New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11573 for NEMO/branches/2019/dev_r11233_AGRIF-05_jchanut_vert_coord_interp/doc/latex/NEMO/subfiles/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2019-09-19T11:18:03+02:00 (5 years ago)
Author:
jchanut
Message:

#2222, merged with trunk

File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r11233_AGRIF-05_jchanut_vert_coord_interp/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r11151 r11573  
     1 
    12\documentclass[../main/NEMO_manual]{subfiles} 
    23 
     
    78% ================================================================ 
    89\chapter{Model Basics} 
    9 \label{chap:PE} 
    10 \minitoc 
     10\label{chap:MB} 
     11 
     12\chaptertoc 
    1113 
    1214\newpage 
     
    1618% ================================================================ 
    1719\section{Primitive equations} 
    18 \label{sec:PE_PE} 
    19  
    20 % ------------------------------------------------------------------------------------------------------------- 
    21 %        Vector Invariant Formulation  
     20\label{sec:MB_PE} 
     21 
     22% ------------------------------------------------------------------------------------------------------------- 
     23%        Vector Invariant Formulation 
    2224% ------------------------------------------------------------------------------------------------------------- 
    2325 
    2426\subsection{Vector invariant formulation} 
    25 \label{subsec:PE_Vector} 
     27\label{subsec:MB_PE_vector} 
    2628 
    2729The ocean is a fluid that can be described to a good approximation by the primitive equations, 
    28 \ie the Navier-Stokes equations along with a nonlinear equation of state which 
     30\ie\ the Navier-Stokes equations along with a nonlinear equation of state which 
    2931couples the two active tracers (temperature and salinity) to the fluid velocity, 
    3032plus the following additional assumptions made from scale considerations: 
     
    3234\begin{enumerate} 
    3335\item 
    34   \textit{spherical earth approximation}: the geopotential surfaces are assumed to be spheres so that 
    35   gravity (local vertical) is parallel to the earth's radius 
     36  \textit{spherical Earth approximation}: the geopotential surfaces are assumed to be oblate spheriods 
     37  that follow the Earth's bulge; these spheroids are approximated by spheres with 
     38  gravity locally vertical (parallel to the Earth's radius) and independent of latitude 
     39  \citep[][section 2]{white.hoskins.ea_QJRMS05}. 
    3640\item 
    3741  \textit{thin-shell approximation}: the ocean depth is neglected compared to the earth's radius 
     
    4448  the buoyancy force 
    4549  \begin{equation} 
    46     \label{eq:PE_eos} 
     50    \label{eq:MB_PE_eos} 
    4751    \rho = \rho \ (T,S,p) 
    4852  \end{equation} 
     
    5357  convective processes must be parameterized instead) 
    5458  \begin{equation} 
    55     \label{eq:PE_hydrostatic} 
     59    \label{eq:MB_PE_hydrostatic} 
    5660    \pd[p]{z} = - \rho \ g 
    5761  \end{equation} 
     
    6064  is assumed to be zero. 
    6165  \begin{equation} 
    62     \label{eq:PE_continuity} 
     66    \label{eq:MB_PE_continuity} 
    6367    \nabla \cdot \vect U = 0 
    6468  \end{equation} 
     69 \item 
     70  \textit{Neglect of additional Coriolis terms}: the Coriolis terms that vary with the cosine of latitude are neglected. 
     71  These terms may be non-negligible where the Brunt-Vaisala frequency $N$ is small, either in the deep ocean or 
     72  in the sub-mesoscale motions of the mixed layer, or near the equator \citep[][section 1]{white.hoskins.ea_QJRMS05}. 
     73  They can be consistently included as part of the ocean dynamics \citep[][section 3(d)]{white.hoskins.ea_QJRMS05} and are 
     74  retained in the MIT ocean model. 
    6575\end{enumerate} 
    6676 
    6777Because the gravitational force is so dominant in the equations of large-scale motions, 
    68 it is useful to choose an orthogonal set of unit vectors $(i,j,k)$ linked to the earth such that 
     78it is useful to choose an orthogonal set of unit vectors $(i,j,k)$ linked to the Earth such that 
    6979$k$ is the local upward vector and $(i,j)$ are two vectors orthogonal to $k$, 
    70 \ie tangent to the geopotential surfaces. 
     80\ie\ tangent to the geopotential surfaces. 
    7181Let us define the following variables: $\vect U$ the vector velocity, $\vect U = \vect U_h + w \, \vect k$ 
    72 (the subscript $h$ denotes the local horizontal vector, \ie over the $(i,j)$ plane),  
     82(the subscript $h$ denotes the local horizontal vector, \ie\ over the $(i,j)$ plane), 
    7383$T$ the potential temperature, $S$ the salinity, $\rho$ the \textit{in situ} density. 
    7484The vector invariant form of the primitive equations in the $(i,j,k)$ vector system provides 
    7585the following equations: 
    7686\begin{subequations} 
    77   \label{eq:PE} 
     87  \label{eq:MB_PE} 
    7888  \begin{gather} 
    7989    \intertext{$-$ the momentum balance} 
    80     \label{eq:PE_dyn} 
     90    \label{eq:MB_PE_dyn} 
    8191    \pd[\vect U_h]{t} = - \lt[ (\nabla \times \vect U) \times \vect U + \frac{1}{2} \nabla \lt( \vect U^2 \rt) \rt]_h 
    8292                        - f \; k \times \vect U_h - \frac{1}{\rho_o} \nabla_h p 
    8393                        + \vect D^{\vect U} + \vect F^{\vect U} \\ 
    8494    \intertext{$-$ the heat and salt conservation equations} 
    85     \label{eq:PE_tra_T} 
     95    \label{eq:MB_PE_tra_T} 
    8696    \pd[T]{t} = - \nabla \cdot (T \ \vect U) + D^T + F^T \\ 
    87     \label{eq:PE_tra_S} 
     97    \label{eq:MB_PE_tra_S} 
    8898    \pd[S]{t} = - \nabla \cdot (S \ \vect U) + D^S + F^S 
    8999  \end{gather} 
     
    91101where $\nabla$ is the generalised derivative vector operator in $(i,j,k)$ directions, $t$ is the time, 
    92102$z$ is the vertical coordinate, $\rho$ is the \textit{in situ} density given by the equation of state 
    93 (\autoref{eq:PE_eos}), $\rho_o$ is a reference density, $p$ the pressure, 
     103(\autoref{eq:MB_PE_eos}), $\rho_o$ is a reference density, $p$ the pressure, 
    94104$f = 2 \vect \Omega \cdot k$ is the Coriolis acceleration 
    95105(where $\vect \Omega$ is the Earth's angular velocity vector), and $g$ is the gravitational acceleration. 
    96106$\vect D^{\vect U}$, $D^T$ and $D^S$ are the parameterisations of small-scale physics for momentum, 
    97107temperature and salinity, and $\vect F^{\vect U}$, $F^T$ and $F^S$ surface forcing terms. 
    98 Their nature and formulation are discussed in \autoref{sec:PE_zdf_ldf} and \autoref{subsec:PE_boundary_condition}. 
     108Their nature and formulation are discussed in \autoref{sec:MB_zdf_ldf} and \autoref{subsec:MB_boundary_condition}. 
    99109 
    100110% ------------------------------------------------------------------------------------------------------------- 
     
    102112% ------------------------------------------------------------------------------------------------------------- 
    103113\subsection{Boundary conditions} 
    104 \label{subsec:PE_boundary_condition} 
     114\label{subsec:MB_boundary_condition} 
    105115 
    106116An ocean is bounded by complex coastlines, bottom topography at its base and 
    107117an air-sea or ice-sea interface at its top. 
    108118These boundaries can be defined by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,k,t)$, 
    109 where $H$ is the depth of the ocean bottom and $\eta$ is the height of the sea surface. 
    110 Both $H$ and $\eta$ are usually referenced to a given surface, $z = 0$, chosen as a mean sea surface 
    111 (\autoref{fig:ocean_bc}). 
     119where $H$ is the depth of the ocean bottom and $\eta$ is the height of the sea surface 
     120(discretisation can introduce additional artificial ``side-wall'' boundaries). 
     121Both $H$ and $\eta$ are referenced to a surface of constant geopotential (\ie\ a mean sea surface height) on which $z = 0$. 
     122(\autoref{fig:MB_ocean_bc}). 
    112123Through these two boundaries, the ocean can exchange fluxes of heat, fresh water, salt, and momentum with 
    113124the solid earth, the continental margins, the sea ice and the atmosphere. 
     
