freshwater budget is provided by the \textit{emp} field. 
    124149It represents the mass flux exchanged with the atmosphere (evaporation minus precipitation) and 
    125150possibly with the sea-ice and ice shelves (freezing minus melting of ice). 
    126 It affects both the ocean in two different ways: 
    127 $(i)$  it changes the volume of the ocean and therefore appears in the sea surface height equation as 
    128 a volume flux, and  
     151It affects the ocean in two different ways: 
     152$(i)$  it changes the volume of the ocean, and therefore appears in the sea surface height equation as      %GS: autoref ssh equation to be added 
     153a volume flux, and 
    129154$(ii)$ it changes the surface temperature and salinity through the heat and salt contents of 
    130 the mass exchanged with the atmosphere, the sea-ice and the ice shelves.  
     155the mass exchanged with atmosphere, sea-ice and ice shelves. 
    131156 
    132157 
    133158%\colorbox{yellow}{Miss: } 
    134159% 
    135 %A extensive description of all namsbc namelist (parameter that have to be  
     160%A extensive description of all namsbc namelist (parameter that have to be 
    136161%created!) 
    137162% 
    138 %Especially the \np{nn\_fsbc}, the \mdl{sbc\_oce} module (fluxes + mean sst sss ssu  
    139 %ssv) \ie information required by flux computation or sea-ice 
     163%Especially the \np{nn\_fsbc}, the \mdl{sbc\_oce} module (fluxes + mean sst sss ssu 
     164%ssv) \ie\ information required by flux computation or sea-ice 
    140165% 
    141 %\mdl{sbc\_oce} containt the definition in memory of the 7 fields (6+runoff), add  
     166%\mdl{sbc\_oce} containt the definition in memory of the 7 fields (6+runoff), add 
    142167%a word on runoff: included in surface bc or add as lateral obc{\ldots}. 
    143168% 
    144169%Sbcmod manage the ``providing'' (fourniture) to the ocean the 7 fields 
    145170% 
    146 %Fluxes update only each nf{\_}sbc time step (namsbc) explain relation  
    147 %between nf{\_}sbc and nf{\_}ice, do we define nf{\_}blk??? ? only one  
    148 %nf{\_}sbc 
     171%Fluxes update only each nf\_sbc time step (namsbc) explain relation 
     172%between nf\_sbc and nf\_ice, do we define nf\_blk??? ? only one 
     173%nf\_sbc 
    149174% 
    150175%Explain here all the namlist namsbc variable{\ldots}. 
    151 %  
     176% 
    152177% explain : use or not of surface currents 
    153178% 
     
    155180 
    156181The ocean model provides, at each time step, to the surface module (\mdl{sbcmod}) 
    157 the surface currents, temperature and salinity.   
    158 These variables are averaged over \np{nn\_fsbc} time-step (\autoref{tab:ssm}), and 
    159 it is these averaged fields which are used to computes the surface fluxes at a frequency of \np{nn\_fsbc} time-step. 
     182the surface currents, temperature and salinity. 
     183These variables are averaged over \np{nn\_fsbc} time-step (\autoref{tab:SBC_ssm}), and 
     184these averaged fields are used to compute the surface fluxes at the frequency of \np{nn\_fsbc} time-steps. 
    160185 
    161186 
    162187%-------------------------------------------------TABLE--------------------------------------------------- 
    163188\begin{table}[tb] 
    164   \begin{center} 
    165     \begin{tabular}{|l|l|l|l|} 
    166       \hline 
    167       Variable description             & Model variable  & Units  & point \\  \hline 
    168       i-component of the surface current  & ssu\_m & $m.s^{-1}$   & U \\   \hline 
    169       j-component of the surface current  & ssv\_m & $m.s^{-1}$   & V \\   \hline 
    170       Sea surface temperature          & sst\_m & \r{}$K$      & T \\   \hline 
    171       Sea surface salinty              & sss\_m & $psu$        & T \\   \hline 
    172     \end{tabular} 
    173     \caption{ 
    174       \protect\label{tab:ssm} 
    175       Ocean variables provided by the ocean to the surface module (SBC). 
    176       The variable are averaged over nn{\_}fsbc time step, 
    177       \ie the frequency of computation of surface fluxes. 
    178     } 
    179   \end{center} 
     189  \centering 
     190  \begin{tabular}{|l|l|l|l|} 
     191    \hline 
     192    Variable description                           & Model variable  & Units  & point                 \\ 
     193    \hline 
     194    i-component of the surface current & ssu\_m               & $m.s^{-1}$     & U     \\ 
     195    \hline 
     196    j-component of the surface current & ssv\_m               & $m.s^{-1}$     & V     \\ 
     197    \hline 
     198    Sea surface temperature                  & sst\_m               & \r{}$K$              & T     \\\hline 
     199    Sea surface salinty                         & sss\_m               & $psu$              & T     \\   \hline 
     200  \end{tabular} 
     201  \caption[Ocean variables provided to the surface module)]{ 
     202    Ocean variables provided to the surface module (\texttt{SBC}). 
     203    The variable are averaged over \protect\np{nn\_fsbc} time-step, 
     204    \ie\ the frequency of computation of surface fluxes.} 
     205  \label{tab:SBC_ssm} 
    180206\end{table} 
    181207%-------------------------------------------------------------------------------------------------------------- 
    182208 
    183 %\colorbox{yellow}{Penser a} mettre dans le restant l'info nn{\_}fsbc ET nn{\_}fsbc*rdt de sorte de reinitialiser la moyenne si on change la frequence ou le pdt 
    184  
    185  
    186 % ================================================================ 
    187 %       Input Data  
     209%\colorbox{yellow}{Penser a} mettre dans le restant l'info nn\_fsbc ET nn\_fsbc*rdt de sorte de reinitialiser la moyenne si on change la frequence ou le pdt 
     210 
     211 
     212 
     213% ================================================================ 
     214%       Input Data 
    188215% ================================================================ 
    189216\section{Input data generic interface} 
     
    191218 
    192219A generic interface has been introduced to manage the way input data 
    193 (2D or 3D fields, like surface forcing or ocean T and S) are specify in \NEMO. 
    194 This task is archieved by \mdl{fldread}. 
    195 The module was design with four main objectives in mind:  
     220(2D or 3D fields, like surface forcing or ocean T and S) are specified in \NEMO. 
     221This task is achieved by \mdl{fldread}. 
     222The module is designed with four main objectives in mind: 
    196223\begin{enumerate} 
    197224\item 
    198   optionally provide a time interpolation of the input data at model time-step, whatever their input frequency is, 
     225  optionally provide a time interpolation of the input data every specified model time-step, whatever their input frequency is, 
    199226  and according to the different calendars available in the model. 
    200227\item 
     
    204231\item 
    205232  provide a simple user interface and a rather simple developer interface by 
    206   limiting the number of prerequisite information.  
    207 \end{enumerate}   
    208  
    209 As a results the user have only to fill in for each variable a structure in the namelist file to 
     233  limiting the number of prerequisite informations. 
     234\end{enumerate} 
     235 
     236As a result, the user has only to fill in for each variable a structure in the namelist file to 
    210237define the input data file and variable names, the frequency of the data (in hours or months), 
    211238whether its is climatological data or not, the period covered by the input file (one year, month, week or day), 
    212 and three additional parameters for on-the-fly interpolation. 
     239and three additional parameters for the on-the-fly interpolation. 
    213240When adding a new input variable, the developer has to add the associated structure in the namelist, 
    214241read this information by mirroring the namelist read in \rou{sbc\_blk\_init} for example, 
    215242and simply call \rou{fld\_read} to obtain the desired input field at the model time-step and grid points. 
    216243 
    217 The only constraints are that the input file is a NetCDF file, the file name follows a nomenclature  
     244The only constraints are that the input file is a NetCDF file, the file name follows a nomenclature 
    218245(see \autoref{subsec:SBC_fldread}), the period it cover is one year, month, week or day, and, 
    219246if on-the-fly interpolation is used, a file of weights must be supplied (see \autoref{subsec:SBC_iof}). 
    220247 
    221248Note that when an input data is archived on a disc which is accessible directly from the workspace where 
    222 the code is executed, then the use can set the \np{cn\_dir} to the pathway leading to the data. 
    223 By default, the data are assumed to have been copied so that cn\_dir='./'. 
     249the code is executed, then the user can set the \np{cn\_dir} to the pathway leading to the data. 
     250By default, the data are assumed to be in the same directory as the executable, so that cn\_dir='./'. 
     251 
    224252 
    225253% ------------------------------------------------------------------------------------------------------------- 
    226254% Input Data specification (\mdl{fldread}) 
    227255% ------------------------------------------------------------------------------------------------------------- 
    228 \subsection[Input data specification (\textit{fldread.F90})] 
    229 {Input data specification (\protect\mdl{fldread})} 
     256\subsection[Input data specification (\textit{fldread.F90})]{Input data specification (\protect\mdl{fldread})} 
    230257\label{subsec:SBC_fldread} 
    231258 
    232259The structure associated with an input variable contains the following information: 
    233260\begin{forlines} 
    234 !  file name  ! frequency (hours) ! variable  ! time interp. !  clim  ! 'yearly'/ ! weights  ! rotation ! land/sea mask !  
     261!  file name  ! frequency (hours) ! variable  ! time interp. !  clim  ! 'yearly'/ ! weights  ! rotation ! land/sea mask ! 
    235262!             !  (if <0  months)  !   name    !   (logical)  !  (T/F) ! 'monthly' ! filename ! pairing  ! filename      ! 
    236263\end{forlines} 
    237 where  
    238 \begin{description}   
     264where 
     265\begin{description} 
    239266\item[File name]: 
    240   the stem name of the NetCDF file to be open. 
     267  the stem name of the NetCDF file to be opened. 
    241268  This stem will be completed automatically by the model, with the addition of a '.nc' at its end and 
    242269  by date information and possibly a prefix (when using AGRIF). 
    243   Tab.\autoref{tab:fldread} provides the resulting file name in all possible cases according to 
     270  \autoref{tab:SBC_fldread} provides the resulting file name in all possible cases according to 
    244271  whether it is a climatological file or not, and to the open/close frequency (see below for definition). 
    245272 
    246273%--------------------------------------------------TABLE-------------------------------------------------- 
    247274  \begin{table}[htbp] 
    248     \begin{center} 
    249       \begin{tabular}{|l|c|c|c|} 
    250         \hline 
    251         & daily or weekLLL         & monthly                   &   yearly          \\   \hline 
    252         \np{clim}\forcode{ = .false.}  & fn\_yYYYYmMMdDD.nc  &   fn\_yYYYYmMM.nc   &   fn\_yYYYY.nc  \\   \hline 
    253         \np{clim}\forcode{ = .true.}         & not possible                  &  fn\_m??.nc             &   fn                \\   \hline 
    254       \end{tabular} 
    255     \end{center} 
    256     \caption{ 
    257       \protect\label{tab:fldread} 
    258       naming nomenclature for climatological or interannual input file, as a function of the Open/close frequency. 
     275    \centering 
     276    \begin{tabular}{|l|c|c|c|} 
     277      \hline 
     278                                  &  daily or weekLL     &  monthly           &  yearly        \\ 
     279      \hline 
     280      \np{clim}\forcode{=.false.} &  fn\_yYYYYmMMdDD.nc  &  fn\_yYYYYmMM.nc   &  fn\_yYYYY.nc  \\ 
     281      \hline 
     282      \np{clim}\forcode{=.true.}  &  not possible        &  fn\_m??.nc        &  fn            \\ 
     283      \hline 
     284    \end{tabular} 
     285    \caption[Naming nomenclature for climatological or interannual input file]{ 
     286      Naming nomenclature for climatological or interannual input file, 
     287      as a function of the open/close frequency. 
    259288      The stem name is assumed to be 'fn'. 
    260289      For weekly files, the 'LLL' corresponds to the first three letters of the first day of the week 
    261       (\ie 'sun','sat','fri','thu','wed','tue','mon'). 
    262       The 'YYYY', 'MM' and 'DD' should be replaced by the actual year/month/day, always coded with 4 or 2 digits. 
    263       Note that (1) in mpp, if the file is split over each subdomain, the suffix '.nc' is replaced by '\_PPPP.nc', 
     290      (\ie\ 'sun','sat','fri','thu','wed','tue','mon'). 
     291      The 'YYYY', 'MM' and 'DD' should be replaced by the actual year/month/day, 
     292      always coded with 4 or 2 digits. 
     293      Note that (1) in mpp, if the file is split over each subdomain, 
     294      the suffix '.nc' is replaced by '\_PPPP.nc', 
    264295      where 'PPPP' is the process number coded with 4 digits; 
    265       (2) when using AGRIF, the prefix '\_N' is added to files, where 'N'  is the child grid number. 
     296      (2) when using AGRIF, the prefix '\_N' is added to files, where 'N' is the child grid number. 
    266297    } 
     298    \label{tab:SBC_fldread} 
    267299  \end{table} 
    268300%-------------------------------------------------------------------------------------------------------------- 
    269    
     301 
    270302 
    271303\item[Record frequency]: 
     
    273305  Its unit is in hours if it is positive (for example 24 for daily forcing) or in months if negative 
    274306  (for example -1 for monthly forcing or -12 for annual forcing). 
    275   Note that this frequency must really be an integer and not a real. 
    276   On some computers, seting it to '24.' can be interpreted as 240! 
     307  Note that this frequency must REALLY be an integer and not a real. 
     308  On some computers, setting it to '24.' can be interpreted as 240! 
    277309 
    278310\item[Variable name]: 
     
    285317  00h00'00'' to 23h59'59". 
    286318  If set to 'true', the forcing will have a broken line shape. 
    287   Records are assumed to be dated the middle of the forcing period. 
     319  Records are assumed to be dated at the middle of the forcing period. 
    288320  For example, when using a daily forcing with time interpolation, 
    289   linear interpolation will be performed between mid-day of two consecutive days.  
     321  linear interpolation will be performed between mid-day of two consecutive days. 
    290322 
    291323\item[Climatological forcing]: 
    292324  a logical to specify if a input file contains climatological forcing which can be cycle in time, 
    293325  or an interannual forcing which will requires additional files if 
    294   the period covered by the simulation exceed the one of the file. 
    295   See the above the file naming strategy which impacts the expected name of the file to be opened.  
     326  the period covered by the simulation exceeds the one of the file. 
     327  See the above file naming strategy which impacts the expected name of the file to be opened. 
    296328 
    297329\item[Open/close frequency]: 
     
    302334  Files are assumed to contain data from the beginning of the open/close period. 
    303335  For example, the first record of a yearly file containing daily data is Jan 1st even if 
    304   the experiment is not starting at the beginning of the year.  
     336  the experiment is not starting at the beginning of the year. 
    305337 
    306338\item[Others]: 
     
    315347the date of the records read in the input files. 
    316348Following \citet{leclair.madec_OM09}, the date of a time step is set at the middle of the time step. 
    317 For example, for an experiment starting at 0h00'00" with a one hour time-step, 
     349For example, for an experiment starting at 0h00'00" with a one-hour time-step, 
    318350a time interpolation will be performed at the following time: 0h30'00", 1h30'00", 2h30'00", etc. 
    319351However, for forcing data related to the surface module, 
    320352values are not needed at every time-step but at every \np{nn\_fsbc} time-step. 
    321 For example with \np{nn\_fsbc}\forcode{ = 3}, the surface module will be called at time-steps 1, 4, 7, etc. 
    322 The date used for the time interpolation is thus redefined to be at the middle of \np{nn\_fsbc} time-step period. 
    323 In the previous example, this leads to: 1h30'00", 4h30'00", 7h30'00", etc. \\  
     353For example with \np{nn\_fsbc}\forcode{=3}, the surface module will be called at time-steps 1, 4, 7, etc. 
     354The date used for the time interpolation is thus redefined to the middle of \np{nn\_fsbc} time-step period. 
     355In the previous example, this leads to: 1h30'00", 4h30'00", 7h30'00", etc. \\ 
    324356(2) For code readablility and maintenance issues, we don't take into account the NetCDF input file calendar. 
    325357The calendar associated with the forcing field is build according to the information provided by 
    326358user in the record frequency, the open/close frequency and the type of temporal interpolation. 
    327359For example, the first record of a yearly file containing daily data that will be interpolated in time is assumed to 
    328 be start Jan 1st at 12h00'00" and end Dec 31st at 12h00'00". \\ 
     360start Jan 1st at 12h00'00" and end Dec 31st at 12h00'00". \\ 
    329361(3) If a time interpolation is requested, the code will pick up the needed data in the previous (next) file when 
    330362interpolating data with the first (last) record of the open/close period. 
    331 For example, if the input file specifications are ''yearly, containing daily data to be interpolated in time'',  
     363For example, if the input file specifications are ''yearly, containing daily data to be interpolated in time'', 
    332364the values given by the code between 00h00'00" and 11h59'59" on Jan 1st will be interpolated values between 
    333365Dec 31st 12h00'00" and Jan 1st 12h00'00". 
    334366If the forcing is climatological, Dec and Jan will be keep-up from the same year. 
    335367However, if the forcing is not climatological, at the end of 
    336 the open/close period the code will automatically close the current file and open the next one. 
     368the open/close period, the code will automatically close the current file and open the next one. 
    337369Note that, if the experiment is starting (ending) at the beginning (end) of 
    338 an open/close period we do accept that the previous (next) file is not existing. 
     370an open/close period, we do accept that the previous (next) file is not existing. 
    339371In this case, the time interpolation will be performed between two identical values. 
    340372For example, when starting an experiment on Jan 1st of year Y with yearly files and daily data to be interpolated, 
    341373we do accept that the file related to year Y-1 is not existing. 
    342374The value of Jan 1st will be used as the missing one for Dec 31st of year Y-1. 
    343 If the file of year Y-1 exists, the code will read its last record.  
     375If the file of year Y-1 exists, the code will read its last record. 
    344376Therefore, this file can contain only one record corresponding to Dec 31st, 
    345377a useful feature for user considering that it is too heavy to manipulate the complete file for year Y-1. 
     
    354386Interpolation on the Fly allows the user to supply input files required for the surface forcing on 
    355387grids other than the model grid. 
    356 To do this he or she must supply, in addition to the source data file, a file of weights to be used to 
     388To do this, he or she must supply, in addition to the source data file(s), a file of weights to be used to 
    357389interpolate from the data grid to the model grid. 
    358390The original development of this code used the SCRIP package 
    359391(freely available \href{http://climate.lanl.gov/Software/SCRIP}{here} under a copyright agreement). 
    360 In principle, any package can be used to generate the weights, but the variables in 
     392In principle, any package such as CDO can be used to generate the weights, but the variables in 
    361393the input weights file must have the same names and meanings as assumed by the model. 
    362 Two methods are currently available: bilinear and bicubic interpolation. 
     394Two methods are currently available: bilinear and bicubic interpolations. 
    363395Prior to the interpolation, providing a land/sea mask file, the user can decide to remove land points from 
    364396the input file and substitute the corresponding values with the average of the 8 neighbouring points in 
     
    366398Only "sea points" are considered for the averaging. 
    367399The land/sea mask file must be provided in the structure associated with the input variable. 
    368 The netcdf land/sea mask variable name must be 'LSM' it must have the same horizontal and vertical dimensions of 
    369 the associated variable and should be equal to 1 over land and 0 elsewhere. 
    370 The procedure can be recursively applied setting nn\_lsm > 1 in namsbc namelist. 
    371 Note that nn\_lsm=0 forces the code to not apply the procedure even if a file for land/sea mask is supplied. 
    372  
     400The netcdf land/sea mask variable name must be 'LSM' and must have the same horizontal and vertical dimensions as 
     401the associated variables and should be equal to 1 over land and 0 elsewhere. 
     402The procedure can be recursively applied by setting nn\_lsm > 1 in namsbc namelist. 
     403Note that nn\_lsm=0 forces the code to not apply the procedure, even if a land/sea mask file is supplied. 
     404 
     405 
     406% ------------------------------------------------------------------------------------------------------------- 
     407% Bilinear interpolation 
     408% ------------------------------------------------------------------------------------------------------------- 
    373409\subsubsection{Bilinear interpolation} 
    374410\label{subsec:SBC_iof_bilinear} 
     
    376412The input weights file in this case has two sets of variables: 
    377413src01, src02, src03, src04 and wgt01, wgt02, wgt03, wgt04. 
    378 The "src" variables correspond to the point in the input grid to which the weight "wgt" is to be applied. 
     414The "src" variables correspond to the point in the input grid to which the weight "wgt" is applied. 
    379415Each src value is an integer corresponding to the index of a point in the input grid when 
    380416written as a one dimensional array. 
     
    392428and wgt(1) corresponds to variable "wgt01" for example. 
    393429 
     430 
     431% ------------------------------------------------------------------------------------------------------------- 
     432% Bicubic interpolation 
     433% ------------------------------------------------------------------------------------------------------------- 
    394434\subsubsection{Bicubic interpolation} 
    395435\label{subsec:SBC_iof_bicubic} 
    396436 
    397 Again there are two sets of variables: "src" and "wgt". 
    398 But in this case there are 16 of each. 
     437Again, there are two sets of variables: "src" and "wgt". 
     438But in this case, there are 16 of each. 
    399439The symbolic algorithm used to calculate values on the model grid is now: 
    400440 
     
    402442  \begin{split} 
    403443    f_{m}(i,j) =  f_{m}(i,j) +& \sum_{k=1}^{4} {wgt(k)f(idx(src(k)))} 
    404     +   \sum_{k=5}^{8} {wgt(k)\left.\frac{\partial f}{\partial i}\right| _{idx(src(k))} }    \\ 
    405     +& \sum_{k=9}^{12} {wgt(k)\left.\frac{\partial f}{\partial j}\right| _{idx(src(k))} } 
    406     +   \sum_{k=13}^{16} {wgt(k)\left.\frac{\partial ^2 f}{\partial i \partial j}\right| _{idx(src(k))} } 
     444    +  \sum_{k=5 }^{8 } {wgt(k)\left.\frac{\partial f}{\partial i}\right| _{idx(src(k))} }    \\ 
     445    +& \sum_{k=9 }^{12} {wgt(k)\left.\frac{\partial f}{\partial j}\right| _{idx(src(k))} } 
     446    +  \sum_{k=13}^{16} {wgt(k)\left.\frac{\partial ^2 f}{\partial i \partial j}\right| _{idx(src(k))} } 
    407447  \end{split} 
    408448\] 
    409449The gradients here are taken with respect to the horizontal indices and not distances since 
    410 the spatial dependency has been absorbed into the weights. 
    411  
     450the spatial dependency has been included into the weights. 
     451 
     452 
     453% ------------------------------------------------------------------------------------------------------------- 
     454% Implementation 
     455% ------------------------------------------------------------------------------------------------------------- 
    412456\subsubsection{Implementation} 
    413457\label{subsec:SBC_iof_imp} 
     
    421465inspecting a global attribute stored in the weights input file. 
    422466This attribute must be called "ew\_wrap" and be of integer type. 
    423 If it is negative, the input non-model grid is assumed not to be cyclic. 
     467If it is negative, the input non-model grid is assumed to be not cyclic. 
    424468If zero or greater, then the value represents the number of columns that overlap. 
    425469$E.g.$ if the input grid has columns at longitudes 0, 1, 2, .... , 359, then ew\_wrap should be set to 0; 
    426470if longitudes are 0.5, 2.5, .... , 358.5, 360.5, 362.5, ew\_wrap should be 2. 
    427471If the model does not find attribute ew\_wrap, then a value of -999 is assumed. 
    428 In this case the \rou{fld\_read} routine defaults ew\_wrap to value 0 and 
     472In this case, the \rou{fld\_read} routine defaults ew\_wrap to value 0 and 
    429473therefore the grid is assumed to be cyclic with no overlapping columns. 
    430 (In fact this only matters when bicubic interpolation is required.) 
     474(In fact, this only matters when bicubic interpolation is required.) 
    431475Note that no testing is done to check the validity in the model, 
    432476since there is no way of knowing the name used for the longitude variable, 
     
    445489or is a copy of one from the first few columns on the opposite side of the grid (cyclical case). 
    446490 
     491 
     492% ------------------------------------------------------------------------------------------------------------- 
     493% Limitations 
     494% ------------------------------------------------------------------------------------------------------------- 
    447495\subsubsection{Limitations} 
    448496\label{subsec:SBC_iof_lim} 
    449497 
    450 \begin{enumerate}   
    451 \item 
    452   The case where input data grids are not logically rectangular has not been tested. 
     498\begin{enumerate} 
     499\item 
     500  The case where input data grids are not logically rectangular (irregular grid case) has not been tested. 
    453501\item 
    454502  This code is not guaranteed to produce positive definite answers from positive definite inputs when 
     
    471519(see the directory NEMOGCM/TOOLS/WEIGHTS). 
    472520 
     521 
    473522% ------------------------------------------------------------------------------------------------------------- 
    474523% Standalone Surface Boundary Condition Scheme 
    475524% ------------------------------------------------------------------------------------------------------------- 
    476 \subsection{Standalone surface boundary condition scheme} 
    477 \label{subsec:SAS_iof} 
    478  
    479 %---------------------------------------namsbc_ana-------------------------------------------------- 
    480  
    481 \nlst{namsbc_sas} 
     525\subsection{Standalone surface boundary condition scheme (SAS)} 
     526\label{subsec:SBC_SAS} 
     527 
     528%---------------------------------------namsbc_sas-------------------------------------------------- 
     529 
     530\begin{listing} 
     531  \nlst{namsbc_sas} 
     532  \caption{\forcode{&namsbc_sas}} 
     533  \label{lst:namsbc_sas} 
     534\end{listing} 
    482535%-------------------------------------------------------------------------------------------------------------- 
    483536 
    484 In some circumstances it may be useful to avoid calculating the 3D temperature, 
    485 salinity and velocity fields and simply read them in from a previous run or receive them from OASIS.   
     537In some circumstances, it may be useful to avoid calculating the 3D temperature, 
     538salinity and velocity fields and simply read them in from a previous run or receive them from OASIS. 
    486539For example: 
    487540 
     
    497550  Spinup of the iceberg floats 
    498551\item 
    499   Ocean/sea-ice simulation with both media running in parallel (\np{ln\_mixcpl}\forcode{ = .true.}) 
     552  Ocean/sea-ice simulation with both models running in parallel (\np{ln\_mixcpl}\forcode{=.true.}) 
    500553\end{itemize} 
    501554 
    502 The StandAlone Surface scheme provides this utility. 
    503 Its options are defined through the \ngn{namsbc\_sas} namelist variables. 
     555The Standalone Surface scheme provides this capacity. 
     556Its options are defined through the \nam{sbc\_sas} namelist variables. 
    504557A new copy of the model has to be compiled with a configuration based on ORCA2\_SAS\_LIM. 
    505 However no namelist parameters need be changed from the settings of the previous run (except perhaps nn{\_}date0). 
     558However, no namelist parameters need be changed from the settings of the previous run (except perhaps nn\_date0). 
    506559In this configuration, a few routines in the standard model are overriden by new versions. 
    507560Routines replaced are: 
     
    519572  This has been cut down and now only calculates surface forcing and the ice model required. 
    520573  New surface modules that can function when only the surface level of the ocean state is defined can also be added 
    521   (\eg icebergs). 
     574  (\eg\ icebergs). 
    522575\item 
    523576  \mdl{daymod}: 
     
    525578  so calls to restart functions have been removed. 
    526579  This also means that the calendar cannot be controlled by time in a restart file, 
    527   so the user must make sure that nn{\_}date0 in the model namelist is correct for his or her purposes. 
     580  so the user must check that nn\_date0 in the model namelist is correct for his or her purposes. 
    528581\item 
    529582  \mdl{stpctl}: 
     
    543596  This module initialises the input files needed for reading temperature, salinity and 
    544597  velocity arrays at the surface. 
    545   These filenames are supplied in namelist namsbc{\_}sas. 
    546   Unfortunately because of limitations with the \mdl{iom} module, 
     598  These filenames are supplied in namelist namsbc\_sas. 
     599  Unfortunately, because of limitations with the \mdl{iom} module, 
    547600  the full 3D fields from the mean files have to be read in and interpolated in time, 
    548601  before using just the top level. 
     
    551604 
    552605 
    553 % Missing the description of the 2 following variables: 
    554 %   ln_3d_uve   = .true.    !  specify whether we are supplying a 3D u,v and e3 field 
    555 %   ln_read_frq = .false.    !  specify whether we must read frq or not 
    556  
    557  
    558  
    559 % ================================================================ 
    560 % Analytical formulation (sbcana module)  
    561 % ================================================================ 
    562 \section[Analytical formulation (\textit{sbcana.F90})] 
    563 {Analytical formulation (\protect\mdl{sbcana})} 
    564 \label{sec:SBC_ana} 
    565  
    566 %---------------------------------------namsbc_ana-------------------------------------------------- 
    567 % 
    568 %\nlst{namsbc_ana} 
    569 %-------------------------------------------------------------------------------------------------------------- 
    570  
    571 The analytical formulation of the surface boundary condition is the default scheme. 
    572 In this case, all the six fluxes needed by the ocean are assumed to be uniform in space. 
    573 They take constant values given in the namelist \ngn{namsbc{\_}ana} by 
    574 the variables \np{rn\_utau0}, \np{rn\_vtau0}, \np{rn\_qns0}, \np{rn\_qsr0}, and \np{rn\_emp0} 
    575 ($\textit{emp}=\textit{emp}_S$). 
    576 The runoff is set to zero. 
    577 In addition, the wind is allowed to reach its nominal value within a given number of time steps (\np{nn\_tau000}). 
    578  
    579 If a user wants to apply a different analytical forcing, 
    580 the \mdl{sbcana} module can be modified to use another scheme. 
    581 As an example, the \mdl{sbc\_ana\_gyre} routine provides the analytical forcing for the GYRE configuration 
    582 (see GYRE configuration manual, in preparation). 
    583  
    584  
    585 % ================================================================ 
    586 % Flux formulation  
    587 % ================================================================ 
    588 \section[Flux formulation (\textit{sbcflx.F90})] 
    589 {Flux formulation (\protect\mdl{sbcflx})} 
     606The user can also choose in the \nam{sbc\_sas} namelist to read the mean (nn\_fsbc time-step) fraction of solar net radiation absorbed in the 1st T level using 
     607 (\np{ln\_flx}\forcode{=.true.}) and to provide 3D oceanic velocities instead of 2D ones (\np{ln\_flx}\forcode{=.true.}). In that last case, only the 1st level will be read in. 
     608 
     609 
     610 
     611% ================================================================ 
     612% Flux formulation 
     613% ================================================================ 
     614\section[Flux formulation (\textit{sbcflx.F90})]{Flux formulation (\protect\mdl{sbcflx})} 
    590615\label{sec:SBC_flx} 
    591616%------------------------------------------namsbc_flx---------------------------------------------------- 
    592617 
    593 \nlst{namsbc_flx}  
     618\begin{listing} 
     619  \nlst{namsbc_flx} 
     620  \caption{\forcode{&namsbc_flx}} 
     621  \label{lst:namsbc_flx} 
     622\end{listing} 
    594623%------------------------------------------------------------------------------------------------------------- 
    595624 
    596 In the flux formulation (\np{ln\_flx}\forcode{ = .true.}), 
     625In the flux formulation (\np{ln\_flx}\forcode{=.true.}), 
    597626the surface boundary condition fields are directly read from input files. 
    598 The user has to define in the namelist \ngn{namsbc{\_}flx} the name of the file, 
     627The user has to define in the namelist \nam{sbc\_flx} the name of the file, 
    599628the name of the variable read in the file, the time frequency at which it is given (in hours), 
    600629and a logical setting whether a time interpolation to the model time step is required for this field. 
     