    119130%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    120131\begin{figure}[!ht] 
    121   \begin{center} 
    122     \includegraphics[width=\textwidth]{Fig_I_ocean_bc} 
    123     \caption{ 
    124       \protect\label{fig:ocean_bc} 
    125       The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, 
    126       where $H$ is the depth of the sea floor and $\eta$ the height of the sea surface. 
    127       Both $H$ and $\eta$ are referenced to $z = 0$. 
    128     } 
    129   \end{center} 
     132  \centering 
     133  \includegraphics[width=0.66\textwidth]{Fig_I_ocean_bc} 
     134  \caption[Ocean boundary conditions]{ 
     135    The ocean is bounded by two surfaces, $z = - H(i,j)$ and $z = \eta(i,j,t)$, 
     136    where $H$ is the depth of the sea floor and $\eta$ the height of the sea surface. 
     137    Both $H$ and $\eta$ are referenced to $z = 0$.} 
     138  \label{fig:MB_ocean_bc} 
    130139\end{figure} 
    131140%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     
    144153  \footnote{ 
    145154    In fact, it has been shown that the heat flux associated with the solid Earth cooling 
    146     (\ie the geothermal heating) is not negligible for the thermohaline circulation of the world ocean 
     155    (\ie\ the geothermal heating) is not negligible for the thermohaline circulation of the world ocean 
    147156    (see \autoref{subsec:TRA_bbc}). 
    148157  }. 
    149158  The boundary condition is thus set to no flux of heat and salt across solid boundaries. 
    150159  For momentum, the situation is different. There is no flow across solid boundaries, 
    151   \ie the velocity normal to the ocean bottom and coastlines is zero (in other words, 
     160  \ie\ the velocity normal to the ocean bottom and coastlines is zero (in other words, 
    152161  the bottom velocity is parallel to solid boundaries). This kinematic boundary condition 
    153162  can be expressed as: 
    154163  \begin{equation} 
    155     \label{eq:PE_w_bbc} 
     164    \label{eq:MB_w_bbc} 
    156165    w = - \vect U_h \cdot \nabla_h (H) 
    157166  \end{equation} 
     
    160169  It must be parameterized in terms of turbulent fluxes using bottom and/or lateral boundary conditions. 
    161170  Its specification depends on the nature of the physical parameterisation used for 
    162   $\vect D^{\vect U}$ in \autoref{eq:PE_dyn}. 
    163   It is discussed in \autoref{eq:PE_zdf}.% and Chap. III.6 to 9. 
     171  $\vect D^{\vect U}$ in \autoref{eq:MB_PE_dyn}. 
     172  It is discussed in \autoref{eq:MB_zdf}.% and Chap. III.6 to 9. 
    164173\item[Atmosphere - ocean interface:] 
    165174  the kinematic surface condition plus the mass flux of fresh water PE (the precipitation minus evaporation budget) 
    166175  leads to: 
    167176  \[ 
    168     % \label{eq:PE_w_sbc} 
     177    % \label{eq:MB_w_sbc} 
    169178    w = \pd[\eta]{t} + \lt. \vect U_h \rt|_{z = \eta} \cdot \nabla_h (\eta) + P - E 
    170179  \] 
     
    183192% ================================================================ 
    184193\section{Horizontal pressure gradient} 
    185 \label{sec:PE_hor_pg} 
     194\label{sec:MB_hor_pg} 
    186195 
    187196% ------------------------------------------------------------------------------------------------------------- 
     
    189198% ------------------------------------------------------------------------------------------------------------- 
    190199\subsection{Pressure formulation} 
    191 \label{subsec:PE_p_formulation} 
     200\label{subsec:MB_p_formulation} 
    192201 
    193202The total pressure at a given depth $z$ is composed of a surface pressure $p_s$ at 
    194203a reference geopotential surface ($z = 0$) and a hydrostatic pressure $p_h$ such that: 
    195204$p(i,j,k,t) = p_s(i,j,t) + p_h(i,j,k,t)$. 
    196 The latter is computed by integrating (\autoref{eq:PE_hydrostatic}), 
    197 assuming that pressure in decibars can be approximated by depth in meters in (\autoref{eq:PE_eos}). 
     205The latter is computed by integrating (\autoref{eq:MB_PE_hydrostatic}), 
     206assuming that pressure in decibars can be approximated by depth in meters in (\autoref{eq:MB_PE_eos}). 
    198207The hydrostatic pressure is then given by: 
    199208\[ 
    200   % \label{eq:PE_pressure} 
     209  % \label{eq:MB_pressure} 
    201210  p_h (i,j,z,t) = \int_{\varsigma = z}^{\varsigma = 0} g \; \rho (T,S,\varsigma) \; d \varsigma 
    202211\] 
     
    210219The flow is barotropic and the surface moves up and down with gravity as the restoring force. 
    211220The phase speed of such waves is high (some hundreds of metres per second) so that 
    212 the time step would have to be very short if they were present in the model. 
     221the time step has to be very short when they are present in the model. 
    213222The latter strategy filters out these waves since the rigid lid approximation implies $\eta = 0$, 
    214 \ie the sea surface is the surface $z = 0$. 
     223\ie\ the sea surface is the surface $z = 0$. 
    215224This well known approximation increases the surface wave speed to infinity and 
    216 modifies certain other longwave dynamics (\eg barotropic Rossby or planetary waves). 
     225modifies certain other longwave dynamics (\eg\ barotropic Rossby or planetary waves). 
    217226The rigid-lid hypothesis is an obsolescent feature in modern OGCMs. 
    218227It has been available until the release 3.1 of \NEMO, and it has been removed in release 3.2 and followings. 
    219 Only the free surface formulation is now described in the this document (see the next sub-section). 
     228Only the free surface formulation is now described in this document (see the next sub-section). 
    220229 
    221230% ------------------------------------------------------------------------------------------------------------- 
     
    223232% ------------------------------------------------------------------------------------------------------------- 
    224233\subsection{Free surface formulation} 
    225 \label{subsec:PE_free_surface} 
     234\label{subsec:MB_free_surface} 
    226235 
    227236In the free surface formulation, a variable $\eta$, the sea-surface height, 
    228237is introduced which describes the shape of the air-sea interface. 
    229238This variable is solution of a prognostic equation which is established by forming the vertical average of 
    230 the kinematic surface condition (\autoref{eq:PE_w_bbc}): 
     239the kinematic surface condition (\autoref{eq:MB_w_bbc}): 
    231240\begin{equation} 
    232   \label{eq:PE_ssh} 
     241  \label{eq:MB_ssh} 
    233242  \pd[\eta]{t} = - D + P - E \quad \text{where} \quad D = \nabla \cdot \lt[ (H + \eta) \; \overline{U}_h \, \rt] 
    234243\end{equation} 
    235 and using (\autoref{eq:PE_hydrostatic}) the surface pressure is given by: $p_s = \rho \, g \, \eta$. 
     244and using (\autoref{eq:MB_PE_hydrostatic}) the surface pressure is given by: $p_s = \rho \, g \, \eta$. 
    236245 
    237246Allowing the air-sea interface to move introduces the external gravity waves (EGWs) as 
    238247a class of solution of the primitive equations. 
    239 These waves are barotropic because of hydrostatic assumption, and their phase speed is quite high. 
     248These waves are barotropic (\ie\ nearly independent of depth) and their phase speed is quite high. 
    240249Their time scale is short with respect to the other processes described by the primitive equations. 
    241250 
     
    246255the baroclinic structure of the ocean (internal waves) possibly in shallow seas, 
    247256then a non linear free surface is the most appropriate. 
    248 This means that no approximation is made in \autoref{eq:PE_ssh} and that 
     257This means that no approximation is made in \autoref{eq:MB_ssh} and that 
    249258the variation of the ocean volume is fully taken into account. 
    250259Note that in order to study the fast time scales associated with EGWs it is necessary to 
     
    257266not altering the slow barotropic Rossby waves. 
    258267If further, an approximative conservation of heat and salt contents is sufficient for the problem solved, 
    259 then it is sufficient to solve a linearized version of \autoref{eq:PE_ssh}, 
     268then it is sufficient to solve a linearized version of \autoref{eq:MB_ssh}, 
    260269which still allows to take into account freshwater fluxes applied at the ocean surface \citep{roullet.madec_JGR00}. 
    261270Nevertheless, with the linearization, an exact conservation of heat and salt contents is lost. 
     
    266275the implicit scheme \citep{dukowicz.smith_JGR94} or 
    267276the addition of a filtering force in the momentum equation \citep{roullet.madec_JGR00}. 
    268 With the present release, \NEMO offers the choice between 
     277With the present release, \NEMO\ offers the choice between 
    269278an explicit free surface (see \autoref{subsec:DYN_spg_exp}) or 
    270279a split-explicit scheme strongly inspired the one proposed by \citet{shchepetkin.mcwilliams_OM05} 
     
    275284% ================================================================ 
    276285\section{Curvilinear \textit{z-}coordinate system} 
    277 \label{sec:PE_zco} 
     286\label{sec:MB_zco} 
    278287 
    279288% ------------------------------------------------------------------------------------------------------------- 
     
    281290% ------------------------------------------------------------------------------------------------------------- 
    282291\subsection{Tensorial formalism} 
    283 \label{subsec:PE_tensorial} 
     292\label{subsec:MB_tensorial} 
    284293 
    285294In many ocean circulation problems, the flow field has regions of enhanced dynamics 
    286 (\ie surface layers, western boundary currents, equatorial currents, or ocean fronts). 
     295(\ie\ surface layers, western boundary currents, equatorial currents, or ocean fronts). 
    287296The representation of such dynamical processes can be improved by 
    288297specifically increasing the model resolution in these regions. 
     
    304313$(i,j,k)$ linked to the earth such that 
    305314$k$ is the local upward vector and $(i,j)$ are two vectors orthogonal to $k$, 
    306 \ie along geopotential surfaces (\autoref{fig:referential}). 
     315\ie\ along geopotential surfaces (\autoref{fig:MB_referential}). 
    307316Let $(\lambda,\varphi,z)$ be the geographical coordinate system in which a position is defined by 
    308317the latitude $\varphi(i,j)$, the longitude $\lambda(i,j)$ and 
    309318the distance from the centre of the earth $a + z(k)$ where $a$ is the earth's radius and 
    310 $z$ the altitude above a reference sea level (\autoref{fig:referential}). 
     319$z$ the altitude above a reference sea level (\autoref{fig:MB_referential}). 
    311320The local deformation of the curvilinear coordinate system is given by $e_1$, $e_2$ and $e_3$, 
    312321the three scale factors: 
    313322\begin{equation} 
    314   \label{eq:scale_factors} 
     323  \label{eq:MB_scale_factors} 
    315324  \begin{aligned} 
    316325    e_1 &= (a + z) \lt[ \lt( \pd[\lambda]{i} \cos \varphi \rt)^2 + \lt( \pd[\varphi]{i} \rt)^2 \rt]^{1/2} \\ 
     
    322331% >>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    323332\begin{figure}[!tb] 
    324   \begin{center} 
    325     \includegraphics[width=\textwidth]{Fig_I_earth_referential} 
    326     \caption{ 
    327       \protect\label{fig:referential} 
    328       the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 
    329       coordinate system $(i,j,k)$. 
    330     } 
    331   \end{center} 
     333  \centering 
     334  \includegraphics[width=0.66\textwidth]{Fig_I_earth_referential} 
     335  \caption[Geographical and curvilinear coordinate systems]{ 
     336    the geographical coordinate system $(\lambda,\varphi,z)$ and the curvilinear 
     337    coordinate system $(i,j,k)$.} 
     338  \label{fig:MB_referential} 
    332339\end{figure} 
    333340%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    334341 
    335342Since the ocean depth is far smaller than the earth's radius, $a + z$, can be replaced by $a$ in 
    336 (\autoref{eq:scale_factors}) (thin-shell approximation). 
     343(\autoref{eq:MB_scale_factors}) (thin-shell approximation). 
    337344The resulting horizontal scale factors $e_1$, $e_2$  are independent of $k$ while 
    338345the vertical scale factor is a single function of $k$ as $k$ is parallel to $z$. 
    339346The scalar and vector operators that appear in the primitive equations 
    340 (\autoref{eq:PE_dyn} to \autoref{eq:PE_eos}) can be written in the tensorial form, 
     347(\autoref{eq:MB_PE_dyn} to \autoref{eq:MB_PE_eos}) can then be written in the tensorial form, 
    341348invariant in any orthogonal horizontal curvilinear coordinate system transformation: 
    342349\begin{subequations} 
    343   % \label{eq:PE_discrete_operators} 
     350  % \label{eq:MB_discrete_operators} 
    344351  \begin{gather} 
    345     \label{eq:PE_grad} 
     352    \label{eq:MB_grad} 
    346353    \nabla q =   \frac{1}{e_1} \pd[q]{i} \; \vect i 
    347354               + \frac{1}{e_2} \pd[q]{j} \; \vect j 
    348355               + \frac{1}{e_3} \pd[q]{k} \; \vect k \\ 
    349     \label{eq:PE_div} 
     356    \label{eq:MB_div} 
    350357    \nabla \cdot \vect A =   \frac{1}{e_1 \; e_2} \lt[ \pd[(e_2 \; a_1)]{\partial i} + \pd[(e_1 \; a_2)]{j} \rt] 
    351358                           + \frac{1}{e_3} \lt[ \pd[a_3]{k} \rt] 
    352359  \end{gather} 
    353360  \begin{multline} 
    354     \label{eq:PE_curl} 
     361    \label{eq:MB_curl} 
    355362      \nabla \times \vect{A} =   \lt[ \frac{1}{e_2} \pd[a_3]{j} - \frac{1}{e_3} \pd[a_2]{k}   \rt] \vect i \\ 
    356363                               + \lt[ \frac{1}{e_3} \pd[a_1]{k} - \frac{1}{e_1} \pd[a_3]{i}   \rt] \vect j \\ 
     
    358365  \end{multline} 
    359366  \begin{gather} 
    360     \label{eq:PE_lap} 
     367    \label{eq:MB_lap} 
    361368    \Delta q = \nabla \cdot (\nabla q) \\ 
    362     \label{eq:PE_lap_vector} 
     369    \label{eq:MB_lap_vector} 
    363370    \Delta \vect A = \nabla (\nabla \cdot \vect A) - \nabla \times (\nabla \times \vect A) 
    364371  \end{gather} 
     
    370377% ------------------------------------------------------------------------------------------------------------- 
    371378\subsection{Continuous model equations} 
    372 \label{subsec:PE_zco_Eq} 
     379\label{subsec:MB_zco_Eq} 
    373380 
    374381In order to express the Primitive Equations in tensorial formalism, 
    375382it is necessary to compute the horizontal component of the non-linear and viscous terms of the equation using 
    376 \autoref{eq:PE_grad}) to \autoref{eq:PE_lap_vector}. 
     383\autoref{eq:MB_grad}) to \autoref{eq:MB_lap_vector}. 
    377384Let us set $\vect U = (u,v,w) = \vect U_h + w \; \vect k $, the velocity in the $(i,j,k)$ coordinates system and 
    378385define the relative vorticity $\zeta$ and the divergence of the horizontal velocity field $\chi$, by: 
    379386\begin{gather} 
    380   \label{eq:PE_curl_Uh} 
     387  \label{eq:MB_curl_Uh} 
    381388  \zeta = \frac{1}{e_1 e_2} \lt[ \pd[(e_2 \, v)]{i} - \pd[(e_1 \, u)]{j} \rt] \\ 
    382   \label{eq:PE_div_Uh} 
     389  \label{eq:MB_div_Uh} 
    383390  \chi  = \frac{1}{e_1 e_2} \lt[ \pd[(e_2 \, u)]{i} + \pd[(e_1 \, v)]{j} \rt] 
    384391\end{gather} 
    385392 
    386 Using the fact that the horizontal scale factors $e_1$ and $e_2$ are independent of $k$ and that 
     393Using again the fact that the horizontal scale factors $e_1$ and $e_2$ are independent of $k$ and that 
    387394$e_3$  is a function of the single variable $k$, 
    388 $NLT$ the nonlinear term of \autoref{eq:PE_dyn} can be transformed as follows: 
     395$NLT$ the nonlinear term of \autoref{eq:MB_PE_dyn} can be transformed as follows: 
    389396\begin{alignat*}{2} 
    390397  &NLT &=   &\lt[ (\nabla \times {\vect U}) \times {\vect U} + \frac{1}{2} \nabla \lt( {\vect U}^2 \rt) \rt]_h \\ 
     
    427434\end{alignat*} 
    428435The last term of the right hand side is obviously zero, and thus the nonlinear term of 
    429 \autoref{eq:PE_dyn} is written in the $(i,j,k)$ coordinate system: 
     436\autoref{eq:MB_PE_dyn} is written in the $(i,j,k)$ coordinate system: 
    430437\begin{equation} 
    431   \label{eq:PE_vector_form} 
     438  \label{eq:MB_vector_form} 
    432439  NLT =   \zeta \; \vect k \times \vect U_h + \frac{1}{2} \nabla_h \lt( \vect U_h^2 \rt) 
    433440        + \frac{1}{e_3} w \pd[\vect U_h]{k} 
     
    436443This is the so-called \textit{vector invariant form} of the momentum advection term. 
    437444For some purposes, it can be advantageous to write this term in the so-called flux form, 
    438 \ie to write it as the divergence of fluxes. 
    439 For example, the first component of \autoref{eq:PE_vector_form} (the $i$-component) is transformed as follows: 
     445\ie\ to write it as the divergence of fluxes. 
     446For example, the first component of \autoref{eq:MB_vector_form} (the $i$-component) is transformed as follows: 
    440447\begin{alignat*}{2} 
    441448  &NLT_i &= &- \zeta \; v + \frac{1}{2 \; e_1} \pd[ (u^2 + v^2) ]{i} + \frac{1}{e_3} w \ \pd[u]{k} \\ 
     
    456463  &      &= &\nabla \cdot (\vect U \, u) - (\nabla \cdot \vect U) \ u 
    457464            + \frac{1}{e_1 e_2} \lt( -v^2 \pd[e_2]{i} + u v \, \pd[e_1]{j} \rt) \\ 
    458   \intertext{as $\nabla \cdot {\vect U} \; = 0$ (incompressibility) it comes:} 
     465  \intertext{as $\nabla \cdot {\vect U} \; = 0$ (incompressibility) it becomes:} 
    459466  &      &= &\, \nabla \cdot (\vect U \, u) + \frac{1}{e_1 e_2} \lt( v \; \pd[e_2]{i} - u \; \pd[e_1]{j} \rt) (-v) 
    460467\end{alignat*} 
     