    605634 
    606635 
     636 
    607637% ================================================================ 
    608638% Bulk formulation 
    609639% ================================================================ 
    610 \section[Bulk formulation {(\textit{sbcblk\{\_core,\_clio\}.F90})}] 
    611 {Bulk formulation {(\protect\mdl{sbcblk\_core}, \protect\mdl{sbcblk\_clio})}} 
     640\section[Bulk formulation (\textit{sbcblk.F90})]{Bulk formulation (\protect\mdl{sbcblk})} 
    612641\label{sec:SBC_blk} 
    613  
    614 In the bulk formulation, the surface boundary condition fields are computed using bulk formulae and atmospheric fields and ocean (and ice) variables. 
     642%---------------------------------------namsbc_blk-------------------------------------------------- 
     643 
     644\begin{listing} 
     645  \nlst{namsbc_blk} 
     646  \caption{\forcode{&namsbc_blk}} 
     647  \label{lst:namsbc_blk} 
     648\end{listing} 
     649%-------------------------------------------------------------------------------------------------------------- 
     650 
     651In the bulk formulation, the surface boundary condition fields are computed with bulk formulae using atmospheric fields 
     652and ocean (and sea-ice) variables averaged over \np{nn\_fsbc} time-step. 
    615653 
    616654The atmospheric fields used depend on the bulk formulae used. 
    617 Two bulk formulations are available: 
    618 the CORE and the CLIO bulk formulea. 
     655In forced mode, when a sea-ice model is used, a specific bulk formulation is used. 
     656Therefore, different bulk formulae are used for the turbulent fluxes computation 
     657over the ocean and over sea-ice surface. 
     658For the ocean, four bulk formulations are available thanks to the \href{https://brodeau.github.io/aerobulk/}{Aerobulk} package (\citet{brodeau.barnier.ea_JPO16}): 
     659the NCAR (formerly named CORE), COARE 3.0, COARE 3.5 and ECMWF bulk formulae. 
    619660The choice is made by setting to true one of the following namelist variable: 
    620 \np{ln\_core} or \np{ln\_clio}. 
    621  
    622 Note: 
    623 in forced mode, when a sea-ice model is used, a bulk formulation (CLIO or CORE) have to be used. 
    624 Therefore the two bulk (CLIO and CORE) formulea include the computation of the fluxes over 
    625 both an ocean and an ice surface.  
    626  
    627 % ------------------------------------------------------------------------------------------------------------- 
    628 %        CORE Bulk formulea 
    629 % ------------------------------------------------------------------------------------------------------------- 
    630 \subsection[CORE formulea (\textit{sbcblk\_core.F90}, \forcode{ln_core = .true.})] 
    631 {CORE formulea (\protect\mdl{sbcblk\_core}, \protect\np{ln\_core}\forcode{ = .true.})} 
    632 \label{subsec:SBC_blk_core} 
    633 %------------------------------------------namsbc_core---------------------------------------------------- 
    634 % 
    635 %\nlst{namsbc_core} 
    636 %------------------------------------------------------------------------------------------------------------- 
    637  
    638 The CORE bulk formulae have been developed by \citet{large.yeager_rpt04}. 
    639 They have been designed to handle the CORE forcing, a mixture of NCEP reanalysis and satellite data. 
    640 They use an inertial dissipative method to compute the turbulent transfer coefficients 
    641 (momentum, sensible heat and evaporation) from the 10 metre wind speed, air temperature and specific humidity. 
    642 This \citet{large.yeager_rpt04} dataset is available through 
    643 the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/CORE.html}{GFDL web site}. 
    644  
    645 Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
    646 This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
    647  
    648 Options are defined through the  \ngn{namsbc\_core} namelist variables. 
    649 The required 8 input fields are: 
     661 \np{ln\_NCAR}, \np{ln\_COARE\_3p0},  \np{ln\_COARE\_3p5} and  \np{ln\_ECMWF}. 
     662For sea-ice, three possibilities can be selected: 
     663a constant transfer coefficient (1.4e-3; default value), \citet{lupkes.gryanik.ea_JGR12} (\np{ln\_Cd\_L12}), and \citet{lupkes.gryanik_JGR15} (\np{ln\_Cd\_L15}) parameterizations 
     664 
     665Common options are defined through the \nam{sbc\_blk} namelist variables. 
     666The required 9 input fields are: 
    650667 
    651668%--------------------------------------------------TABLE-------------------------------------------------- 
    652669\begin{table}[htbp] 
    653   \label{tab:CORE} 
    654   \begin{center} 
    655     \begin{tabular}{|l|c|c|c|} 
    656       \hline 
    657       Variable desciption              & Model variable  & Units   & point \\    \hline 
    658       i-component of the 10m air velocity & utau      & $m.s^{-1}$         & T  \\  \hline 
    659       j-component of the 10m air velocity & vtau      & $m.s^{-1}$         & T  \\  \hline 
    660       10m air temperature              & tair      & \r{}$K$            & T   \\ \hline 
    661       Specific humidity             & humi      & \%              & T \\      \hline 
    662       Incoming long wave radiation     & qlw    & $W.m^{-2}$         & T \\      \hline 
    663       Incoming short wave radiation    & qsr    & $W.m^{-2}$         & T \\      \hline 
    664       Total precipitation (liquid + solid)   & precip & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
    665       Solid precipitation              & snow      & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
     670  \centering 
     671  \begin{tabular}{|l|c|c|c|} 
     672    \hline 
     673    Variable description                 & Model variable & Units              & point \\ 
     674    \hline 
     675    i-component of the 10m air velocity  & utau           & $m.s^{-1}$         & T     \\ 
     676    \hline 
     677    j-component of the 10m air velocity  & vtau           & $m.s^{-1}$         & T     \\ 
     678    \hline 
     679    10m air temperature                  & tair           & \r{}$K$            & T     \\ 
     680    \hline 
     681    Specific humidity                    & humi           & \%                 & T     \\ 
     682    \hline 
     683    Incoming long wave radiation         & qlw            & $W.m^{-2}$         & T     \\ 
     684    \hline 
     685    Incoming short wave radiation        & qsr            & $W.m^{-2}$         & T     \\ 
     686    \hline 
     687    Total precipitation (liquid + solid) & precip         & $Kg.m^{-2}.s^{-1}$ & T     \\ 
     688    \hline 
     689    Solid precipitation                  & snow           & $Kg.m^{-2}.s^{-1}$ & T     \\ 
     690    \hline 
     691    Mean sea-level pressure              & slp            & $hPa$              & T     \\ 
     692    \hline 
    666693    \end{tabular} 
    667   \end{center} 
     694  \label{tab:SBC_BULK} 
    668695\end{table} 
    669696%-------------------------------------------------------------------------------------------------------------- 
     
    675702The \np{sn\_wndi}, \np{sn\_wndj}, \np{sn\_qsr}, \np{sn\_qlw}, \np{sn\_tair}, \np{sn\_humi}, \np{sn\_prec}, 
    676703\np{sn\_snow}, \np{sn\_tdif} parameters describe the fields and the way they have to be used 
    677 (spatial and temporal interpolations).  
     704(spatial and temporal interpolations). 
    678705 
    679706\np{cn\_dir} is the directory of location of bulk files 
     
    682709\np{rn\_zu}: is the height of wind measurements (m) 
    683710 
    684 Three multiplicative factors are availables:  
    685 \np{rn\_pfac} and \np{rn\_efac} allows to adjust (if necessary) the global freshwater budget by 
     711Three multiplicative factors are available: 
     712\np{rn\_pfac} and \np{rn\_efac} allow to adjust (if necessary) the global freshwater budget by 
    686713increasing/reducing the precipitations (total and snow) and or evaporation, respectively. 
    687714The third one,\np{rn\_vfac}, control to which extend the ice/ocean velocities are taken into account in 
    688715the calculation of surface wind stress. 
    689 Its range should be between zero and one, and it is recommended to set it to 0. 
    690  
    691 % ------------------------------------------------------------------------------------------------------------- 
    692 %        CLIO Bulk formulea 
    693 % ------------------------------------------------------------------------------------------------------------- 
    694 \subsection[CLIO formulea (\textit{sbcblk\_clio.F90}, \forcode{ln_clio = .true.})] 
    695 {CLIO formulea (\protect\mdl{sbcblk\_clio}, \protect\np{ln\_clio}\forcode{ = .true.})} 
    696 \label{subsec:SBC_blk_clio} 
    697 %------------------------------------------namsbc_clio---------------------------------------------------- 
    698 % 
    699 %\nlst{namsbc_clio} 
    700 %------------------------------------------------------------------------------------------------------------- 
    701  
    702 The CLIO bulk formulae were developed several years ago for the Louvain-la-neuve coupled ice-ocean model 
    703 (CLIO, \cite{goosse.deleersnijder.ea_JGR99}).  
    704 They are simpler bulk formulae. 
    705 They assume the stress to be known and compute the radiative fluxes from a climatological cloud cover.  
    706  
    707 Options are defined through the  \ngn{namsbc\_clio} namelist variables. 
    708 The required 7 input fields are: 
    709  
    710 %--------------------------------------------------TABLE-------------------------------------------------- 
    711 \begin{table}[htbp] 
    712   \label{tab:CLIO} 
    713   \begin{center} 
    714     \begin{tabular}{|l|l|l|l|} 
    715       \hline 
    716       Variable desciption           & Model variable  & Units           & point \\  \hline 
    717       i-component of the ocean stress     & utau         & $N.m^{-2}$         & U \\   \hline 
    718       j-component of the ocean stress     & vtau         & $N.m^{-2}$         & V \\   \hline 
    719       Wind speed module             & vatm         & $m.s^{-1}$         & T \\   \hline 
    720       10m air temperature              & tair         & \r{}$K$            & T \\   \hline 
    721       Specific humidity                & humi         & \%              & T \\   \hline 
    722       Cloud cover                   &           & \%              & T \\   \hline 
    723       Total precipitation (liquid + solid)   & precip    & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
    724       Solid precipitation              & snow         & $Kg.m^{-2}.s^{-1}$ & T \\   \hline 
    725     \end{tabular} 
    726   \end{center} 
    727 \end{table} 
    728 %-------------------------------------------------------------------------------------------------------------- 
     716Its range must be between zero and one, and it is recommended to set it to 0 at low-resolution (ORCA2 configuration). 
    729717 
    730718As for the flux formulation, information about the input data required by the model is provided in 
    731 the namsbc\_blk\_core or namsbc\_blk\_clio namelist (see \autoref{subsec:SBC_fldread}).  
     719the namsbc\_blk namelist (see \autoref{subsec:SBC_fldread}). 
     720 
     721 
     722% ------------------------------------------------------------------------------------------------------------- 
     723%        Ocean-Atmosphere Bulk formulae 
     724% ------------------------------------------------------------------------------------------------------------- 
     725\subsection[Ocean-Atmosphere Bulk formulae (\textit{sbcblk\_algo\_coare.F90, sbcblk\_algo\_coare3p5.F90, sbcblk\_algo\_ecmwf.F90, sbcblk\_algo\_ncar.F90})]{Ocean-Atmosphere Bulk formulae (\mdl{sbcblk\_algo\_coare}, \mdl{sbcblk\_algo\_coare3p5}, \mdl{sbcblk\_algo\_ecmwf}, \mdl{sbcblk\_algo\_ncar})} 
     726\label{subsec:SBC_blk_ocean} 
     727 
     728Four different bulk algorithms are available to compute surface turbulent momentum and heat fluxes over the ocean. 
     729COARE 3.0, COARE 3.5 and ECMWF schemes mainly differ by their roughness lenghts computation and consequently 
     730their neutral transfer coefficients relationships with neutral wind. 
     731\begin{itemize} 
     732\item 
     733  NCAR (\np{ln\_NCAR}\forcode{=.true.}): 
     734  The NCAR bulk formulae have been developed by \citet{large.yeager_rpt04}. 
     735  They have been designed to handle the NCAR forcing, a mixture of NCEP reanalysis and satellite data. 
     736  They use an inertial dissipative method to compute the turbulent transfer coefficients 
     737  (momentum, sensible heat and evaporation) from the 10m wind speed, air temperature and specific humidity. 
     738  This \citet{large.yeager_rpt04} dataset is available through 
     739  the \href{http://nomads.gfdl.noaa.gov/nomads/forms/mom4/NCAR.html}{GFDL web site}. 
     740  Note that substituting ERA40 to NCEP reanalysis fields does not require changes in the bulk formulea themself. 
     741  This is the so-called DRAKKAR Forcing Set (DFS) \citep{brodeau.barnier.ea_OM10}. 
     742\item 
     743  COARE 3.0 (\np{ln\_COARE\_3p0}\forcode{=.true.}): 
     744  See \citet{fairall.bradley.ea_JC03} for more details 
     745\item 
     746  COARE 3.5 (\np{ln\_COARE\_3p5}\forcode{=.true.}): 
     747  See \citet{edson.jampana.ea_JPO13} for more details 
     748\item 
     749  ECMWF (\np{ln\_ECMWF}\forcode{=.true.}): 
     750  Based on \href{https://www.ecmwf.int/node/9221}{IFS (Cy31)} implementation and documentation. 
     751  Surface roughness lengths needed for the Obukhov length are computed following \citet{beljaars_QJRMS95}. 
     752\end{itemize} 
     753 
     754% ------------------------------------------------------------------------------------------------------------- 
     755%        Ice-Atmosphere Bulk formulae 
     756% ------------------------------------------------------------------------------------------------------------- 
     757\subsection{Ice-Atmosphere Bulk formulae} 
     758\label{subsec:SBC_blk_ice} 
     759 
     760Surface turbulent fluxes between sea-ice and the atmosphere can be computed in three different ways: 
     761 
     762\begin{itemize} 
     763\item 
     764  Constant value (\np{constant\ value}\forcode{ Cd_ice = 1.4e-3 }): 
     765  default constant value used for momentum and heat neutral transfer coefficients 
     766\item 
     767  \citet{lupkes.gryanik.ea_JGR12} (\np{ln\_Cd\_L12}\forcode{=.true.}): 
     768  This scheme adds a dependency on edges at leads, melt ponds and flows 
     769  of the constant neutral air-ice drag. After some approximations, 
     770  this can be resumed to a dependency on ice concentration (A). 
     771  This drag coefficient has a parabolic shape (as a function of ice concentration) 
     772  starting at 1.5e-3 for A=0, reaching 1.97e-3 for A=0.5 and going down 1.4e-3 for A=1. 
     773  It is theoretically applicable to all ice conditions (not only MIZ). 
     774\item 
     775  \citet{lupkes.gryanik_JGR15} (\np{ln\_Cd\_L15}\forcode{=.true.}): 
     776  Alternative turbulent transfer coefficients formulation between sea-ice 
     777  and atmosphere with distinct momentum and heat coefficients depending 
     778  on sea-ice concentration and atmospheric stability (no melt-ponds effect for now). 
     779  The parameterization is adapted from ECHAM6 atmospheric model. 
     780  Compared to Lupkes2012 scheme, it considers specific skin and form drags 
     781  to compute neutral transfer coefficients for both heat and momentum fluxes. 
     782  Atmospheric stability effect on transfer coefficient is also taken into account. 
     783\end{itemize} 
     784 
     785 
    732786 
    733787% ================================================================ 
    734788% Coupled formulation 
    735789% ================================================================ 
    736 \section[Coupled formulation (\textit{sbccpl.F90})] 
    737 {Coupled formulation (\protect\mdl{sbccpl})} 
     790\section[Coupled formulation (\textit{sbccpl.F90})]{Coupled formulation (\protect\mdl{sbccpl})} 
    738791\label{sec:SBC_cpl} 
    739792%------------------------------------------namsbc_cpl---------------------------------------------------- 
    740793 
    741 \nlst{namsbc_cpl}  
     794\begin{listing} 
     795  \nlst{namsbc_cpl} 
     796  \caption{\forcode{&namsbc_cpl}} 
     797  \label{lst:namsbc_cpl} 
     798\end{listing} 
    742799%------------------------------------------------------------------------------------------------------------- 
    743800 
    744801In the coupled formulation of the surface boundary condition, 
    745 the fluxes are provided by the OASIS coupler at a frequency which is defined in the OASIS coupler, 
     802the fluxes are provided by the OASIS coupler at a frequency which is defined in the OASIS coupler namelist, 
    746803while sea and ice surface temperature, ocean and ice albedo, and ocean currents are sent to 
    747804the atmospheric component. 
    748805 
    749806A generalised coupled interface has been developed. 
    750 It is currently interfaced with OASIS-3-MCT (\key{oasis3}). 
    751 It has been successfully used to interface \NEMO to most of the European atmospheric GCM 
     807It is currently interfaced with OASIS-3-MCT versions 1 to 4 (\key{oasis3}). 
     808An additional specific CPP key (\key{oa3mct\_v1v2}) is needed for OASIS-3-MCT versions 1 and 2. 
     809It has been successfully used to interface \NEMO\ to most of the European atmospheric GCM 
    752810(ARPEGE, ECHAM, ECMWF, HadAM, HadGAM, LMDz), as well as to \href{http://wrf-model.org/}{WRF} 
    753811(Weather Research and Forecasting Model). 
    754812 
    755 Note that in addition to the setting of \np{ln\_cpl} to true, the \key{coupled} have to be defined. 
    756 The CPP key is mainly used in sea-ice to ensure that the atmospheric fluxes are actually received by 
    757 the ice-ocean system (no calculation of ice sublimation in coupled mode). 
    758 When PISCES biogeochemical model (\key{top} and \key{pisces}) is also used in the coupled system,  
    759 the whole carbon cycle is computed by defining \key{cpl\_carbon\_cycle}. 
     813When PISCES biogeochemical model (\key{top}) is also used in the coupled system, 
     814the whole carbon cycle is computed. 
    760815In this case, CO$_2$ fluxes will be exchanged between the atmosphere and the ice-ocean system 
    761 (and need to be activated in \ngn{namsbc{\_}cpl} ). 
     816(and need to be activated in \nam{sbc\_cpl} ). 
    762817 
    763818The namelist above allows control of various aspects of the coupling fields (particularly for vectors) and 
    764819now allows for any coupling fields to have multiple sea ice categories (as required by LIM3 and CICE). 
    765 When indicating a multi-category coupling field in namsbc{\_}cpl the number of categories will be determined by 
     820When indicating a multi-category coupling field in \nam{sbc\_cpl}, the number of categories will be determined by 
    766821the number used in the sea ice model. 
    767 In some limited cases it may be possible to specify single category coupling fields even when 
     822In some limited cases, it may be possible to specify single category coupling fields even when 
    768823the sea ice model is running with multiple categories - 
    769 in this case the user should examine the code to be sure the assumptions made are satisfactory. 
    770 In cases where this is definitely not possible the model should abort with an error message. 
    771 The new code has been tested using ECHAM with LIM2, and HadGAM3 with CICE but 
    772 although it will compile with \key{lim3} additional minor code changes may be required to run using LIM3. 
     824in this case, the user should examine the code to be sure the assumptions made are satisfactory. 
     825In cases where this is definitely not possible, the model should abort with an error message. 
     826 
    773827 
    774828 
     