    462469The flux form of the momentum advection term is therefore given by: 
    463470\begin{equation} 
    464   \label{eq:PE_flux_form} 
     471  \label{eq:MB_flux_form} 
    465472  NLT =   \nabla \cdot \lt( 
    466473    \begin{array}{*{20}c} 
     
    475482the first one is expressed as the divergence of momentum fluxes (hence the flux form name given to this formulation) 
    476483and the second one is due to the curvilinear nature of the coordinate system used. 
    477 The latter is called the \textit{metric} term and can be viewed as a modification of the Coriolis parameter:  
     484The latter is called the \textit{metric} term and can be viewed as a modification of the Coriolis parameter: 
    478485\[ 
    479   % \label{eq:PE_cor+metric} 
     486  % \label{eq:MB_cor+metric} 
    480487  f \to f + \frac{1}{e_1 e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) 
    481488\] 
    482489 
    483490Note that in the case of geographical coordinate, 
    484 \ie when $(i,j) \to (\lambda,\varphi)$ and $(e_1,e_2) \to (a \, \cos \varphi,a)$, 
     491\ie\ when $(i,j) \to (\lambda,\varphi)$ and $(e_1,e_2) \to (a \, \cos \varphi,a)$, 
    485492we recover the commonly used modification of the Coriolis parameter $f \to f + (u / a) \tan \varphi$. 
    486493 
     
    492499  \textbf{Vector invariant form of the momentum equations}: 
    493500  \begin{equation} 
    494     \label{eq:PE_dyn_vect} 
     501    \label{eq:MB_dyn_vect} 
    495502    \begin{split} 
    496     % \label{eq:PE_dyn_vect_u} 
     503    % \label{eq:MB_dyn_vect_u} 
    497504      \pd[u]{t} = &+ (\zeta + f) \, v - \frac{1}{2 e_1} \pd[]{i} (u^2 + v^2) 
    498505                   - \frac{1}{e_3} w \pd[u]{k} - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) \\ 
    499506                  &+ D_u^{\vect U} + F_u^{\vect U} \\ 
    500507      \pd[v]{t} = &- (\zeta + f) \, u - \frac{1}{2 e_2} \pd[]{j} (u^2 + v^2) 
    501                    - \frac{1}{e_3} w \pd[v]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) \\  
     508                   - \frac{1}{e_3} w \pd[v]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) \\ 
    502509                  &+ D_v^{\vect U} + F_v^{\vect U} 
    503510    \end{split} 
     
    505512\item 
    506513  \textbf{flux form of the momentum equations}: 
    507   % \label{eq:PE_dyn_flux} 
     514  % \label{eq:MB_dyn_flux} 
    508515  \begin{multline*} 
    509     % \label{eq:PE_dyn_flux_u} 
     516    % \label{eq:MB_dyn_flux_u} 
    510517    \pd[u]{t} = + \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v \\ 
    511518                - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, u)]{i} + \pd[(e_1 \, v \, u)]{j} \rt) \\ 
     
    514521  \end{multline*} 
    515522  \begin{multline*} 
    516     % \label{eq:PE_dyn_flux_v} 
     523    % \label{eq:MB_dyn_flux_v} 
    517524    \pd[v]{t} = - \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u \\ 
    518                 + \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, v)]{i} + \pd[(e_1 \, v \, v)]{j} \rt) \\ 
     525                - \frac{1}{e_1 \; e_2} \lt( \pd[(e_2 \, u \, v)]{i} + \pd[(e_1 \, v \, v)]{j} \rt) \\ 
    519526                - \frac{1}{e_3} \pd[(w \, v)]{k} - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) 
    520527                + D_v^{\vect U} + F_v^{\vect U} 
    521528  \end{multline*} 
    522   where $\zeta$, the relative vorticity, is given by \autoref{eq:PE_curl_Uh} and $p_s$, the surface pressure, 
     529  where $\zeta$, the relative vorticity, is given by \autoref{eq:MB_curl_Uh} and $p_s$, the surface pressure, 
    523530  is given by: 
    524531  \[ 
    525   % \label{eq:PE_spg} 
     532  % \label{eq:MB_spg} 
    526533    p_s = \rho \,g \, \eta 
    527534  \] 
    528   with $\eta$ is solution of \autoref{eq:PE_ssh}. 
     535  and $\eta$ is the solution of \autoref{eq:MB_ssh}. 
    529536 
    530537  The vertical velocity and the hydrostatic pressure are diagnosed from the following equations: 
    531538  \[ 
    532   % \label{eq:w_diag} 
    533     \pd[w]{k} = - \chi \; e_3 \qquad  
    534   % \label{eq:hp_diag} 
     539  % \label{eq:MB_w_diag} 
     540    \pd[w]{k} = - \chi \; e_3 \qquad 
     541  % \label{eq:MB_hp_diag} 
    535542    \pd[p_h]{k} = - \rho \; g \; e_3 
    536543  \] 
    537   where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:PE_div_Uh}. 
    538 \item \textit{tracer equations}: 
    539   \[ 
    540     %\label{eq:S} 
    541     \pd[T]{t} = - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 T \, u)]{i} + \pd[(e_1 T \, v)]{j} \rt] 
     544  where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:MB_div_Uh}. 
     545 
     546\item 
     547  \textbf{tracer equations}: 
     548  \begin{equation} 
     549  \begin{split} 
     550    \pd[T]{t} = & - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 T \, u)]{i} + \pd[(e_1 T \, v)]{j} \rt] 
    542551                - \frac{1}{e_3} \pd[(T \, w)]{k} + D^T + F^T \\ 
    543     %\label{eq:T} 
    544     \pd[S]{t} = - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 S \, u)]{i} + \pd[(e_1 S \, v)]{j} \rt] 
    545                 - \frac{1}{e_3} \pd[(S \, w)]{k} + D^S + F^S 
    546     %\label{eq:rho} 
    547     \rho = \rho \big( T,S,z(k) \big) 
    548   \] 
     552    \pd[S]{t} = & - \frac{1}{e_1 e_2} \lt[ \pd[(e_2 S \, u)]{i} + \pd[(e_1 S \, v)]{j} \rt] 
     553                - \frac{1}{e_3} \pd[(S \, w)]{k} + D^S + F^S \\ 
     554    \rho = & \rho \big( T,S,z(k) \big) 
     555  \end{split} 
     556  \end{equation} 
    549557\end{itemize} 
    550558 
    551559The expression of $\vect D^{U}$, $D^{S}$ and $D^{T}$ depends on the subgrid scale parameterisation used. 
    552 It will be defined in \autoref{eq:PE_zdf}. 
     560It will be defined in \autoref{eq:MB_zdf}. 
    553561The nature and formulation of $\vect F^{\vect U}$, $F^T$ and $F^S$, the surface forcing terms, 
    554562are discussed in \autoref{chap:SBC}. 
     
    560568% ================================================================ 
    561569\section{Curvilinear generalised vertical coordinate system} 
    562 \label{sec:PE_gco} 
     570\label{sec:MB_gco} 
    563571 
    564572The ocean domain presents a huge diversity of situation in the vertical. 
     
    569577Therefore, in order to represent the ocean with respect to 
    570578the first point a space and time dependent vertical coordinate that follows the variation of the sea surface height 
    571 \eg an \zstar-coordinate; 
     579\eg\ an \zstar-coordinate; 
    572580for the second point, a space variation to fit the change of bottom topography 
    573 \eg a terrain-following or $\sigma$-coordinate; 
     581\eg\ a terrain-following or $\sigma$-coordinate; 
    574582and for the third point, one will be tempted to use a space and time dependent coordinate that 
    575 follows the isopycnal surfaces, \eg an isopycnic coordinate. 
    576  
    577 In order to satisfy two or more constrains one can even be tempted to mixed these coordinate systems, as in 
     583follows the isopycnal surfaces, \eg\ an isopycnic coordinate. 
     584 
     585In order to satisfy two or more constraints one can even be tempted to mixed these coordinate systems, as in 
    578586HYCOM (mixture of $z$-coordinate at the surface, isopycnic coordinate in the ocean interior and $\sigma$ at 
    579587the ocean bottom) \citep{chassignet.smith.ea_JPO03} or 
     
    584592introducing an arbitrary vertical coordinate : 
    585593\begin{equation} 
    586   \label{eq:PE_s} 
     594  \label{eq:MB_s} 
    587595  s = s(i,j,k,t) 
    588596\end{equation} 
    589597with the restriction that the above equation gives a single-valued monotonic relationship between $s$ and $k$, 
    590598when $i$, $j$ and $t$ are held fixed. 
    591 \autoref{eq:PE_s} is a transformation from the $(i,j,k,t)$ coordinate system with independent variables into 
     599\autoref{eq:MB_s} is a transformation from the $(i,j,k,t)$ coordinate system with independent variables into 
    592600the $(i,j,s,t)$ generalised coordinate system with $s$ depending on the other three variables through 
    593 \autoref{eq:PE_s}. 
     601\autoref{eq:MB_s}. 
    594602This so-called \textit{generalised vertical coordinate} \citep{kasahara_MWR74} is in fact 
    595603an Arbitrary Lagrangian--Eulerian (ALE) coordinate. 
    596 Indeed, choosing an expression for $s$ is an arbitrary choice that determines 
     604Indeed, one has a great deal of freedom in the choice of expression for $s$. The choice determines 
    597605which part of the vertical velocity (defined from a fixed referential) will cross the levels (Eulerian part) and 
    598606which part will be used to move them (Lagrangian part). 
     
    601609Its most often used implementation is via an ALE algorithm, 
    602610in which a pure lagrangian step is followed by regridding and remapping steps, 
    603 the later step implicitly embedding the vertical advection 
     611the latter step implicitly embedding the vertical advection 
    604612\citep{hirt.amsden.ea_JCP74, chassignet.smith.ea_JPO03, white.adcroft.ea_JCP09}. 
    605613Here we follow the \citep{kasahara_MWR74} strategy: 
    606 a regridding step (an update of the vertical coordinate) followed by an eulerian step with 
     614a regridding step (an update of the vertical coordinate) followed by an Eulerian step with 
    607615an explicit computation of vertical advection relative to the moving s-surfaces. 
    608616 
    609617%\gmcomment{ 
    610618%A key point here is that the $s$-coordinate depends on $(i,j)$ ==> horizontal pressure gradient... 
    611 the generalized vertical coordinates used in ocean modelling are not orthogonal, 
     619The generalized vertical coordinates used in ocean modelling are not orthogonal, 
    612620which contrasts with many other applications in mathematical physics. 
    613621Hence, it is useful to keep in mind the following properties that may seem odd on initial encounter. 
     
    615623The horizontal velocity in ocean models measures motions in the horizontal plane, 
    616624perpendicular to the local gravitational field. 
    617 That is, horizontal velocity is mathematically the same regardless the vertical coordinate, be it geopotential, 
     625That is, horizontal velocity is mathematically the same regardless of the vertical coordinate, be it geopotential, 
    618626isopycnal, pressure, or terrain following. 
    619627The key motivation for maintaining the same horizontal velocity component is that 
     
    644652\subsection{\textit{S}-coordinate formulation} 
    645653 
    646 Starting from the set of equations established in \autoref{sec:PE_zco} for the special case $k = z$ and 
     654Starting from the set of equations established in \autoref{sec:MB_zco} for the special case $k = z$ and 
    647655thus $e_3 = 1$, we introduce an arbitrary vertical coordinate $s = s(i,j,k,t)$, 
    648656which includes $z$-, \zstar- and $\sigma$-coordinates as special cases 
    649657($s = z$, $s = \zstar$, and $s = \sigma = z / H$ or $ = z / \lt( H + \eta \rt)$, resp.). 
    650 A formal derivation of the transformed equations is given in \autoref{apdx:A}. 
     658A formal derivation of the transformed equations is given in \autoref{apdx:SCOORD}. 
    651659Let us define the vertical scale factor by $e_3 = \partial_s z$  ($e_3$ is now a function of $(i,j,k,t)$ ), 
    652660and the slopes in the $(i,j)$ directions between $s$- and $z$-surfaces by: 
    653661\begin{equation} 
    654   \label{eq:PE_sco_slope} 
     662  \label{eq:MB_sco_slope} 
    655663  \sigma_1 = \frac{1}{e_1} \; \lt. \pd[z]{i} \rt|_s \quad \text{and} \quad 
    656664  \sigma_2 = \frac{1}{e_2} \; \lt. \pd[z]{j} \rt|_s 
    657665\end{equation} 
    658 We also introduce $\omega$, a dia-surface velocity component, defined as the velocity  
     666We also introduce $\omega$, a dia-surface velocity component, defined as the velocity 
    659667relative to the moving $s$-surfaces and normal to them: 
    660668\[ 
    661   % \label{eq:PE_sco_w} 
    662   \omega = w - e_3 \, \pd[s]{t} - \sigma_1 \, u - \sigma_2 \, v 
     669  % \label{eq:MB_sco_w} 
     670  \omega = w -  \, \lt. \pd[z]{t} \rt|_s - \sigma_1 \, u - \sigma_2 \, v 
    663671\] 
    664672 
    665 The equations solved by the ocean model \autoref{eq:PE} in $s$-coordinate can be written as follows 
    666 (see \autoref{sec:A_momentum}): 
     673The equations solved by the ocean model \autoref{eq:MB_PE} in $s$-coordinate can be written as follows 
     674(see \autoref{sec:SCOORD_momentum}): 
    667675 
    668676\begin{itemize} 
    669677\item \textbf{Vector invariant form of the momentum equation}: 
    670678  \begin{multline*} 
    671   % \label{eq:PE_sco_u_vector} 
     679  % \label{eq:MB_sco_u_vector} 
    672680    \pd[u]{t} = + (\zeta + f) \, v - \frac{1}{2 \, e_1} \pd[]{i} (u^2 + v^2) - \frac{1}{e_3} \omega \pd[u]{k} \\ 
    673                 - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) + g \frac{\rho}{\rho_o} \sigma_1 
     681                - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o} \sigma_1 
    674682                + D_u^{\vect U} + F_u^{\vect U} 
    675683  \end{multline*} 
    676684  \begin{multline*} 
    677   % \label{eq:PE_sco_v_vector} 
     685  % \label{eq:MB_sco_v_vector} 
    678686    \pd[v]{t} = - (\zeta + f) \, u - \frac{1}{2 \, e_2} \pd[]{j}(u^2 + v^2) - \frac{1}{e_3} \omega \pd[v]{k} \\ 
    679                 - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) + g \frac{\rho}{\rho_o} \sigma_2 
     687                - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) - g \frac{\rho}{\rho_o} \sigma_2 
    680688                + D_v^{\vect U} + F_v^{\vect U} 
    681689  \end{multline*} 
    682690\item \textbf{Flux form of the momentum equation}: 
    683691  \begin{multline*} 
    684   % \label{eq:PE_sco_u_flux} 
     692  % \label{eq:MB_sco_u_flux} 
    685693    \frac{1}{e_3} \pd[(e_3 \, u)]{t} = + \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, v \\ 
    686694                                       - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[(e_2 \, e_3 \, u \, u)]{i} + \pd[(e_1 \, e_3 \, v \, u)]{j} \rt) \\ 
    687695                                       - \frac{1}{e_3} \pd[(\omega \, u)]{k} 
    688696                                       - \frac{1}{e_1} \pd[]{i} \lt( \frac{p_s + p_h}{\rho_o} \rt) 
    689                                        + g \frac{\rho}{\rho_o} \sigma_1 + D_u^{\vect U} + F_u^{\vect U} 
     697                                       - g \frac{\rho}{\rho_o} \sigma_1 + D_u^{\vect U} + F_u^{\vect U} 
    690698  \end{multline*} 
    691699  \begin{multline*} 
    692   % \label{eq:PE_sco_v_flux} 
     700  % \label{eq:MB_sco_v_flux} 
    693701    \frac{1}{e_3} \pd[(e_3 \, v)]{t} = - \lt[ f + \frac{1}{e_1 \; e_2} \lt( v \pd[e_2]{i} - u \pd[e_1]{j} \rt) \rt] \, u \\ 
    694702                                       - \frac{1}{e_1 \; e_2 \; e_3} \lt( \pd[( e_2 \; e_3 \, u \, v)]{i} + \pd[(e_1 \; e_3 \, v \, v)]{j} \rt) \\ 
    695703                                       - \frac{1}{e_3} \pd[(\omega \, v)]{k} 
    696704                                       - \frac{1}{e_2} \pd[]{j} \lt( \frac{p_s + p_h}{\rho_o} \rt) 
    697                                        + g \frac{\rho}{\rho_o}\sigma_2 + D_v^{\vect U} + F_v^{\vect U} 
     705                                       - g \frac{\rho}{\rho_o}\sigma_2 + D_v^{\vect U} + F_v^{\vect U} 
    698706  \end{multline*} 
    699707  where the relative vorticity, $\zeta$, the surface pressure gradient, 
    700708  and the hydrostatic pressure have the same expressions as in $z$-coordinates although 
    701709  they do not represent exactly the same quantities. 
    702   $\omega$ is provided by the continuity equation (see \autoref{apdx:A}): 
     710  $\omega$ is provided by the continuity equation (see \autoref{apdx:SCOORD}): 
    703711  \[ 
    704   % \label{eq:PE_sco_continuity} 
     712  % \label{eq:MB_sco_continuity} 
    705713    \pd[e_3]{t} + e_3 \; \chi + \pd[\omega]{s} = 0 \quad \text{with} \quad 
    706714    \chi = \frac{1}{e_1 e_2 e_3} \lt( \pd[(e_2 e_3 \, u)]{i} + \pd[(e_1 e_3 \, v)]{j} \rt) 
     
    708716\item \textit{tracer equations}: 
    709717  \begin{multline*} 
    710   % \label{eq:PE_sco_t} 
     718  % \label{eq:MB_sco_t} 
    711719    \frac{1}{e_3} \pd[(e_3 \, T)]{t} = - \frac{1}{e_1 e_2 e_3} \lt(   \pd[(e_2 e_3 \, u \, T)]{i} 
    712720                                                                    + \pd[(e_1 e_3 \, v \, T)]{j} \rt) \\ 
     