    776830%        Atmospheric pressure 
    777831% ================================================================ 
    778 \section[Atmospheric pressure (\textit{sbcapr.F90})] 
    779 {Atmospheric pressure (\protect\mdl{sbcapr})} 
     832\section[Atmospheric pressure (\textit{sbcapr.F90})]{Atmospheric pressure (\protect\mdl{sbcapr})} 
    780833\label{sec:SBC_apr} 
    781834%------------------------------------------namsbc_apr---------------------------------------------------- 
    782835 
    783 \nlst{namsbc_apr}  
     836\begin{listing} 
     837  \nlst{namsbc_apr} 
     838  \caption{\forcode{&namsbc_apr}} 
     839  \label{lst:namsbc_apr} 
     840\end{listing} 
    784841%------------------------------------------------------------------------------------------------------------- 
    785842 
    786843The optional atmospheric pressure can be used to force ocean and ice dynamics 
    787 (\np{ln\_apr\_dyn}\forcode{ = .true.}, \textit{\ngn{namsbc}} namelist). 
    788 The input atmospheric forcing defined via \np{sn\_apr} structure (\textit{namsbc\_apr} namelist) 
     844(\np{ln\_apr\_dyn}\forcode{=.true.}, \nam{sbc} namelist). 
     845The input atmospheric forcing defined via \np{sn\_apr} structure (\nam{sbc\_apr} namelist) 
    789846can be interpolated in time to the model time step, and even in space when the interpolation on-the-fly is used. 
    790847When used to force the dynamics, the atmospheric pressure is further transformed into 
     
    796853where $P_{atm}$ is the atmospheric pressure and $P_o$ a reference atmospheric pressure. 
    797854A value of $101,000~N/m^2$ is used unless \np{ln\_ref\_apr} is set to true. 
    798 In this case $P_o$ is set to the value of $P_{atm}$ averaged over the ocean domain, 
    799 \ie the mean value of $\eta_{ib}$ is kept to zero at all time step. 
     855In this case, $P_o$ is set to the value of $P_{atm}$ averaged over the ocean domain, 
     856\ie\ the mean value of $\eta_{ib}$ is kept to zero at all time steps. 
    800857 
    801858The gradient of $\eta_{ib}$ is added to the RHS of the ocean momentum equation (see \mdl{dynspg} for the ocean). 
    802859For sea-ice, the sea surface height, $\eta_m$, which is provided to the sea ice model is set to $\eta - \eta_{ib}$ 
    803860(see \mdl{sbcssr} module). 
    804 $\eta_{ib}$ can be set in the output. 
     861$\eta_{ib}$ can be written in the output. 
    805862This can simplify altimetry data and model comparison as 
    806863inverse barometer sea surface height is usually removed from these date prior to their distribution. 
    807864 
    808865When using time-splitting and BDY package for open boundaries conditions, 
    809 the equivalent inverse barometer sea surface height $\eta_{ib}$ can be added to BDY ssh data:  
     866the equivalent inverse barometer sea surface height $\eta_{ib}$ can be added to BDY ssh data: 
    810867\np{ln\_apr\_obc}  might be set to true. 
    811868 
     869 
     870 
    812871% ================================================================ 
    813872%        Surface Tides Forcing 
    814873% ================================================================ 
    815 \section[Surface tides (\textit{sbctide.F90})] 
    816 {Surface tides (\protect\mdl{sbctide})} 
     874\section[Surface tides (\textit{sbctide.F90})]{Surface tides (\protect\mdl{sbctide})} 
    817875\label{sec:SBC_tide} 
    818876 
    819877%------------------------------------------nam_tide--------------------------------------- 
    820878 
    821 \nlst{nam_tide} 
     879\begin{listing} 
     880  \nlst{nam_tide} 
     881  \caption{\forcode{&nam_tide}} 
     882  \label{lst:nam_tide} 
     883\end{listing} 
    822884%----------------------------------------------------------------------------------------- 
    823885 
    824886The tidal forcing, generated by the gravity forces of the Earth-Moon and Earth-Sun sytems, 
    825 is activated if \np{ln\_tide} and \np{ln\_tide\_pot} are both set to \forcode{.true.} in \ngn{nam\_tide}. 
    826 This translates as an additional barotropic force in the momentum equations \ref{eq:PE_dyn} such that: 
     887is activated if \np{ln\_tide} and \np{ln\_tide\_pot} are both set to \forcode{.true.} in \nam{\_tide}. 
     888This translates as an additional barotropic force in the momentum \autoref{eq:MB_PE_dyn} such that: 
    827889\[ 
    828   % \label{eq:PE_dyn_tides} 
     890  % \label{eq:SBC_PE_dyn_tides} 
    829891  \frac{\partial {\mathrm {\mathbf U}}_h }{\partial t}= ... 
    830892  +g\nabla (\Pi_{eq} + \Pi_{sal}) 
     
    832894where $\Pi_{eq}$ stands for the equilibrium tidal forcing and 
    833895$\Pi_{sal}$ is a self-attraction and loading term (SAL). 
    834   
     896 
    835897The equilibrium tidal forcing is expressed as a sum over a subset of 
    836898constituents chosen from the set of available tidal constituents 
    837 defined in file \rou{SBC/tide.h90} (this comprises the tidal 
     899defined in file \hf{SBC/tide} (this comprises the tidal 
    838900constituents \textit{M2, N2, 2N2, S2, K2, K1, O1, Q1, P1, M4, Mf, Mm, 
    839901  Msqm, Mtm, S1, MU2, NU2, L2}, and \textit{T2}). Individual 
    840902constituents are selected by including their names in the array 
    841 \np{clname} in \ngn{nam\_tide} (e.g., \np{clname(1) = 'M2', 
    842   clname(2)='S2'} to select solely the tidal consituents \textit{M2} 
     903\np{clname} in \nam{\_tide} (e.g., \np{clname}\forcode{(1)='M2', } 
     904\np{clname}\forcode{(2)='S2'} to select solely the tidal consituents \textit{M2} 
    843905and \textit{S2}). Optionally, when \np{ln\_tide\_ramp} is set to 
    844906\forcode{.true.}, the equilibrium tidal forcing can be ramped up 
     
    850912discussion about the practical implementation of this term). 
    851913Nevertheless, the complex calculations involved would make this 
    852 computationally too expensive.  Here, two options are available: 
     914computationally too expensive. Here, two options are available: 
    853915$\Pi_{sal}$ generated by an external model can be read in 
    854 (\np{ln\_read\_load=.true.}), or a ``scalar approximation'' can be 
    855 used (\np{ln\_scal\_load=.true.}). In the latter case 
     916(\np{ln\_read\_load}\forcode{ =.true.}), or a ``scalar approximation'' can be 
     917used (\np{ln\_scal\_load}\forcode{ =.true.}). In the latter case 
    856918\[ 
    857919  \Pi_{sal} = \beta \eta, 
     
    862924\forcode{.false.} removes the SAL contribution. 
    863925 
     926 
     927 
    864928% ================================================================ 
    865929%        River runoffs 
    866930% ================================================================ 
    867 \section[River runoffs (\textit{sbcrnf.F90})] 
    868 {River runoffs (\protect\mdl{sbcrnf})} 
     931\section[River runoffs (\textit{sbcrnf.F90})]{River runoffs (\protect\mdl{sbcrnf})} 
    869932\label{sec:SBC_rnf} 
    870933%------------------------------------------namsbc_rnf---------------------------------------------------- 
    871934 
    872 \nlst{namsbc_rnf}  
     935\begin{listing} 
     936  \nlst{namsbc_rnf} 
     937  \caption{\forcode{&namsbc_rnf}} 
     938  \label{lst:namsbc_rnf} 
     939\end{listing} 
    873940%------------------------------------------------------------------------------------------------------------- 
    874941 
    875 %River runoff generally enters the ocean at a nonzero depth rather than through the surface.  
     942%River runoff generally enters the ocean at a nonzero depth rather than through the surface. 
    876943%Many models, however, have traditionally inserted river runoff to the top model cell. 
    877 %This was the case in \NEMO prior to the version 3.3. The switch toward a input of runoff  
    878 %throughout a nonzero depth has been motivated by the numerical and physical problems  
    879 %that arise when the top grid cells are of the order of one meter. This situation is common in  
    880 %coastal modelling and becomes more and more often open ocean and climate modelling  
     944%This was the case in \NEMO\ prior to the version 3.3. The switch toward a input of runoff 
     945%throughout a nonzero depth has been motivated by the numerical and physical problems 
     946%that arise when the top grid cells are of the order of one meter. This situation is common in 
     947%coastal modelling and becomes more and more often open ocean and climate modelling 
    881948%\footnote{At least a top cells thickness of 1~meter and a 3 hours forcing frequency are 
    882949%required to properly represent the diurnal cycle \citep{bernie.woolnough.ea_JC05}. see also \autoref{fig:SBC_dcy}.}. 
    883950 
    884951 
    885 %To do this we need to treat evaporation/precipitation fluxes and river runoff differently in the  
    886 %\mdl{tra\_sbc} module.  We decided to separate them throughout the code, so that the variable  
    887 %\textit{emp} represented solely evaporation minus precipitation fluxes, and a new 2d variable  
    888 %rnf was added which represents the volume flux of river runoff (in kg/m2s to remain consistent with  
    889 %emp).  This meant many uses of emp and emps needed to be changed, a list of all modules which use  
     952%To do this we need to treat evaporation/precipitation fluxes and river runoff differently in the 
     953%\mdl{tra\_sbc} module.  We decided to separate them throughout the code, so that the variable 
     954%\textit{emp} represented solely evaporation minus precipitation fluxes, and a new 2d variable 
     955%rnf was added which represents the volume flux of river runoff (in kg/m2s to remain consistent with 
     956%emp).  This meant many uses of emp and emps needed to be changed, a list of all modules which use 
    890957%emp or emps and the changes made are below: 
    891958 
     
    894961River runoff generally enters the ocean at a nonzero depth rather than through the surface. 
    895962Many models, however, have traditionally inserted river runoff to the top model cell. 
    896 This was the case in \NEMO prior to the version 3.3, 
     963This was the case in \NEMO\ prior to the version 3.3, 
    897964and was combined with an option to increase vertical mixing near the river mouth. 
    898965 
    899966However, with this method numerical and physical problems arise when the top grid cells are of the order of one meter. 
    900 This situation is common in coastal modelling and is becoming more common in open ocean and climate modelling  
     967This situation is common in coastal modelling and is becoming more common in open ocean and climate modelling 
    901968\footnote{ 
    902969  At least a top cells thickness of 1~meter and a 3 hours forcing frequency are required to 
     
    909976along with the depth (in metres) which the river should be added to. 
    910977 
    911 Namelist variables in \ngn{namsbc\_rnf}, \np{ln\_rnf\_depth}, \np{ln\_rnf\_sal} and 
     978Namelist variables in \nam{sbc\_rnf}, \np{ln\_rnf\_depth}, \np{ln\_rnf\_sal} and 
    912979\np{ln\_rnf\_temp} control whether the river attributes (depth, salinity and temperature) are read in and used. 
    913980If these are set as false the river is added to the surface box only, assumed to be fresh (0~psu), 
    914981and/or taken as surface temperature respectively. 
    915982 
    916 The runoff value and attributes are read in in sbcrnf.   
     983The runoff value and attributes are read in in sbcrnf. 
    917984For temperature -999 is taken as missing data and the river temperature is taken to 
    918985be the surface temperatue at the river point. 
    919 For the depth parameter a value of -1 means the river is added to the surface box only,  
    920 and a value of -999 means the river is added through the entire water column.  
     986For the depth parameter a value of -1 means the river is added to the surface box only, 
     987and a value of -999 means the river is added through the entire water column. 
    921988After being read in the temperature and salinity variables are multiplied by the amount of runoff 
    922989(converted into m/s) to give the heat and salt content of the river runoff. 
     
    925992The variable \textit{h\_dep} is then calculated to be the depth (in metres) of 
    926993the bottom of the lowest box the river water is being added to 
    927 (\ie the total depth that river water is being added to in the model). 
     994(\ie\ the total depth that river water is being added to in the model). 
    928995 
    929996The mass/volume addition due to the river runoff is, at each relevant depth level, added to 
     
    931998This increases the diffusion term in the vicinity of the river, thereby simulating a momentum flux. 
    932999The sea surface height is calculated using the sum of the horizontal divergence terms, 
    933 and so the river runoff indirectly forces an increase in sea surface height.  
     1000and so the river runoff indirectly forces an increase in sea surface height. 
    9341001 
    9351002The \textit{hdivn} terms are used in the tracer advection modules to force vertical velocities. 
     
    9441011As such the volume of water does not change, but the water is diluted. 
    9451012 
    946 For the non-linear free surface case (\key{vvl}), no flux is allowed through the surface. 
     1013For the non-linear free surface case, no flux is allowed through the surface. 
    9471014Instead in the surface box (as well as water moving up from the boxes below) a volume of runoff water is added with 
    9481015no corresponding heat and salt addition and so as happens in the lower boxes there is a dilution effect. 
     
    9531020This is done in the same way for both vvl and non-vvl. 
    9541021The temperature and salinity are increased through the specified depth according to 
    955 the heat and salt content of the river.  
     1022the heat and salt content of the river. 
    9561023 
    9571024In the non-linear free surface case (vvl), 
     
    9621029 
    9631030It is also possible for runnoff to be specified as a negative value for modelling flow through straits, 
    964 \ie modelling the Baltic flow in and out of the North Sea. 
     1031\ie\ modelling the Baltic flow in and out of the North Sea. 
    9651032When the flow is out of the domain there is no change in temperature and salinity, 
    9661033regardless of the namelist options used, 
    967 as the ocean water leaving the domain removes heat and salt (at the same concentration) with it.  
    968  
    969  
    970 %\colorbox{yellow}{Nevertheless, Pb of vertical resolution and 3D input : increase vertical mixing near river mouths to mimic a 3D river  
     1034as the ocean water leaving the domain removes heat and salt (at the same concentration) with it. 
     1035 
     1036 
     1037%\colorbox{yellow}{Nevertheless, Pb of vertical resolution and 3D input : increase vertical mixing near river mouths to mimic a 3D river 
    9711038 
    9721039%All river runoff and emp fluxes are assumed to be fresh water (zero salinity) and at the same temperature as the sea surface.} 
     
    9801047%\gmcomment{  word doc of runoffs: 
    9811048% 
    982 %In the current \NEMO setup river runoff is added to emp fluxes, these are then applied at just the sea surface as a volume change (in the variable volume case this is a literal volume change, and in the linear free surface case the free surface is moved) and a salt flux due to the concentration/dilution effect.  There is also an option to increase vertical mixing near river mouths; this gives the effect of having a 3d river.  All river runoff and emp fluxes are assumed to be fresh water (zero salinity) and at the same temperature as the sea surface. 
    983 %Our aim was to code the option to specify the temperature and salinity of river runoff, (as well as the amount), along with the depth that the river water will affect.  This would make it possible to model low salinity outflow, such as the Baltic, and would allow the ocean temperature to be affected by river runoff.   
     1049%In the current \NEMO\ setup river runoff is added to emp fluxes, these are then applied at just the sea surface as a volume change (in the variable volume case this is a literal volume change, and in the linear free surface case the free surface is moved) and a salt flux due to the concentration/dilution effect.  There is also an option to increase vertical mixing near river mouths; this gives the effect of having a 3d river.  All river runoff and emp fluxes are assumed to be fresh water (zero salinity) and at the same temperature as the sea surface. 
     1050%Our aim was to code the option to specify the temperature and salinity of river runoff, (as well as the amount), along with the depth that the river water will affect.  This would make it possible to model low salinity outflow, such as the Baltic, and would allow the ocean temperature to be affected by river runoff. 
    9841051 
    9851052%The depth option makes it possible to have the river water affecting just the surface layer, throughout depth, or some specified point in between. 
     
    9871054%To do this we need to treat evaporation/precipitation fluxes and river runoff differently in the tra_sbc module.  We decided to separate them throughout the code, so that the variable emp represented solely evaporation minus precipitation fluxes, and a new 2d variable rnf was added which represents the volume flux of river runoff (in kg/m2s to remain consistent with emp).  This meant many uses of emp and emps needed to be changed, a list of all modules which use emp or emps and the changes made are below: 
    9881055 
    989 %} 
     1056 
     1057 
    9901058% ================================================================ 
    9911059%        Ice shelf melting 
    9921060% ================================================================ 
    993 \section[Ice shelf melting (\textit{sbcisf.F90})] 
    994 {Ice shelf melting (\protect\mdl{sbcisf})} 
     1061\section[Ice shelf melting (\textit{sbcisf.F90})]{Ice shelf melting (\protect\mdl{sbcisf})} 
    9951062\label{sec:SBC_isf} 
    9961063%------------------------------------------namsbc_isf---------------------------------------------------- 
    9971064 
    998 \nlst{namsbc_isf} 
     1065\begin{listing} 
     1066  \nlst{namsbc_isf} 
     1067  \caption{\forcode{&namsbc_isf}} 
     1068  \label{lst:namsbc_isf} 
     1069\end{listing} 
    9991070%-------------------------------------------------------------------------------------------------------- 
    1000 The namelist variable in \ngn{namsbc}, \np{nn\_isf}, controls the ice shelf representation. 
    1001 Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{mathiot.jenkins.ea_GMD17}.  
     1071 
     1072The namelist variable in \nam{sbc}, \np{nn\_isf}, controls the ice shelf representation. 
     1073Description and result of sensitivity test to \np{nn\_isf} are presented in \citet{mathiot.jenkins.ea_GMD17}. 
    10021074The different options are illustrated in \autoref{fig:SBC_isf}. 
    10031075 
    10041076\begin{description} 
    1005 \item[\np{nn\_isf}\forcode{ = 1}]: 
    1006   The ice shelf cavity is represented (\np{ln\_isfcav}\forcode{ = .true.} needed). 
     1077 
     1078  \item[\np{nn\_isf}\forcode{=1}]: 
     1079  The ice shelf cavity is represented (\np{ln\_isfcav}\forcode{=.true.} needed). 
    10071080  The fwf and heat flux are depending of the local water properties. 
     1081 
    10081082  Two different bulk formulae are available: 
    10091083 
    10101084   \begin{description} 
    1011    \item[\np{nn\_isfblk}\forcode{ = 1}]: 
     1085   \item[\np{nn\_isfblk}\forcode{=1}]: 
    10121086     The melt rate is based on a balance between the upward ocean heat flux and 
    10131087     the latent heat flux at the ice shelf base. A complete description is available in \citet{hunter_rpt06}. 
    1014    \item[\np{nn\_isfblk}\forcode{ = 2}]: 
     1088   \item[\np{nn\_isfblk}\forcode{=2}]: 
    10151089     The melt rate and the heat flux are based on a 3 equations formulation 
    1016      (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation).  
     1090     (a heat flux budget at the ice base, a salt flux budget at the ice base and a linearised freezing point temperature equation). 
    10171091     A complete description is available in \citet{jenkins_JGR91}. 
    10181092   \end{description} 
    10191093 
    1020      Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{losch_JGR08}.  
     1094     Temperature and salinity used to compute the melt are the average temperature in the top boundary layer \citet{losch_JGR08}. 
    10211095     Its thickness is defined by \np{rn\_hisf\_tbl}. 
    10221096     The fluxes and friction velocity are computed using the mean temperature, salinity and velocity in the the first \np{rn\_hisf\_tbl} m. 
     
    10261100     If \np{rn\_hisf\_tbl} smaller than top $e_{3}t$, the top boundary layer thickness is set to the top cell thickness.\\ 
    10271101 
    1028      Each melt bulk formula depends on a exchange coeficient ($\Gamma^{T,S}$) between the ocean and the ice.  
     1102     Each melt bulk formula depends on a exchange coeficient ($\Gamma^{T,S}$) between the ocean and the ice. 
    10291103     There are 3 different ways to compute the exchange coeficient: 
    10301104   \begin{description} 
    1031         \item[\np{nn\_gammablk}\forcode{ = 0}]: 
    1032      The salt and heat exchange coefficients are constant and defined by \np{rn\_gammas0} and \np{rn\_gammat0}.  
    1033 \[ 
    1034   % \label{eq:sbc_isf_gamma_iso} 
    1035 \gamma^{T} = \np{rn\_gammat0} 
    1036 \] 
    1037 \[ 
    1038 \gamma^{S} = \np{rn\_gammas0} 
    1039 \] 
     1105        \item[\np{nn\_gammablk}\forcode{=0}]: 
     1106     The salt and heat exchange coefficients are constant and defined by \np{rn\_gammas0} and \np{rn\_gammat0}. 
     1107     \begin{gather*} 
     1108       % \label{eq:SBC_isf_gamma_iso} 
     1109       \gamma^{T} = rn\_gammat0 \\ 
     1110       \gamma^{S} = rn\_gammas0 
     1111     \end{gather*} 
    10401112     This is the recommended formulation for ISOMIP. 
    1041    \item[\np{nn\_gammablk}\forcode{ = 1}]: 
     1113   \item[\np{nn\_gammablk}\forcode{=1}]: 
    10421114     The salt and heat exchange coefficients are velocity dependent and defined as 
    1043 \[ 
    1044 \gamma^{T} = \np{rn\_gammat0} \times u_{*}  
    1045 \] 
    1046 \[ 
    1047 \gamma^{S} = \np{rn\_gammas0} \times u_{*} 
    1048 \] 
     1115     \begin{gather*} 
     1116       \gamma^{T} = rn\_gammat0 \times u_{*} \\ 
     1117       \gamma^{S} = rn\_gammas0 \times u_{*} 
     1118     \end{gather*} 
    10491119     where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn\_hisf\_tbl} meters). 
    10501120     See \citet{jenkins.nicholls.ea_JPO10} for all the details on this formulation. It is the recommended formulation for realistic application. 
    1051    \item[\np{nn\_gammablk}\forcode{ = 2}]: 
     1121   \item[\np{nn\_gammablk}\forcode{=2}]: 
    10521122     The salt and heat exchange coefficients are velocity and stability dependent and defined as: 
    10531123\[ 
    1054 \gamma^{T,S} = \frac{u_{*}}{\Gamma_{Turb} + \Gamma^{T,S}_{Mole}}  
     1124\gamma^{T,S} = \frac{u_{*}}{\Gamma_{Turb} + \Gamma^{T,S}_{Mole}} 
    10551125\] 
    10561126     where $u_{*}$ is the friction velocity in the top boundary layer (ie first \np{rn\_hisf\_tbl} meters), 
    10571127     $\Gamma_{Turb}$ the contribution of the ocean stability and 
    10581128     $\Gamma^{T,S}_{Mole}$ the contribution of the molecular diffusion. 
    1059      See \citet{holland.jenkins_JPO99} for all the details on this formulation.  
    1060      This formulation has not been extensively tested in NEMO (not recommended). 
     1129     See \citet{holland.jenkins_JPO99} for all the details on this formulation. 
     1130     This formulation has not been extensively tested in \NEMO\ (not recommended). 
    10611131   \end{description} 
    1062  \item[\np{nn\_isf}\forcode{ = 2}]: 
     1132  \item[\np{nn\_isf}\forcode{=2}]: 
    10631133   The ice shelf cavity is not represented. 
    10641134   The fwf and heat flux are computed using the \citet{beckmann.goosse_OM03} parameterisation of isf melting. 
    10651135   The fluxes are distributed along the ice shelf edge between the depth of the average grounding line (GL) 
    10661136   (\np{sn\_depmax\_isf}) and the base of the ice shelf along the calving front 
    1067    (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}\forcode{ = 3}). 
     1137   (\np{sn\_depmin\_isf}) as in (\np{nn\_isf}\forcode{=3}). 
    10681138   The effective melting length (\np{sn\_Leff\_isf}) is read from a file. 
    1069  \item[\np{nn\_isf}\forcode{ = 3}]: 
     1139  \item[\np{nn\_isf}\forcode{=3}]: 
    10701140   The ice shelf cavity is not represented. 
    10711141   The fwf (\np{sn\_rnfisf}) is prescribed and distributed along the ice shelf edge between 
     
    10731143   the base of the ice shelf along the calving front (\np{sn\_depmin\_isf}). 
    10741144   The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 
    1075  \item[\np{nn\_isf}\forcode{ = 4}]: 
    1076    The ice shelf cavity is opened (\np{ln\_isfcav}\forcode{ = .true.} needed). 
     1145  \item[\np{nn\_isf}\forcode{=4}]: 
     1146   The ice shelf cavity is opened (\np{ln\_isfcav}\forcode{=.true.} needed). 
    10771147   However, the fwf is not computed but specified from file \np{sn\_fwfisf}). 
    10781148   The heat flux ($Q_h$) is computed as $Q_h = fwf \times L_f$. 
    1079    As in \np{nn\_isf}\forcode{ = 1}, the fluxes are spread over the top boundary layer thickness (\np{rn\_hisf\_tbl})\\ 
     1149   As in \np{nn\_isf}\forcode{=1}, the fluxes are spread over the top boundary layer thickness (\np{rn\_hisf\_tbl})\\ 
    10801150\end{description} 
    10811151 
    1082 $\bullet$ \np{nn\_isf}\forcode{ = 1} and \np{nn\_isf}\forcode{ = 2} compute a melt rate based on 
     1152$\bullet$ \np{nn\_isf}\forcode{=1} and \np{nn\_isf}\forcode{=2} compute a melt rate based on 
    10831153the water mass properties, ocean velocities and depth. 
    10841154This flux is thus highly dependent of the model resolution (horizontal and vertical), 
    10851155realism of the water masses onto the shelf ...\\ 
    10861156 
    1087 $\bullet$ \np{nn\_isf}\forcode{ = 3} and \np{nn\_isf}\forcode{ = 4} read the melt rate from a file. 
     1157$\bullet$ \np{nn\_isf}\forcode{=3} and \np{nn\_isf}\forcode{=4} read the melt rate from a file. 
    10881158You have total control of the fwf forcing. 
    10891159This can be useful if the water masses on the shelf are not realistic or 
    10901160the resolution (horizontal/vertical) are too coarse to have realistic melting or 
    1091 for studies where you need to control your heat and fw input.\\  
     1161for studies where you need to control your heat and fw input.\\ 
    10921162 
    10931163The ice shelf melt is implemented as a volume flux as for the runoff. 
     
    10981168%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    10991169\begin{figure}[!t] 
    1100   \begin{center} 
    1101     \includegraphics[width=\textwidth]{Fig_SBC_isf} 
    1102     \caption{ 
    1103       \protect\label{fig:SBC_isf} 
    1104       Illustration the location where the fwf is injected and whether or not the fwf is interactif or not depending of \np{nn\_isf}. 
    1105     } 
    1106   \end{center} 
     1170  \centering 
     1171  \includegraphics[width=0.66\textwidth]{Fig_SBC_isf} 
     1172  \caption[Ice shelf location and fresh water flux definition]{ 
     1173    Illustration of the location where the fwf is injected and 
     1174    whether or not the fwf is interactif or not depending of \protect\np{nn\_isf}.} 
     1175  \label{fig:SBC_isf} 
    11071176\end{figure} 
    11081177%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    11091178 
     1179 
     1180 
     1181% ================================================================ 
     1182%        Ice sheet coupling 
     1183% ================================================================ 
    11101184\section{Ice sheet coupling} 
    11111185\label{sec:SBC_iscpl} 
    11121186%------------------------------------------namsbc_iscpl---------------------------------------------------- 
    11131187 
    1114 \nlst{namsbc_iscpl} 
     1188\begin{listing} 
     1189  \nlst{namsbc_iscpl} 
     1190  \caption{\forcode{&namsbc_iscpl}} 
     1191  \label{lst:namsbc_iscpl} 
     1192\end{listing} 
    11151193%-------------------------------------------------------------------------------------------------------- 
     1194 
    11161195Ice sheet/ocean coupling is done through file exchange at the restart step. 
    11171196At each restart step: 
     1197 
    11181198\begin{description} 
    11191199\item[Step 1]: the ice sheet model send a new bathymetry and ice shelf draft netcdf file. 
    11201200\item[Step 2]: a new domcfg.nc file is built using the DOMAINcfg tools. 
    1121 \item[Step 3]: NEMO run for a specific period and output the average melt rate over the period. 
     1201\item[Step 3]: \NEMO\ run for a specific period and output the average melt rate over the period. 
    11221202\item[Step 4]: the ice sheet model run using the melt rate outputed in step 4. 
    11231203\item[Step 5]: go back to 1. 
    11241204\end{description} 
    11251205 
    1126 If \np{ln\_iscpl}\forcode{ = .true.}, the isf draft is assume to be different at each restart step with 
     1206If \np{ln\_iscpl}\forcode{=.true.}, the isf draft is assume to be different at each restart step with 
    11271207potentially some new wet/dry cells due to the ice sheet dynamics/thermodynamics. 
    11281208The wetting and drying scheme applied on the restart is very simple and described below for the 6 different possible cases: 
     1209 
    11291210\begin{description} 
    11301211\item[Thin a cell down]: 
     
    11361217  mask, T/S, U/V and ssh are set to 0. 
    11371218  Furthermore, U/V into the water column are modified to satisfy ($bt_b=bt_n$). 
    1138 \item[Wet a cell]:  
     1219\item[Wet a cell]: 
    11391220  mask is set to 1, T/S is extrapolated from neighbours, $ssh_n = ssh_b$ and U/V set to 0. 
    1140   If no neighbours, T/S is extrapolated from old top cell value.  
     1221  If no neighbours, T/S is extrapolated from old top cell value. 
    11411222  If no neighbours along i,j and k (both previous test failed), T/S/U/V/ssh and mask are set to 0. 
    11421223\item[Dry a column]: 
     