    714722  \end{multline*} 
    715723  \begin{multline} 
    716   % \label{eq:PE_sco_s} 
     724  % \label{eq:MB_sco_s} 
    717725    \frac{1}{e_3} \pd[(e_3 \, S)]{t} = - \frac{1}{e_1 e_2 e_3} \lt(   \pd[(e_2 e_3 \, u \, S)]{i} 
    718726                                                                    + \pd[(e_1 e_3 \, v \, S)]{j} \rt) \\ 
     
    733741% ------------------------------------------------------------------------------------------------------------- 
    734742\subsection{Curvilinear \zstar-coordinate system} 
    735 \label{subsec:PE_zco_star} 
     743\label{subsec:MB_zco_star} 
    736744 
    737745%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    738746\begin{figure}[!b] 
    739   \begin{center} 
    740     \includegraphics[width=\textwidth]{Fig_z_zstar} 
    741     \caption{ 
    742       \protect\label{fig:z_zstar} 
    743       (a) $z$-coordinate in linear free-surface case ; 
    744       (b) $z$-coordinate in non-linear free surface case ; 
    745       (c) re-scaled height coordinate 
    746       (become popular as the \zstar-coordinate \citep{adcroft.campin_OM04}). 
    747     } 
    748   \end{center} 
     747  \centering 
     748  \includegraphics[width=0.66\textwidth]{Fig_z_zstar} 
     749  \caption[Curvilinear z-coordinate systems (\{non-\}linear free-surface cases and re-scaled \zstar)]{ 
     750    (a) $z$-coordinate in linear free-surface case ; 
     751    (b) $z$-coordinate in non-linear free surface case ; 
     752    (c) re-scaled height coordinate 
     753    (become popular as the \zstar-coordinate \citep{adcroft.campin_OM04}).} 
     754  \label{fig:MB_z_zstar} 
    749755\end{figure} 
    750756%>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    751757 
    752 In that case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. 
    753 These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO web site. 
     758In this case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. 
     759These coordinates systems is presented in a report \citep{levier.treguier.ea_rpt07} available on the \NEMO\ web site. 
    754760 
    755761The \zstar coordinate approach is an unapproximated, non-linear free surface implementation which allows one to 
     
    759765as in the $z$-coordinate formulation, but is equally distributed over the full water column. 
    760766Thus vertical levels naturally follow sea-surface variations, with a linear attenuation with depth, 
    761 as illustrated by \autoref{fig:z_zstar}. 
    762 Note that with a flat bottom, such as in \autoref{fig:z_zstar}, the bottom-following $z$ coordinate and \zstar are equivalent. 
     767as illustrated by \autoref{fig:MB_z_zstar}. 
     768Note that with a flat bottom, such as in \autoref{fig:MB_z_zstar}, the bottom-following $z$ coordinate and \zstar are equivalent. 
    763769The definition and modified oceanic equations for the rescaled vertical coordinate \zstar, 
    764770including the treatment of fresh-water flux at the surface, are detailed in Adcroft and Campin (2004). 
     
    766772The position (\zstar) and vertical discretization (\zstar) are expressed as: 
    767773\[ 
    768   % \label{eq:z-star} 
     774  % \label{eq:MB_z-star} 
    769775  H + \zstar = (H + z)  / r \quad \text{and}  \quad \delta \zstar 
    770776              = \delta z / r \quad \text{with} \quad r 
    771               = \frac{H + \eta}{H} 
     777              = \frac{H + \eta}{H} . 
     778\] 
     779Simple re-organisation of the above expressions gives 
     780\[ 
     781  % \label{eq:MB_zstar_2} 
     782  \zstar = H \lt( \frac{z - \eta}{H + \eta} \rt) . 
    772783\] 
    773784Since the vertical displacement of the free surface is incorporated in the vertical coordinate \zstar, 
     
    776787Also the divergence of the flow field is no longer zero as shown by the continuity equation: 
    777788\[ 
    778   \pd[r]{t} = \nabla_{\zstar} \cdot \lt( r \; \vect U_h \rt) (r \; w *) = 0 
     789  \pd[r]{t} = \nabla_{\zstar} \cdot \lt( r \; \vect U_h \rt) + \pd[r \; w^*]{\zstar} = 0 . 
    779790\] 
    780  
    781 % from MOM4p1 documentation 
    782 To overcome problems with vanishing surface and/or bottom cells, we consider the zstar coordinate  
    783 \[ 
    784   % \label{eq:PE_} 
    785   \zstar = H \lt( \frac{z - \eta}{H + \eta} \rt) 
    786 \] 
    787  
    788 This coordinate is closely related to the "eta" coordinate used in many atmospheric models 
     791This \zstar coordinate is closely related to the "eta" coordinate used in many atmospheric models 
    789792(see Black (1994) for a review of eta coordinate atmospheric models). 
    790793It was originally used in ocean models by Stacey et al. (1995) for studies of tides next to shelves, 
     
    797800it is clear that surfaces constant \zstar are very similar to the depth surfaces. 
    798801These properties greatly reduce difficulties of computing the horizontal pressure gradient relative to 
    799 terrain following sigma models discussed in \autoref{subsec:PE_sco}. 
    800 Additionally, since \zstar when $\eta = 0$, 
     802terrain following sigma models discussed in \autoref{subsec:MB_sco}. 
     803Additionally, since $\zstar = z$ when $\eta = 0$, 
    801804no flow is spontaneously generated in an unforced ocean starting from rest, regardless the bottom topography. 
    802805This behaviour is in contrast to the case with "s"-models, where pressure gradient errors in the presence of 
     
    804807depending on the sophistication of the pressure gradient solver. 
    805808The quasi -horizontal nature of the coordinate surfaces also facilitates the implementation of 
    806 neutral physics parameterizations in \zstar models using the same techniques as in $z$-models 
     809neutral physics parameterizations in \zstar  models using the same techniques as in $z$-models 
    807810(see Chapters 13-16 of \cite{griffies_bk04}) for a discussion of neutral physics in $z$-models, 
    808811as well as \autoref{sec:LDF_slp} in this document for treatment in \NEMO). 
    809812 
    810 The range over which \zstar varies is time independent $-H \leq \zstar \leq 0$. 
    811 Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > ?H$. 
     813The range over which \zstar  varies is time independent $-H \leq \zstar \leq 0$. 
     814Hence, all cells remain nonvanishing, so long as the surface height maintains $\eta > -H$. 
    812815This is a minor constraint relative to that encountered on the surface height when using $s = z$ or $s = z - \eta$. 
    813816 
    814 Because \zstar has a time independent range, all grid cells have static increments ds, 
    815 and the sum of the ver tical increments yields the time independent ocean depth. %k ds = H. 
     817Because \zstar  has a time independent range, all grid cells have static increments ds, 
     818and the sum of the vertical increments yields the time independent ocean depth. %k ds = H. 
    816819The \zstar coordinate is therefore invisible to undulations of the free surface, 
    817820since it moves along with the free surface. 
    818 This proper ty means that no spurious vertical transport is induced across surfaces of constant \zstar by 
     821This property means that no spurious vertical transport is induced across surfaces of constant \zstar by 
    819822the motion of external gravity waves. 
    820 Such spurious transpor t can be a problem in z-models, especially those with tidal forcing. 
    821 Quite generally, the time independent range for the \zstar coordinate is a very convenient property that 
    822 allows for a nearly arbitrary ver tical resolution even in the presence of large amplitude fluctuations of 
     823Such spurious transport can be a problem in z-models, especially those with tidal forcing. 
     824Quite generally, the time independent range for the \zstar  coordinate is a very convenient property that 
     825allows for a nearly arbitrary vertical resolution even in the presence of large amplitude fluctuations of 
    823826the surface height, again so long as $\eta > -H$. 
    824827%end MOM doc %%% 
    825828 
    826 \newpage  
     829\newpage 
    827830 
    828831% ------------------------------------------------------------------------------------------------------------- 
     
    830833% ------------------------------------------------------------------------------------------------------------- 
    831834\subsection{Curvilinear terrain-following \textit{s}--coordinate} 
    832 \label{subsec:PE_sco} 
     835\label{subsec:MB_sco} 
    833836 
    834837% ------------------------------------------------------------------------------------------------------------- 
     
    842845For example, the topographic $\beta$-effect is usually larger than the planetary one along continental slopes. 
    843846Topographic Rossby waves can be excited and can interact with the mean current. 
    844 In the $z$-coordinate system presented in the previous section (\autoref{sec:PE_zco}), 
     847In the $z$-coordinate system presented in the previous section (\autoref{sec:MB_zco}), 
    845848$z$-surfaces are geopotential surfaces. 
    846849The bottom topography is discretised by steps. 
     