    11551236The default number is set up for the MISOMIP idealised experiments. 
    11561237This coupling procedure is able to take into account grounding line and calving front migration. 
    1157 However, it is a non-conservative processe.  
     1238However, it is a non-conservative processe. 
    11581239This could lead to a trend in heat/salt content and volume.\\ 
    11591240 
    11601241In order to remove the trend and keep the conservation level as close to 0 as possible, 
    1161 a simple conservation scheme is available with \np{ln\_hsb}\forcode{ = .true.}. 
     1242a simple conservation scheme is available with \np{ln\_hsb}\forcode{=.true.}. 
    11621243The heat/salt/vol. gain/loss is diagnosed, as well as the location. 
    1163 A correction increment is computed and apply each time step during the next \np{rn\_fiscpl} time steps.  
     1244A correction increment is computed and apply each time step during the next \np{rn\_fiscpl} time steps. 
    11641245For safety, it is advised to set \np{rn\_fiscpl} equal to the coupling period (smallest increment possible). 
    11651246The corrective increment is apply into the cell itself (if it is a wet cell), the neigbouring cells or the closest wet cell (if the cell is now dry). 
    11661247 
    1167 % 
     1248 
     1249 
    11681250% ================================================================ 
    11691251%        Handling of icebergs 
    11701252% ================================================================ 
    11711253\section{Handling of icebergs (ICB)} 
    1172 \label{sec:ICB_icebergs} 
     1254\label{sec:SBC_ICB_icebergs} 
    11731255%------------------------------------------namberg---------------------------------------------------- 
    11741256 
    1175 \nlst{namberg} 
     1257\begin{listing} 
     1258  \nlst{namberg} 
     1259  \caption{\forcode{&namberg}} 
     1260  \label{lst:namberg} 
     1261\end{listing} 
    11761262%------------------------------------------------------------------------------------------------------------- 
    11771263 
    1178 Icebergs are modelled as lagrangian particles in NEMO \citep{marsh.ivchenko.ea_GMD15}. 
     1264Icebergs are modelled as lagrangian particles in \NEMO\ \citep{marsh.ivchenko.ea_GMD15}. 
    11791265Their physical behaviour is controlled by equations as described in \citet{martin.adcroft_OM10} ). 
    1180 (Note that the authors kindly provided a copy of their code to act as a basis for implementation in NEMO). 
     1266(Note that the authors kindly provided a copy of their code to act as a basis for implementation in \NEMO). 
    11811267Icebergs are initially spawned into one of ten classes which have specific mass and thickness as 
    1182 described in the \ngn{namberg} namelist: \np{rn\_initial\_mass} and \np{rn\_initial\_thickness}. 
     1268described in the \nam{berg} namelist: \np{rn\_initial\_mass} and \np{rn\_initial\_thickness}. 
    11831269Each class has an associated scaling (\np{rn\_mass\_scaling}), 
    11841270which is an integer representing how many icebergs of this class are being described as one lagrangian point 
    11851271(this reduces the numerical problem of tracking every single iceberg). 
    1186 They are enabled by setting \np{ln\_icebergs}\forcode{ = .true.}. 
     1272They are enabled by setting \np{ln\_icebergs}\forcode{=.true.}. 
    11871273 
    11881274Two initialisation schemes are possible. 
     
    11951281  \np{nn\_test\_icebergs} is defined by four numbers in \np{nn\_test\_box} representing the corners of 
    11961282  the geographical box: lonmin,lonmax,latmin,latmax 
    1197 \item[\np{nn\_test\_icebergs}\forcode{ = -1}] 
    1198   In this scheme the model reads a calving file supplied in the \np{sn\_icb} parameter. 
     1283\item[\np{nn\_test\_icebergs}\forcode{=-1}] 
     1284  In this scheme, the model reads a calving file supplied in the \np{sn\_icb} parameter. 
    11991285  This should be a file with a field on the configuration grid (typically ORCA) 
    12001286  representing ice accumulation rate at each model point. 
     
    12041290  At each time step, a test is performed to see if there is enough ice mass to 
    12051291  calve an iceberg of each class in order (1 to 10). 
    1206   Note that this is the initial mass multiplied by the number each particle represents (\ie the scaling). 
     1292  Note that this is the initial mass multiplied by the number each particle represents (\ie\ the scaling). 
    12071293  If there is enough ice, a new iceberg is spawned and the total available ice reduced accordingly. 
    12081294\end{description} 
     
    12131299or (if \np{rn\_bits\_erosion\_fraction}~$>$~0) into melt and additionally small ice bits 
    12141300which are assumed to propagate with their larger parent and thus delay fluxing into the ocean. 
    1215 Melt water (and other variables on the configuration grid) are written into the main NEMO model output files. 
     1301Melt water (and other variables on the configuration grid) are written into the main \NEMO\ model output files. 
    12161302 
    12171303Extensive diagnostics can be produced. 
     
    12341320since its trajectory data may be spread across multiple files. 
    12351321 
    1236 % ------------------------------------------------------------------------------------------------------------- 
     1322 
     1323 
     1324% ============================================================================================================= 
    12371325%        Interactions with waves (sbcwave.F90, ln_wave) 
    1238 % ------------------------------------------------------------------------------------------------------------- 
    1239 \section[Interactions with waves (\textit{sbcwave.F90}, \texttt{ln\_wave})] 
    1240 {Interactions with waves (\protect\mdl{sbcwave}, \protect\np{ln\_wave})} 
     1326% ============================================================================================================= 
     1327\section[Interactions with waves (\textit{sbcwave.F90}, \forcode{ln_wave})]{Interactions with waves (\protect\mdl{sbcwave}, \protect\np{ln\_wave})} 
    12411328\label{sec:SBC_wave} 
    12421329%------------------------------------------namsbc_wave-------------------------------------------------------- 
    12431330 
    1244 \nlst{namsbc_wave} 
     1331\begin{listing} 
     1332  \nlst{namsbc_wave} 
     1333  \caption{\forcode{&namsbc_wave}} 
     1334  \label{lst:namsbc_wave} 
     1335\end{listing} 
    12451336%------------------------------------------------------------------------------------------------------------- 
    12461337 
    1247 Ocean waves represent the interface between the ocean and the atmosphere, so NEMO is extended to incorporate  
    1248 physical processes related to ocean surface waves, namely the surface stress modified by growth and  
    1249 dissipation of the oceanic wave field, the Stokes-Coriolis force and the Stokes drift impact on mass and  
    1250 tracer advection; moreover the neutral surface drag coefficient from a wave model can be used to evaluate  
     1338Ocean waves represent the interface between the ocean and the atmosphere, so \NEMO\ is extended to incorporate 
     1339physical processes related to ocean surface waves, namely the surface stress modified by growth and 
     1340dissipation of the oceanic wave field, the Stokes-Coriolis force and the Stokes drift impact on mass and 
     1341tracer advection; moreover the neutral surface drag coefficient from a wave model can be used to evaluate 
    12511342the wind stress. 
    12521343 
    1253 Physical processes related to ocean surface waves can be accounted by setting the logical variable  
    1254 \np{ln\_wave}\forcode{= .true.} in \ngn{namsbc} namelist. In addition, specific flags accounting for  
    1255 different porcesses should be activated as explained in the following sections. 
     1344Physical processes related to ocean surface waves can be accounted by setting the logical variable 
     1345\np{ln\_wave}\forcode{=.true.} in \nam{sbc} namelist. In addition, specific flags accounting for 
     1346different processes should be activated as explained in the following sections. 
    12561347 
    12571348Wave fields can be provided either in forced or coupled mode: 
    12581349\begin{description} 
    1259 \item[forced mode]: wave fields should be defined through the \ngn{namsbc\_wave} namelist  
    1260 for external data names, locations, frequency, interpolation and all the miscellanous options allowed by  
    1261 Input Data generic Interface (see \autoref{sec:SBC_input}).  
    1262 \item[coupled mode]: NEMO and an external wave model can be coupled by setting \np{ln\_cpl} \forcode{= .true.}  
    1263 in \ngn{namsbc} namelist and filling the \ngn{namsbc\_cpl} namelist. 
     1350\item[forced mode]: wave fields should be defined through the \nam{sbc\_wave} namelist 
     1351for external data names, locations, frequency, interpolation and all the miscellanous options allowed by 
     1352Input Data generic Interface (see \autoref{sec:SBC_input}). 
     1353\item[coupled mode]: \NEMO\ and an external wave model can be coupled by setting \np{ln\_cpl} \forcode{= .true.} 
     1354in \nam{sbc} namelist and filling the \nam{sbc\_cpl} namelist. 
    12641355\end{description} 
    12651356 
    12661357 
    1267 % ================================================================ 
     1358% ---------------------------------------------------------------- 
    12681359% Neutral drag coefficient from wave model (ln_cdgw) 
    12691360 
    1270 % ================================================================ 
    1271 \subsection[Neutral drag coefficient from wave model (\texttt{ln\_cdgw})] 
    1272 {Neutral drag coefficient from wave model (\protect\np{ln\_cdgw})} 
     1361% ---------------------------------------------------------------- 
     1362\subsection[Neutral drag coefficient from wave model (\forcode{ln_cdgw})]{Neutral drag coefficient from wave model (\protect\np{ln\_cdgw})} 
    12731363\label{subsec:SBC_wave_cdgw} 
    12741364 
    1275 The neutral surface drag coefficient provided from an external data source (\ie a wave model),  
    1276 can be used by setting the logical variable \np{ln\_cdgw} \forcode{= .true.} in \ngn{namsbc} namelist.  
    1277 Then using the routine \rou{turb\_ncar} and starting from the neutral drag coefficent provided,  
    1278 the drag coefficient is computed according to the stable/unstable conditions of the  
    1279 air-sea interface following \citet{large.yeager_rpt04}.  
    1280  
    1281  
    1282 % ================================================================ 
     1365The neutral surface drag coefficient provided from an external data source (\ie\ a wave model), 
     1366can be used by setting the logical variable \np{ln\_cdgw} \forcode{= .true.} in \nam{sbc} namelist. 
     1367Then using the routine \rou{sbcblk\_algo\_ncar} and starting from the neutral drag coefficent provided, 
     1368the drag coefficient is computed according to the stable/unstable conditions of the 
     1369air-sea interface following \citet{large.yeager_rpt04}. 
     1370 
     1371 
     1372% ---------------------------------------------------------------- 
    12831373% 3D Stokes Drift (ln_sdw, nn_sdrift) 
    1284 % ================================================================ 
    1285 \subsection[3D Stokes Drift (\texttt{ln\_sdw}, \texttt{nn\_sdrift})] 
    1286 {3D Stokes Drift (\protect\np{ln\_sdw, nn\_sdrift})} 
     1374% ---------------------------------------------------------------- 
     1375\subsection[3D Stokes Drift (\forcode{ln_sdw}, \forcode{nn_sdrift})]{3D Stokes Drift (\protect\np{ln\_sdw, nn\_sdrift})} 
    12871376\label{subsec:SBC_wave_sdw} 
    12881377 
    1289 The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{stokes_ibk09}.  
    1290 It is defined as the difference between the average velocity of a fluid parcel (Lagrangian velocity)  
    1291 and the current measured at a fixed point (Eulerian velocity).  
    1292 As waves travel, the water particles that make up the waves travel in orbital motions but  
    1293 without a closed path. Their movement is enhanced at the top of the orbit and slowed slightly  
    1294 at the bottom so the result is a net forward motion of water particles, referred to as the Stokes drift.  
    1295 An accurate evaluation of the Stokes drift and the inclusion of related processes may lead to improved  
    1296 representation of surface physics in ocean general circulation models. 
    1297 The Stokes drift velocity $\mathbf{U}_{st}$ in deep water can be computed from the wave spectrum and may be written as:  
     1378The Stokes drift is a wave driven mechanism of mass and momentum transport \citep{stokes_ibk09}. 
     1379It is defined as the difference between the average velocity of a fluid parcel (Lagrangian velocity) 
     1380and the current measured at a fixed point (Eulerian velocity). 
     1381As waves travel, the water particles that make up the waves travel in orbital motions but 
     1382without a closed path. Their movement is enhanced at the top of the orbit and slowed slightly 
     1383at the bottom, so the result is a net forward motion of water particles, referred to as the Stokes drift. 
     1384An accurate evaluation of the Stokes drift and the inclusion of related processes may lead to improved 
     1385representation of surface physics in ocean general circulation models. %GS: reference needed 
     1386The Stokes drift velocity $\mathbf{U}_{st}$ in deep water can be computed from the wave spectrum and may be written as: 
    12981387 
    12991388\[ 
    1300   % \label{eq:sbc_wave_sdw} 
     1389  % \label{eq:SBC_wave_sdw} 
    13011390  \mathbf{U}_{st} = \frac{16{\pi^3}} {g} 
    13021391  \int_0^\infty \int_{-\pi}^{\pi} (cos{\theta},sin{\theta}) {f^3} 
     
    13041393\] 
    13051394 
    1306 where: ${\theta}$ is the wave direction, $f$ is the wave intrinsic frequency,  
    1307 $\mathrm{S}($f$,\theta)$ is the 2D frequency-direction spectrum,  
    1308 $k$ is the mean wavenumber defined as:  
     1395where: ${\theta}$ is the wave direction, $f$ is the wave intrinsic frequency, 
     1396$\mathrm{S}($f$,\theta)$ is the 2D frequency-direction spectrum, 
     1397$k$ is the mean wavenumber defined as: 
    13091398$k=\frac{2\pi}{\lambda}$ (being $\lambda$ the wavelength). \\ 
    13101399 
    1311 In order to evaluate the Stokes drift in a realistic ocean wave field the wave spectral shape is required  
    1312 and its computation quickly becomes expensive as the 2D spectrum must be integrated for each vertical level.  
     1400In order to evaluate the Stokes drift in a realistic ocean wave field, the wave spectral shape is required 
     1401and its computation quickly becomes expensive as the 2D spectrum must be integrated for each vertical level. 
    13131402To simplify, it is customary to use approximations to the full Stokes profile. 
    1314 Three possible parameterizations for the calculation for the approximate Stokes drift velocity profile  
    1315 are included in the code through the \np{nn\_sdrift} parameter once provided the surface Stokes drift  
    1316 $\mathbf{U}_{st |_{z=0}}$ which is evaluated by an external wave model that accurately reproduces the wave spectra  
    1317 and makes possible the estimation of the surface Stokes drift for random directional waves in  
     1403Three possible parameterizations for the calculation for the approximate Stokes drift velocity profile 
     1404are included in the code through the \np{nn\_sdrift} parameter once provided the surface Stokes drift 
     1405$\mathbf{U}_{st |_{z=0}}$ which is evaluated by an external wave model that accurately reproduces the wave spectra 
     1406and makes possible the estimation of the surface Stokes drift for random directional waves in 
    13181407realistic wave conditions: 
    13191408 
    13201409\begin{description} 
    1321 \item[\np{nn\_sdrift} = 0]: exponential integral profile parameterization proposed by  
     1410\item[\np{nn\_sdrift} = 0]: exponential integral profile parameterization proposed by 
    13221411\citet{breivik.janssen.ea_JPO14}: 
    13231412 
    13241413\[ 
    1325   % \label{eq:sbc_wave_sdw_0a} 
    1326   \mathbf{U}_{st} \cong \mathbf{U}_{st |_{z=0}} \frac{\mathrm{e}^{-2k_ez}} {1-8k_ez}  
     1414  % \label{eq:SBC_wave_sdw_0a} 
     1415  \mathbf{U}_{st} \cong \mathbf{U}_{st |_{z=0}} \frac{\mathrm{e}^{-2k_ez}} {1-8k_ez} 
    13271416\] 
    13281417 
     
    13301419 
    13311420\[ 
    1332   % \label{eq:sbc_wave_sdw_0b} 
     1421  % \label{eq:SBC_wave_sdw_0b} 
    13331422  k_e = \frac{|\mathbf{U}_{\left.st\right|_{z=0}}|} {|T_{st}|} 
    13341423  \quad \text{and }\ 
    1335   T_{st} = \frac{1}{16} \bar{\omega} H_s^2  
     1424  T_{st} = \frac{1}{16} \bar{\omega} H_s^2 
    13361425\] 
    13371426 
    13381427where $H_s$ is the significant wave height and $\omega$ is the wave frequency. 
    13391428 
    1340 \item[\np{nn\_sdrift} = 1]: velocity profile based on the Phillips spectrum which is considered to be a  
    1341 reasonable estimate of the part of the spectrum most contributing to the Stokes drift velocity near the surface 
     1429\item[\np{nn\_sdrift} = 1]: velocity profile based on the Phillips spectrum which is considered to be a 
     1430reasonable estimate of the part of the spectrum mostly contributing to the Stokes drift velocity near the surface 
    13421431\citep{breivik.bidlot.ea_OM16}: 
    13431432 
    13441433\[ 
    1345   % \label{eq:sbc_wave_sdw_1} 
     1434  % \label{eq:SBC_wave_sdw_1} 
    13461435  \mathbf{U}_{st} \cong \mathbf{U}_{st |_{z=0}} \Big[exp(2k_pz)-\beta \sqrt{-2 \pi k_pz} 
    13471436  \textit{ erf } \Big(\sqrt{-2 k_pz}\Big)\Big] 
     
    13501439where $erf$ is the complementary error function and $k_p$ is the peak wavenumber. 
    13511440 
    1352 \item[\np{nn\_sdrift} = 2]: velocity profile based on the Phillips spectrum as for \np{nn\_sdrift} = 1  
     1441\item[\np{nn\_sdrift} = 2]: velocity profile based on the Phillips spectrum as for \np{nn\_sdrift} = 1 
    13531442but using the wave frequency from a wave model. 
    13541443 
    13551444\end{description} 
    13561445 
    1357 The Stokes drift enters the wave-averaged momentum equation, as well as the tracer advection equations  
    1358 and its effect on the evolution of the sea-surface height ${\eta}$ is considered as follows:  
     1446The Stokes drift enters the wave-averaged momentum equation, as well as the tracer advection equations 
     1447and its effect on the evolution of the sea-surface height ${\eta}$ is considered as follows: 
    13591448 
    13601449\[ 
    1361   % \label{eq:sbc_wave_eta_sdw} 
     1450  % \label{eq:SBC_wave_eta_sdw} 
    13621451  \frac{\partial{\eta}}{\partial{t}} = 
    13631452  -\nabla_h \int_{-H}^{\eta} (\mathbf{U} + \mathbf{U}_{st}) dz 
    13641453\] 
    13651454 
    1366 The tracer advection equation is also modified in order for Eulerian ocean models to properly account  
    1367 for unresolved wave effect. The divergence of the wave tracer flux equals the mean tracer advection  
    1368 that is induced by the three-dimensional Stokes velocity.  
    1369 The advective equation for a tracer $c$ combining the effects of the mean current and sea surface waves  
    1370 can be formulated as follows:  
     1455The tracer advection equation is also modified in order for Eulerian ocean models to properly account 
     1456for unresolved wave effect. The divergence of the wave tracer flux equals the mean tracer advection 
     1457that is induced by the three-dimensional Stokes velocity. 
     1458The advective equation for a tracer $c$ combining the effects of the mean current and sea surface waves 
     1459can be formulated as follows: 
    13711460 
    13721461\[ 
    1373   % \label{eq:sbc_wave_tra_sdw} 
     1462  % \label{eq:SBC_wave_tra_sdw} 
    13741463  \frac{\partial{c}}{\partial{t}} = 
    13751464  - (\mathbf{U} + \mathbf{U}_{st}) \cdot \nabla{c} 
     
    13771466 
    13781467 
    1379 % ================================================================ 
     1468% ---------------------------------------------------------------- 
    13801469% Stokes-Coriolis term (ln_stcor) 
    1381 % ================================================================ 
    1382 \subsection[Stokes-Coriolis term (\texttt{ln\_stcor})] 
    1383 {Stokes-Coriolis term (\protect\np{ln\_stcor})} 
     1470% ---------------------------------------------------------------- 
     1471\subsection[Stokes-Coriolis term (\forcode{ln_stcor})]{Stokes-Coriolis term (\protect\np{ln\_stcor})} 
    13841472\label{subsec:SBC_wave_stcor} 
    13851473 
    1386 In a rotating ocean, waves exert a wave-induced stress on the mean ocean circulation which results  
    1387 in a force equal to $\mathbf{U}_{st}$×$f$, where $f$ is the Coriolis parameter.  
    1388 This additional force may have impact on the Ekman turning of the surface current.  
    1389 In order to include this term, once evaluated the Stokes drift (using one of the 3 possible  
    1390 approximations described in \autoref{subsec:SBC_wave_sdw}),  
    1391 \np{ln\_stcor}\forcode{ = .true.} has to be set. 
    1392  
    1393  
    1394 % ================================================================ 
     1474In a rotating ocean, waves exert a wave-induced stress on the mean ocean circulation which results 
     1475in a force equal to $\mathbf{U}_{st}$×$f$, where $f$ is the Coriolis parameter. 
     1476This additional force may have impact on the Ekman turning of the surface current. 
     1477In order to include this term, once evaluated the Stokes drift (using one of the 3 possible 
     1478approximations described in \autoref{subsec:SBC_wave_sdw}), 
     1479\np{ln\_stcor}\forcode{=.true.} has to be set. 
     1480 
     1481 
     1482% ---------------------------------------------------------------- 
    13951483% Waves modified stress (ln_tauwoc, ln_tauw) 
    1396 % ================================================================ 
    1397 \subsection[Wave modified sress (\texttt{ln\_tauwoc}, \texttt{ln\_tauw})] 
    1398 {Wave modified sress (\protect\np{ln\_tauwoc, ln\_tauw})} 
     1484% ---------------------------------------------------------------- 
     1485\subsection[Wave modified stress (\forcode{ln_tauwoc} \& \forcode{ln_tauw})]{Wave modified sress (\protect\np{ln\_tauwoc, ln\_tauw})} 
    13991486\label{subsec:SBC_wave_tauw} 
    14001487 
    1401 The surface stress felt by the ocean is the atmospheric stress minus the net stress going  
    1402 into the waves \citep{janssen.breivik.ea_rpt13}. Therefore, when waves are growing, momentum and energy is spent and is not  
    1403 available for forcing the mean circulation, while in the opposite case of a decaying sea  
    1404 state more momentum is available for forcing the ocean.  
    1405 Only when the sea state is in equilibrium the ocean is forced by the atmospheric stress,  
    1406 but in practice an equilibrium sea state is a fairly rare event.  
    1407 So the atmospheric stress felt by the ocean circulation $\tau_{oc,a}$ can be expressed as:  
     1488The surface stress felt by the ocean is the atmospheric stress minus the net stress going 
     1489into the waves \citep{janssen.breivik.ea_rpt13}. Therefore, when waves are growing, momentum and energy is spent and is not 
     1490available for forcing the mean circulation, while in the opposite case of a decaying sea 
     1491state, more momentum is available for forcing the ocean. 
     1492Only when the sea state is in equilibrium, the ocean is forced by the atmospheric stress, 
     1493but in practice, an equilibrium sea state is a fairly rare event. 
     1494So the atmospheric stress felt by the ocean circulation $\tau_{oc,a}$ can be expressed as: 
    14081495 
    14091496\[ 
    1410   % \label{eq:sbc_wave_tauoc} 
     1497  % \label{eq:SBC_wave_tauoc} 
    14111498  \tau_{oc,a} = \tau_a - \tau_w 
    14121499\] 
     
    14161503 
    14171504\[ 
    1418   % \label{eq:sbc_wave_tauw} 
     1505  % \label{eq:SBC_wave_tauw} 
    14191506  \tau_w = \rho g \int {\frac{dk}{c_p} (S_{in}+S_{nl}+S_{diss})} 
    14201507\] 
    14211508 
    14221509where: $c_p$ is the phase speed of the gravity waves, 
    1423 $S_{in}$, $S_{nl}$ and $S_{diss}$ are three source terms that represent  
    1424 the physics of ocean waves. The first one, $S_{in}$, describes the generation  
    1425 of ocean waves by wind and therefore represents the momentum and energy transfer  
    1426 from air to ocean waves; the second term $S_{nl}$ denotes  
    1427 the nonlinear transfer by resonant four-wave interactions; while the third term $S_{diss}$  
    1428 describes the dissipation of waves by processes such as white-capping, large scale breaking  
     1510$S_{in}$, $S_{nl}$ and $S_{diss}$ are three source terms that represent 
     1511the physics of ocean waves. The first one, $S_{in}$, describes the generation 
     1512of ocean waves by wind and therefore represents the momentum and energy transfer 
     1513from air to ocean waves; the second term $S_{nl}$ denotes 
     1514the nonlinear transfer by resonant four-wave interactions; while the third term $S_{diss}$ 
     1515describes the dissipation of waves by processes such as white-capping, large scale breaking 
    14291516eddy-induced damping. 
    14301517 
    1431 The wave stress derived from an external wave model can be provided either through the normalized  
    1432 wave stress into the ocean by setting \np{ln\_tauwoc}\forcode{ = .true.}, or through the zonal and  
    1433 meridional stress components by setting \np{ln\_tauw}\forcode{ = .true.}. 
     1518The wave stress derived from an external wave model can be provided either through the normalized 
     1519wave stress into the ocean by setting \np{ln\_tauwoc}\forcode{=.true.}, or through the zonal and 
     1520meridional stress components by setting \np{ln\_tauw}\forcode{=.true.}. 
     1521 
    14341522 
    14351523 
     
    14401528\label{sec:SBC_misc} 
    14411529 
     1530 
    14421531% ------------------------------------------------------------------------------------------------------------- 
    14431532%        Diurnal cycle 
    14441533% ------------------------------------------------------------------------------------------------------------- 
    1445 \subsection[Diurnal cycle (\textit{sbcdcy.F90})] 
    1446 {Diurnal cycle (\protect\mdl{sbcdcy})} 
     1534\subsection[Diurnal cycle (\textit{sbcdcy.F90})]{Diurnal cycle (\protect\mdl{sbcdcy})} 
    14471535\label{subsec:SBC_dcy} 
    1448 %------------------------------------------namsbc_rnf---------------------------------------------------- 
     1536%------------------------------------------namsbc------------------------------------------------------------- 
    14491537% 
    1450 \nlst{namsbc}  
     1538 
    14511539%------------------------------------------------------------------------------------------------------------- 
    14521540 
    14531541%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    14541542\begin{figure}[!t] 
    1455   \begin{center} 
    1456     \includegraphics[width=\textwidth]{Fig_SBC_diurnal} 
    1457     \caption{ 
    1458       \protect\label{fig:SBC_diurnal} 
    1459       Example of recontruction of the diurnal cycle variation of short wave flux from daily mean values. 
    1460       The reconstructed diurnal cycle (black line) is chosen as 
    1461       the mean value of the analytical cycle (blue line) over a time step, 
    1462       not as the mid time step value of the analytically cycle (red square). 
    1463       From \citet{bernie.guilyardi.ea_CD07}. 
    1464     } 
    1465   \end{center} 
     1543  \centering 
     1544  \includegraphics[width=0.66\textwidth]{Fig_SBC_diurnal} 
     1545  \caption[Reconstruction of the diurnal cycle variation of short wave flux]{ 
     1546    Example of reconstruction of the diurnal cycle variation of short wave flux from 
     1547    daily mean values. 
     1548    The reconstructed diurnal cycle (black line) is chosen as 
     1549    the mean value of the analytical cycle (blue line) over a time step, 
     1550    not as the mid time step value of the analytically cycle (red square). 
     1551    From \citet{bernie.guilyardi.ea_CD07}.} 
     1552  \label{fig:SBC_diurnal} 
    14661553\end{figure} 
    14671554%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    14681555 
    14691556\cite{bernie.woolnough.ea_JC05} have shown that to capture 90$\%$ of the diurnal variability of SST requires a vertical resolution in upper ocean of 1~m or better and a temporal resolution of the surface fluxes of 3~h or less. 
    1470 Unfortunately high frequency forcing fields are rare, not to say inexistent. 
    1471 Nevertheless, it is possible to obtain a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at 
    1472 high frequency \citep{bernie.guilyardi.ea_CD07}. 
     1557%Unfortunately high frequency forcing fields are rare, not to say inexistent. GS: not true anymore ! 
     1558Nevertheless, it is possible to obtain a reasonable diurnal cycle of the SST knowning only short wave flux (SWF) at high frequency \citep{bernie.guilyardi.ea_CD07}. 
    14731559Furthermore, only the knowledge of daily mean value of SWF is needed, 
    14741560as higher frequency variations can be reconstructed from them, 
    14751561assuming that the diurnal cycle of SWF is a scaling of the top of the atmosphere diurnal cycle of incident SWF. 
    1476 The \cite{bernie.guilyardi.ea_CD07} reconstruction algorithm is available in \NEMO by 
    1477 setting \np{ln\_dm2dc}\forcode{ = .true.} (a \textit{\ngn{namsbc}} namelist variable) when 
    1478 using CORE bulk formulea (\np{ln\_blk\_core}\forcode{ = .true.}) or 
    1479 the flux formulation (\np{ln\_flx}\forcode{ = .true.}). 
     1562The \cite{bernie.guilyardi.ea_CD07} reconstruction algorithm is available in \NEMO\ by 
     1563setting \np{ln\_dm2dc}\forcode{=.true.} (a \textit{\nam{sbc}} namelist variable) when 
     1564using a bulk formulation (\np{ln\_blk}\forcode{=.true.}) or 
     1565the flux formulation (\np{ln\_flx}\forcode{=.true.}). 
    14801566The reconstruction is performed in the \mdl{sbcdcy} module. 
    14811567The detail of the algoritm used can be found in the appendix~A of \cite{bernie.guilyardi.ea_CD07}. 
    1482 The algorithm preserve the daily mean incoming SWF as the reconstructed SWF at 
     1568The algorithm preserves the daily mean incoming SWF as the reconstructed SWF at 
    14831569a given time step is the mean value of the analytical cycle over this time step (\autoref{fig:SBC_diurnal}). 
    14841570The use of diurnal cycle reconstruction requires the input SWF to be daily 
    1485 (\ie a frequency of 24 and a time interpolation set to true in \np{sn\_qsr} namelist parameter). 
    1486 Furthermore, it is recommended to have a least 8 surface module time step per day, 
     1571(\ie\ a frequency of 24 hours and a time interpolation set to true in \np{sn\_qsr} namelist parameter). 
     1572Furthermore, it is recommended to have a least 8 surface module time steps per day, 
    14871573that is  $\rdt \ nn\_fsbc < 10,800~s = 3~h$. 
    14881574An example of recontructed SWF is given in \autoref{fig:SBC_dcy} for a 12 reconstructed diurnal cycle, 
     
    14911577%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    14921578\begin{figure}[!t] 
    1493   \begin{center} 
    1494     \includegraphics[width=\textwidth]{Fig_SBC_dcy} 
    1495     \caption{ 
    1496       \protect\label{fig:SBC_dcy} 
    1497       Example of recontruction of the diurnal cycle variation of short wave flux from 
    1498       daily mean values on an ORCA2 grid with a time sampling of 2~hours (from 1am to 11pm). 
    1499       The display is on (i,j) plane. 
    1500     } 
    1501   \end{center} 
     1579  \centering 
     1580  \includegraphics[width=0.66\textwidth]{Fig_SBC_dcy} 
     1581  \caption[Reconstruction of the diurnal cycle variation of short wave flux on an ORCA2 grid]{ 
     1582    Example of reconstruction of the diurnal cycle variation of short wave flux from 
     1583    daily mean values on an ORCA2 grid with a time sampling of 2~hours (from 1am to 11pm). 
     1584    The display is on (i,j) plane.} 
     1585  \label{fig:SBC_dcy} 
    15021586\end{figure} 
    15031587%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    15071591an inconsistency between the scale of the vertical resolution and the forcing acting on that scale. 
    15081592 
     1593 
    15091594% ------------------------------------------------------------------------------------------------------------- 
    15101595%        Rotation of vector pairs onto the model grid directions 
     
    15131598\label{subsec:SBC_rotation} 
    15141599 
    1515 When using a flux (\np{ln\_flx}\forcode{ = .true.}) or 
    1516 bulk (\np{ln\_clio}\forcode{ = .true.} or \np{ln\_core}\forcode{ = .true.}) formulation, 
     1600When using a flux (\np{ln\_flx}\forcode{=.true.}) or bulk (\np{ln\_blk}\forcode{=.true.}) formulation, 
    15171601pairs of vector components can be rotated from east-north directions onto the local grid directions. 
    15181602This is particularly useful when interpolation on the fly is used since here any vectors are likely to 
    15191603be defined relative to a rectilinear grid. 
    1520 To activate this option a non-empty string is supplied in the rotation pair column of the relevant namelist. 
    1521 The eastward component must start with "U" and the northward component with "V".   
     1604To activate this option, a non-empty string is supplied in the rotation pair column of the relevant namelist. 
     1605The eastward component must start with "U" and the northward component with "V". 
    15221606The remaining characters in the strings are used to identify which pair of components go together. 
    15231607So for example, strings "U1" and "V1" next to "utau" and "vtau" would pair the wind stress components together and 
     