    866869The main two problems come from the truncation error in the horizontal pressure gradient and 
    867870a possibly increased diapycnal diffusion. 
    868 The horizontal pressure force in $s$-coordinate consists of two terms (see \autoref{apdx:A}), 
     871The horizontal pressure force in $s$-coordinate consists of two terms (see \autoref{apdx:SCOORD}), 
    869872 
    870873\begin{equation} 
    871   \label{eq:PE_p_sco} 
    872   \nabla p |_z = \nabla p |_s - \pd[p]{s} \nabla z |_s 
     874  \label{eq:MB_p_sco} 
     875  \nabla p |_z = \nabla p |_s - \frac{1}{e_3} \pd[p]{s} \nabla z |_s 
    873876\end{equation} 
    874877 
    875 The second term in \autoref{eq:PE_p_sco} depends on the tilt of the coordinate surface and 
    876 introduces a truncation error that is not present in a $z$-model. 
     878The second term in \autoref{eq:MB_p_sco} depends on the tilt of the coordinate surface and 
     879leads to a truncation error that is not present in a $z$-model. 
    877880In the special case of a $\sigma$-coordinate (i.e. a depth-normalised coordinate system $\sigma = z/H$), 
    878881\citet{haney_JPO91} and \citet{beckmann.haidvogel_JPO93} have given estimates of the magnitude of this truncation error. 
     
    887890However, the definition of the model domain vertical coordinate becomes then a non-trivial thing for 
    888891a realistic bottom topography: 
    889 a envelope topography is defined in $s$-coordinate on which a full or 
     892an envelope topography is defined in $s$-coordinate on which a full or 
    890893partial step bottom topography is then applied in order to adjust the model depth to the observed one 
    891 (see \autoref{sec:DOM_zgr}. 
     894(see \autoref{subsec:DOM_zgr}. 
    892895 
    893896For numerical reasons a minimum of diffusion is required along the coordinate surfaces of 
     
    904907In contrast, the ocean will stay at rest in a $z$-model. 
    905908As for the truncation error, the problem can be reduced by introducing the terrain-following coordinate below 
    906 the strongly stratified portion of the water column (\ie the main thermocline) \citep{madec.delecluse.ea_JPO96}. 
     909the strongly stratified portion of the water column (\ie\ the main thermocline) \citep{madec.delecluse.ea_JPO96}. 
    907910An alternate solution consists of rotating the lateral diffusive tensor to geopotential or to isoneutral surfaces 
    908 (see \autoref{subsec:PE_ldf}). 
     911(see \autoref{subsec:MB_ldf}). 
    909912Unfortunately, the slope of isoneutral surfaces relative to the $s$-surfaces can very large, 
    910913strongly exceeding the stability limit of such a operator when it is discretized (see \autoref{chap:LDF}). 
     
    919922% ------------------------------------------------------------------------------------------------------------- 
    920923\subsection{\texorpdfstring{Curvilinear \ztilde-coordinate}{}} 
    921 \label{subsec:PE_zco_tilde} 
     924\label{subsec:MB_zco_tilde} 
    922925 
    923926The \ztilde -coordinate has been developed by \citet{leclair.madec_OM11}. 
    924 It is available in \NEMO since the version 3.4. 
     927It is available in \NEMO\ since the version 3.4 and is more robust in version 4.0 than previously. 
    925928Nevertheless, it is currently not robust enough to be used in all possible configurations. 
    926929Its use is therefore not recommended. 
    927930 
    928 \newpage  
     931\newpage 
    929932 
    930933% ================================================================ 
     
    932935% ================================================================ 
    933936\section{Subgrid scale physics} 
    934 \label{sec:PE_zdf_ldf} 
    935  
    936 The primitive equations describe the behaviour of a geophysical fluid at space and time scales larger than 
     937\label{sec:MB_zdf_ldf} 
     938 
     939The hydrostatic primitive equations describe the behaviour of a geophysical fluid at space and time scales larger than 
    937940a few kilometres in the horizontal, a few meters in the vertical and a few minutes. 
    938941They are usually solved at larger scales: the specified grid spacing and time step of the numerical model. 
     
    940943must be represented entirely in terms of large-scale patterns to close the equations. 
    941944These effects appear in the equations as the divergence of turbulent fluxes 
    942 (\ie fluxes associated with the mean correlation of small scale perturbations). 
     945(\ie\ fluxes associated with the mean correlation of small scale perturbations). 
    943946Assuming a turbulent closure hypothesis is equivalent to choose a formulation for these fluxes. 
    944947It is usually called the subgrid scale physics. 
     
    949952The control exerted by gravity on the flow induces a strong anisotropy between the lateral and vertical motions. 
    950953Therefore subgrid-scale physics \textbf{D}$^{\vect U}$, $D^{S}$ and $D^{T}$  in 
    951 \autoref{eq:PE_dyn}, \autoref{eq:PE_tra_T} and \autoref{eq:PE_tra_S} are divided into 
     954\autoref{eq:MB_PE_dyn}, \autoref{eq:MB_PE_tra_T} and \autoref{eq:MB_PE_tra_S} are divided into 
    952955a lateral part \textbf{D}$^{l \vect U}$, $D^{l S}$ and $D^{l T}$ and 
    953956a vertical part \textbf{D}$^{v \vect U}$, $D^{v S}$ and $D^{v T}$. 
     
    958961% ------------------------------------------------------------------------------------------------------------- 
    959962\subsection{Vertical subgrid scale physics} 
    960 \label{subsec:PE_zdf} 
     963\label{subsec:MB_zdf} 
    961964 
    962965The model resolution is always larger than the scale at which the major sources of vertical turbulence occur 
     
    972975The resulting vertical momentum and tracer diffusive operators are of second order: 
    973976\begin{equation} 
    974   \label{eq:PE_zdf} 
     977  \label{eq:MB_zdf} 
    975978  \begin{gathered} 
    976979    \vect D^{v \vect U} = \pd[]{z} \lt( A^{vm} \pd[\vect U_h]{z} \rt) \ , \\ 
     
    984987All the vertical physics is embedded in the specification of the eddy coefficients. 
    985988They can be assumed to be either constant, or function of the local fluid properties 
    986 (\eg Richardson number, Brunt-Vais\"{a}l\"{a} frequency...), 
     989(\eg\ Richardson number, Brunt-Vais\"{a}l\"{a} frequency, distance from the boundary ...), 
    987990or computed from a turbulent closure model. 
    988 The choices available in \NEMO are discussed in \autoref{chap:ZDF}). 
     991The choices available in \NEMO\ are discussed in \autoref{chap:ZDF}). 
    989992 
    990993% ------------------------------------------------------------------------------------------------------------- 
     
    992995% ------------------------------------------------------------------------------------------------------------- 
    993996\subsection{Formulation of the lateral diffusive and viscous operators} 
    994 \label{subsec:PE_ldf} 
     997\label{subsec:MB_ldf} 
    995998 
    996999Lateral turbulence can be roughly divided into a mesoscale turbulence associated with eddies 
     
    9991002and a sub mesoscale turbulence which is never explicitly solved even partially, but always parameterized. 
    10001003The formulation of lateral eddy fluxes depends on whether the mesoscale is below or above the grid-spacing 
    1001 (\ie the model is eddy-resolving or not). 
     1004(\ie\ the model is eddy-resolving or not). 
    10021005 
    10031006In non-eddy-resolving configurations, the closure is similar to that used for the vertical physics. 
     
    10071010(or more precisely neutral surfaces \cite{mcdougall_JPO87}) rather than across them. 
    10081011As the slope of neutral surfaces is small in the ocean, a common approximation is to assume that 
    1009 the `lateral' direction is the horizontal, \ie the lateral mixing is performed along geopotential surfaces. 
     1012the `lateral' direction is the horizontal, \ie\ the lateral mixing is performed along geopotential surfaces. 
    10101013This leads to a geopotential second order operator for lateral subgrid scale physics. 
    10111014This assumption can be relaxed: the eddy-induced turbulent fluxes can be better approached by assuming that 
     
    10141017it has components in the three space directions. 
    10151018However, 
    1016 both horizontal and isoneutral operators have no effect on mean (\ie large scale) potential energy whereas 
     1019both horizontal and isoneutral operators have no effect on mean (\ie\ large scale) potential energy whereas 
    10171020potential energy is a main source of turbulence (through baroclinic instabilities). 
    1018 \citet{gent.mcwilliams_JPO90} have proposed a parameterisation of mesoscale eddy-induced turbulence which 
     1021\citet{gent.mcwilliams_JPO90} proposed a parameterisation of mesoscale eddy-induced turbulence which 
    10191022associates an eddy-induced velocity to the isoneutral diffusion. 
    10201023Its mean effect is to reduce the mean potential energy of the ocean. 
     
    10331036Another approach is becoming more and more popular: 
    10341037instead of specifying explicitly a sub-grid scale term in the momentum and tracer time evolution equations, 
    1035 one uses a advective scheme which is diffusive enough to maintain the model stability. 
     1038one uses an advective scheme which is diffusive enough to maintain the model stability. 
    10361039It must be emphasised that then, all the sub-grid scale physics is included in the formulation of 
    10371040the advection scheme. 
    10381041 
    10391042All these parameterisations of subgrid scale physics have advantages and drawbacks. 
    1040 There are not all available in \NEMO. For active tracers (temperature and salinity) the main ones are: 
     1043They are not all available in \NEMO. For active tracers (temperature and salinity) the main ones are: 
    10411044Laplacian and bilaplacian operators acting along geopotential or iso-neutral surfaces, 
    10421045\citet{gent.mcwilliams_JPO90} parameterisation, and various slightly diffusive advection schemes. 
     