    15271611The rot\_rep routine from the \mdl{geo2ocean} module is used to perform the rotation. 
    15281612 
     1613 
    15291614% ------------------------------------------------------------------------------------------------------------- 
    15301615%        Surface restoring to observed SST and/or SSS 
    15311616% ------------------------------------------------------------------------------------------------------------- 
    1532 \subsection[Surface restoring to observed SST and/or SSS (\textit{sbcssr.F90})] 
    1533 {Surface restoring to observed SST and/or SSS (\protect\mdl{sbcssr})} 
     1617\subsection[Surface restoring to observed SST and/or SSS (\textit{sbcssr.F90})]{Surface restoring to observed SST and/or SSS (\protect\mdl{sbcssr})} 
    15341618\label{subsec:SBC_ssr} 
    15351619%------------------------------------------namsbc_ssr---------------------------------------------------- 
    15361620 
    1537 \nlst{namsbc_ssr}  
     1621\begin{listing} 
     1622  \nlst{namsbc_ssr} 
     1623  \caption{\forcode{&namsbc_ssr}} 
     1624  \label{lst:namsbc_ssr} 
     1625\end{listing} 
    15381626%------------------------------------------------------------------------------------------------------------- 
    15391627 
    1540 IOptions are defined through the \ngn{namsbc\_ssr} namelist variables. 
    1541 On forced mode using a flux formulation (\np{ln\_flx}\forcode{ = .true.}), 
     1628Options are defined through the \nam{sbc\_ssr} namelist variables. 
     1629On forced mode using a flux formulation (\np{ln\_flx}\forcode{=.true.}), 
    15421630a feedback term \emph{must} be added to the surface heat flux $Q_{ns}^o$: 
    15431631\[ 
    1544   % \label{eq:sbc_dmp_q} 
     1632  % \label{eq:SBC_dmp_q} 
    15451633  Q_{ns} = Q_{ns}^o + \frac{dQ}{dT} \left( \left. T \right|_{k=1} - SST_{Obs} \right) 
    15461634\] 
     
    15481636$T$ is the model surface layer temperature and 
    15491637$\frac{dQ}{dT}$ is a negative feedback coefficient usually taken equal to $-40~W/m^2/K$. 
    1550 For a $50~m$ mixed-layer depth, this value corresponds to a relaxation time scale of two months.  
    1551 This term ensures that if $T$ perfectly matches the supplied SST, then $Q$ is equal to $Q_o$.  
     1638For a $50~m$ mixed-layer depth, this value corresponds to a relaxation time scale of two months. 
     1639This term ensures that if $T$ perfectly matches the supplied SST, then $Q$ is equal to $Q_o$. 
    15521640 
    15531641In the fresh water budget, a feedback term can also be added. 
     
    15551643 
    15561644\begin{equation} 
    1557   \label{eq:sbc_dmp_emp} 
     1645  \label{eq:SBC_dmp_emp} 
    15581646  \textit{emp} = \textit{emp}_o + \gamma_s^{-1} e_{3t}  \frac{  \left(\left.S\right|_{k=1}-SSS_{Obs}\right)} 
    15591647  {\left.S\right|_{k=1}} 
     
    15661654$\left.S\right|_{k=1}$ is the model surface layer salinity and 
    15671655$\gamma_s$ is a negative feedback coefficient which is provided as a namelist parameter. 
    1568 Unlike heat flux, there is no physical justification for the feedback term in \autoref{eq:sbc_dmp_emp} as 
     1656Unlike heat flux, there is no physical justification for the feedback term in \autoref{eq:SBC_dmp_emp} as 
    15691657the atmosphere does not care about ocean surface salinity \citep{madec.delecluse_IWN97}. 
    15701658The SSS restoring term should be viewed as a flux correction on freshwater fluxes to 
    15711659reduce the uncertainties we have on the observed freshwater budget. 
    15721660 
     1661 
    15731662% ------------------------------------------------------------------------------------------------------------- 
    15741663%        Handling of ice-covered area 
     
    15791668The presence at the sea surface of an ice covered area modifies all the fluxes transmitted to the ocean. 
    15801669There are several way to handle sea-ice in the system depending on 
    1581 the value of the \np{nn\_ice} namelist parameter found in \ngn{namsbc} namelist. 
     1670the value of the \np{nn\_ice} namelist parameter found in \nam{sbc} namelist. 
    15821671\begin{description} 
    1583 \item[nn{\_}ice = 0] 
     1672\item[nn\_ice = 0] 
    15841673  there will never be sea-ice in the computational domain. 
    15851674  This is a typical namelist value used for tropical ocean domain. 
    15861675  The surface fluxes are simply specified for an ice-free ocean. 
    15871676  No specific things is done for sea-ice. 
    1588 \item[nn{\_}ice = 1] 
     1677\item[nn\_ice = 1] 
    15891678  sea-ice can exist in the computational domain, but no sea-ice model is used. 
    15901679  An observed ice covered area is read in a file. 
     
    15951684  This prevents deep convection to occur when trying to reach the freezing point 
    15961685  (and so ice covered area condition) while the SSS is too large. 
    1597   This manner of managing sea-ice area, just by using si IF case, 
     1686  This manner of managing sea-ice area, just by using a IF case, 
    15981687  is usually referred as the \textit{ice-if} model. 
    1599   It can be found in the \mdl{sbcice{\_}if} module. 
    1600 \item[nn{\_}ice = 2 or more] 
     1688  It can be found in the \mdl{sbcice\_if} module. 
     1689\item[nn\_ice = 2 or more] 
    16011690  A full sea ice model is used. 
    16021691  This model computes the ice-ocean fluxes, 
    16031692  that are combined with the air-sea fluxes using the ice fraction of each model cell to 
    1604   provide the surface ocean fluxes. 
    1605   Note that the activation of a sea-ice model is is done by defining a CPP key (\key{lim3} or \key{cice}). 
    1606   The activation automatically overwrites the read value of nn{\_}ice to its appropriate value 
    1607   (\ie $2$ for LIM-3 or $3$ for CICE). 
     1693  provide the surface averaged ocean fluxes. 
     1694  Note that the activation of a sea-ice model is done by defining a CPP key (\key{si3} or \key{cice}). 
     1695  The activation automatically overwrites the read value of nn\_ice to its appropriate value 
     1696  (\ie\ $2$ for SI3 or $3$ for CICE). 
    16081697\end{description} 
    16091698 
    16101699% {Description of Ice-ocean interface to be added here or in LIM 2 and 3 doc ?} 
    1611  
    1612 \subsection[Interface to CICE (\textit{sbcice\_cice.F90})] 
    1613 {Interface to CICE (\protect\mdl{sbcice\_cice})} 
     1700%GS: ocean-ice (SI3) interface is not located in SBC directory anymore, so it should be included in SI3 doc 
     1701 
     1702 
     1703% ------------------------------------------------------------------------------------------------------------- 
     1704%        CICE-ocean Interface 
     1705% ------------------------------------------------------------------------------------------------------------- 
     1706\subsection[Interface to CICE (\textit{sbcice\_cice.F90})]{Interface to CICE (\protect\mdl{sbcice\_cice})} 
    16141707\label{subsec:SBC_cice} 
    16151708 
    1616 It is now possible to couple a regional or global NEMO configuration (without AGRIF) 
     1709It is possible to couple a regional or global \NEMO\ configuration (without AGRIF) 
    16171710to the CICE sea-ice model by using \key{cice}. 
    16181711The CICE code can be obtained from \href{http://oceans11.lanl.gov/trac/CICE/}{LANL} and 
    16191712the additional 'hadgem3' drivers will be required, even with the latest code release. 
    1620 Input grid files consistent with those used in NEMO will also be needed, 
     1713Input grid files consistent with those used in \NEMO\ will also be needed, 
    16211714and CICE CPP keys \textbf{ORCA\_GRID}, \textbf{CICE\_IN\_NEMO} and \textbf{coupled} should be used 
    16221715(seek advice from UKMO if necessary). 
    1623 Currently the code is only designed to work when using the CORE forcing option for NEMO 
    1624 (with \textit{calc\_strair}\forcode{ = .true.} and \textit{calc\_Tsfc}\forcode{ = .true.} in the CICE name-list), 
    1625 or alternatively when NEMO is coupled to the HadGAM3 atmosphere model 
    1626 (with \textit{calc\_strair}\forcode{ = .false.} and \textit{calc\_Tsfc}\forcode{ = false}). 
     1716Currently, the code is only designed to work when using the NCAR forcing option for \NEMO\ %GS: still true ? 
     1717(with \textit{calc\_strair}\forcode{=.true.} and \textit{calc\_Tsfc}\forcode{=.true.} in the CICE name-list), 
     1718or alternatively when \NEMO\ is coupled to the HadGAM3 atmosphere model 
     1719(with \textit{calc\_strair}\forcode{=.false.} and \textit{calc\_Tsfc}\forcode{=false}). 
    16271720The code is intended to be used with \np{nn\_fsbc} set to 1 
    16281721(although coupling ocean and ice less frequently should work, 
     
    16301723the user should check that results are not significantly different to the standard case). 
    16311724 
    1632 There are two options for the technical coupling between NEMO and CICE. 
     1725There are two options for the technical coupling between \NEMO\ and CICE. 
    16331726The standard version allows complete flexibility for the domain decompositions in the individual models, 
    16341727but this is at the expense of global gather and scatter operations in the coupling which 
    16351728become very expensive on larger numbers of processors. 
    1636 The alternative option (using \key{nemocice\_decomp} for both NEMO and CICE) ensures that 
     1729The alternative option (using \key{nemocice\_decomp} for both \NEMO\ and CICE) ensures that 
    16371730the domain decomposition is identical in both models (provided domain parameters are set appropriately, 
    16381731and \textit{processor\_shape~=~square-ice} and \textit{distribution\_wght~=~block} in the CICE name-list) and 
     
    16411734there is no sea ice. 
    16421735 
    1643 % ------------------------------------------------------------------------------------------------------------- 
    1644 %        Freshwater budget control  
    1645 % ------------------------------------------------------------------------------------------------------------- 
    1646 \subsection[Freshwater budget control (\textit{sbcfwb.F90})] 
    1647 {Freshwater budget control (\protect\mdl{sbcfwb})} 
     1736 
     1737% ------------------------------------------------------------------------------------------------------------- 
     1738%        Freshwater budget control 
     1739% ------------------------------------------------------------------------------------------------------------- 
     1740\subsection[Freshwater budget control (\textit{sbcfwb.F90})]{Freshwater budget control (\protect\mdl{sbcfwb})} 
    16481741\label{subsec:SBC_fwb} 
    16491742 
    1650 For global ocean simulation it can be useful to introduce a control of the mean sea level in order to 
     1743For global ocean simulation, it can be useful to introduce a control of the mean sea level in order to 
    16511744prevent unrealistic drift of the sea surface height due to inaccuracy in the freshwater fluxes. 
    1652 In \NEMO, two way of controlling the the freshwater budget.  
     1745In \NEMO, two way of controlling the freshwater budget are proposed: 
     1746 
    16531747\begin{description} 
    1654 \item[\np{nn\_fwb}\forcode{ = 0}] 
     1748\item[\np{nn\_fwb}\forcode{=0}] 
    16551749  no control at all. 
    16561750  The mean sea level is free to drift, and will certainly do so. 
    1657 \item[\np{nn\_fwb}\forcode{ = 1}] 
    1658   global mean \textit{emp} set to zero at each model time step.  
    1659 %Note that with a sea-ice model, this technique only control the mean sea level with linear free surface (\key{vvl} not defined) and no mass flux between ocean and ice (as it is implemented in the current ice-ocean coupling).  
    1660 \item[\np{nn\_fwb}\forcode{ = 2}] 
     1751\item[\np{nn\_fwb}\forcode{=1}] 
     1752  global mean \textit{emp} set to zero at each model time step. 
     1753  %GS: comment below still relevant ? 
     1754  %Note that with a sea-ice model, this technique only controls the mean sea level with linear free surface and no mass flux between ocean and ice (as it is implemented in the current ice-ocean coupling). 
     1755\item[\np{nn\_fwb}\forcode{=2}] 
    16611756  freshwater budget is adjusted from the previous year annual mean budget which 
    16621757  is read in the \textit{EMPave\_old.dat} file. 
    16631758  As the model uses the Boussinesq approximation, the annual mean fresh water budget is simply evaluated from 
    1664   the change in the mean sea level at January the first and saved in the \textit{EMPav.dat} file.  
     1759  the change in the mean sea level at January the first and saved in the \textit{EMPav.dat} file. 
    16651760\end{description} 
    16661761 
    1667  
    1668  
    16691762% Griffies doc: 
    1670 % When running ocean-ice simulations, we are not explicitly representing land processes,  
    1671 % such as rivers, catchment areas, snow accumulation, etc. However, to reduce model drift,  
    1672 % it is important to balance the hydrological cycle in ocean-ice models.  
    1673 % We thus need to prescribe some form of global normalization to the precipitation minus evaporation plus river runoff.  
    1674 % The result of the normalization should be a global integrated zero net water input to the ocean-ice system over  
    1675 % a chosen time scale.  
    1676 %How often the normalization is done is a matter of choice. In mom4p1, we choose to do so at each model time step,  
    1677 % so that there is always a zero net input of water to the ocean-ice system.  
    1678 % Others choose to normalize over an annual cycle, in which case the net imbalance over an annual cycle is used  
    1679 % to alter the subsequent year�s water budget in an attempt to damp the annual water imbalance.  
    1680 % Note that the annual budget approach may be inappropriate with interannually varying precipitation forcing.  
    1681 % When running ocean-ice coupled models, it is incorrect to include the water transport between the ocean  
    1682 % and ice models when aiming to balance the hydrological cycle.  
    1683 % The reason is that it is the sum of the water in the ocean plus ice that should be balanced when running ocean-ice models,  
    1684 % not the water in any one sub-component. As an extreme example to illustrate the issue,  
    1685 % consider an ocean-ice model with zero initial sea ice. As the ocean-ice model spins up,  
    1686 % there should be a net accumulation of water in the growing sea ice, and thus a net loss of water from the ocean.  
    1687 % The total water contained in the ocean plus ice system is constant, but there is an exchange of water between  
    1688 % the subcomponents. This exchange should not be part of the normalization used to balance the hydrological cycle  
    1689 % in ocean-ice models.  
     1763% When running ocean-ice simulations, we are not explicitly representing land processes, 
     1764% such as rivers, catchment areas, snow accumulation, etc. However, to reduce model drift, 
     1765% it is important to balance the hydrological cycle in ocean-ice models. 
     1766% We thus need to prescribe some form of global normalization to the precipitation minus evaporation plus river runoff. 
     1767% The result of the normalization should be a global integrated zero net water input to the ocean-ice system over 
     1768% a chosen time scale. 
     1769% How often the normalization is done is a matter of choice. In mom4p1, we choose to do so at each model time step, 
     1770% so that there is always a zero net input of water to the ocean-ice system. 
     1771% Others choose to normalize over an annual cycle, in which case the net imbalance over an annual cycle is used 
     1772% to alter the subsequent year�s water budget in an attempt to damp the annual water imbalance. 
     1773% Note that the annual budget approach may be inappropriate with interannually varying precipitation forcing. 
     1774% When running ocean-ice coupled models, it is incorrect to include the water transport between the ocean 
     1775% and ice models when aiming to balance the hydrological cycle. 
     1776% The reason is that it is the sum of the water in the ocean plus ice that should be balanced when running ocean-ice models, 
     1777% not the water in any one sub-component. As an extreme example to illustrate the issue, 
     1778% consider an ocean-ice model with zero initial sea ice. As the ocean-ice model spins up, 
     1779% there should be a net accumulation of water in the growing sea ice, and thus a net loss of water from the ocean. 
     1780% The total water contained in the ocean plus ice system is constant, but there is an exchange of water between 
     1781% the subcomponents. This exchange should not be part of the normalization used to balance the hydrological cycle 
     1782% in ocean-ice models. 
     1783 
    16901784 
    16911785\biblio 
Note: See TracChangeset for help on using the changeset viewer.