    10461049\subsubsection{Lateral laplacian tracer diffusive operator} 
    10471050 
    1048 The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:B}): 
     1051The lateral Laplacian tracer diffusive operator is defined by (see \autoref{apdx:DIFFOPERS}): 
    10491052\begin{equation} 
    1050   \label{eq:PE_iso_tensor} 
     1053  \label{eq:MB_iso_tensor} 
    10511054  D^{lT} = \nabla \vect . \lt( A^{lT} \; \Re \; \nabla T \rt) \quad \text{with} \quad 
    10521055  \Re = 
     
    10581061\end{equation} 
    10591062where $r_1$ and $r_2$ are the slopes between the surface along which the diffusive operator acts and 
    1060 the model level (\eg $z$- or $s$-surfaces). 
    1061 Note that the formulation \autoref{eq:PE_iso_tensor} is exact for 
     1063the model level (\eg\ $z$- or $s$-surfaces). 
     1064Note that the formulation \autoref{eq:MB_iso_tensor} is exact for 
    10621065the rotation between geopotential and $s$-surfaces, 
    10631066while it is only an approximation for the rotation between isoneutral and $z$- or $s$-surfaces. 
    1064 Indeed, in the latter case, two assumptions are made to simplify \autoref{eq:PE_iso_tensor} \citep{cox_OM87}. 
     1067Indeed, in the latter case, two assumptions are made to simplify \autoref{eq:MB_iso_tensor} \citep{cox_OM87}. 
    10651068First, the horizontal contribution of the dianeutral mixing is neglected since the ratio between iso and 
    10661069dia-neutral diffusive coefficients is known to be several orders of magnitude smaller than unity. 
    10671070Second, the two isoneutral directions of diffusion are assumed to be independent since 
    1068 the slopes are generally less than $10^{-2}$ in the ocean (see \autoref{apdx:B}). 
     1071the slopes are generally less than $10^{-2}$ in the ocean (see \autoref{apdx:DIFFOPERS}). 
    10691072 
    10701073For \textit{iso-level} diffusion, $r_1$ and $r_2 $ are zero. 
     
    10731076For \textit{geopotential} diffusion, 
    10741077$r_1$ and $r_2 $ are the slopes between the geopotential and computational surfaces: 
    1075 they are equal to $\sigma_1$ and $\sigma_2$, respectively (see \autoref{eq:PE_sco_slope}). 
     1078they are equal to $\sigma_1$ and $\sigma_2$, respectively (see \autoref{eq:MB_sco_slope}). 
    10761079 
    10771080For \textit{isoneutral} diffusion $r_1$ and $r_2$ are the slopes between the isoneutral and computational surfaces. 
     
    10791082In $z$-coordinates: 
    10801083\begin{equation} 
    1081   \label{eq:PE_iso_slopes} 
     1084  \label{eq:MB_iso_slopes} 
    10821085  r_1 = \frac{e_3}{e_1} \lt( \pd[\rho]{i} \rt) \lt( \pd[\rho]{k} \rt)^{-1} \quad 
    10831086  r_2 = \frac{e_3}{e_2} \lt( \pd[\rho]{j} \rt) \lt( \pd[\rho]{k} \rt)^{-1} 
     
    10901093an additional tracer advection is introduced in combination with the isoneutral diffusion of tracers: 
    10911094\[ 
    1092   % \label{eq:PE_iso+eiv} 
     1095  % \label{eq:MB_iso+eiv} 
    10931096  D^{lT} = \nabla \cdot \lt( A^{lT} \; \Re \; \nabla T \rt) + \nabla \cdot \lt( \vect U^\ast \, T \rt) 
    10941097\] 
     
    10961099eddy-induced transport velocity. This velocity field is defined by: 
    10971100\begin{gather} 
    1098   % \label{eq:PE_eiv} 
     1101  % \label{eq:MB_eiv} 
    10991102  u^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_1 \rt) \\ 
    11001103  v^\ast =   \frac{1}{e_3}            \pd[]{k} \lt( A^{eiv} \;        \tilde{r}_2 \rt) \\ 
     
    11051108(or equivalently the isoneutral thickness diffusivity coefficient), 
    11061109and $\tilde r_1$ and $\tilde r_2$ are the slopes between isoneutral and \textit{geopotential} surfaces. 
    1107 Their values are thus independent of the vertical coordinate, but their expression depends on the coordinate:  
     1110Their values are thus independent of the vertical coordinate, but their expression depends on the coordinate: 
    11081111\begin{align} 
    1109   \label{eq:PE_slopes_eiv} 
     1112  \label{eq:MB_slopes_eiv} 
    11101113  \tilde{r}_n = 
    11111114    \begin{cases} 
     
    11191122This can be achieved in a model by tapering either the eddy coefficient or the slopes to zero in the vicinity of 
    11201123the boundaries. 
    1121 The latter strategy is used in \NEMO (cf. \autoref{chap:LDF}). 
     1124The latter strategy is used in \NEMO\ (cf. \autoref{chap:LDF}). 
    11221125 
    11231126\subsubsection{Lateral bilaplacian tracer diffusive operator} 
     
    11251128The lateral bilaplacian tracer diffusive operator is defined by: 
    11261129\[ 
    1127   % \label{eq:PE_bilapT} 
     1130  % \label{eq:MB_bilapT} 
    11281131  D^{lT}= - \Delta \; (\Delta T) \quad \text{where} \quad 
    11291132  \Delta \bullet = \nabla \lt( \sqrt{B^{lT}} \; \Re \; \nabla \bullet \rt) 
    11301133\] 
    1131 It is the Laplacian operator given by \autoref{eq:PE_iso_tensor} applied twice with 
     1134It is the Laplacian operator given by \autoref{eq:MB_iso_tensor} applied twice with 
    11321135the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. 
    11331136 
     
    11351138 
    11361139The Laplacian momentum diffusive operator along $z$- or $s$-surfaces is found by 
    1137 applying \autoref{eq:PE_lap_vector} to the horizontal velocity vector (see \autoref{apdx:B}): 
     1140applying \autoref{eq:MB_lap_vector} to the horizontal velocity vector (see \autoref{apdx:DIFFOPERS}): 
    11381141\begin{align*} 
    1139   % \label{eq:PE_lapU} 
     1142  % \label{eq:MB_lapU} 
    11401143  \vect D^{l \vect U} &=   \nabla_h        \big( A^{lm}    \chi             \big) 
    11411144                         - \nabla_h \times \big( A^{lm} \, \zeta \; \vect k \big) \\ 
    11421145                      &= \lt(   \frac{1}{e_1}     \pd[ \lt( A^{lm}    \chi      \rt) ]{i} \rt. 
    1143                               - \frac{1}{e_2 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{j} 
     1146                              - \frac{1}{e_2 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{j} , 
    11441147                                \frac{1}{e_2}     \pd[ \lt( A^{lm}    \chi      \rt) ]{j} 
    11451148                         \lt. + \frac{1}{e_1 e_3} \pd[ \lt( A^{lm} \; e_3 \zeta \rt) ]{i} \rt) 
     
    11471150 
    11481151Such a formulation ensures a complete separation between the vorticity and horizontal divergence fields 
    1149 (see \autoref{apdx:C}). 
     1152(see \autoref{apdx:INVARIANTS}). 
    11501153Unfortunately, it is only available in \textit{iso-level} direction. 
    11511154When a rotation is required 
    1152 (\ie geopotential diffusion in $s$-coordinates or isoneutral diffusion in both $z$- and $s$-coordinates), 
     1155(\ie\ geopotential diffusion in $s$-coordinates or isoneutral diffusion in both $z$- and $s$-coordinates), 
    11531156the $u$ and $v$-fields are considered as independent scalar fields, so that the diffusive operator is given by: 
    11541157\begin{gather*} 
    1155   % \label{eq:PE_lapU_iso} 
     1158  % \label{eq:MB_lapU_iso} 
    11561159    D_u^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla u \rt) \\ 
    11571160    D_v^{l \vect U} = \nabla . \lt( A^{lm} \; \Re \; \nabla v \rt) 
    11581161\end{gather*} 
    1159 where $\Re$ is given by \autoref{eq:PE_iso_tensor}. 
     1162where $\Re$ is given by \autoref{eq:MB_iso_tensor}. 
    11601163It is the same expression as those used for diffusive operator on tracers. 
    11611164It must be emphasised that such a formulation is only exact in a Cartesian coordinate system, 
    1162 \ie on a $f$- or $\beta$-plane, not on the sphere. 
     1165\ie\ on a $f$- or $\beta$-plane, not on the sphere. 
    11631166It is also a very good approximation in vicinity of the Equator in 
    11641167a geographical coordinate system \citep{lengaigne.madec.ea_JGR03}. 
    11651168 
    1166 \subsubsection{lateral bilaplacian momentum diffusive operator} 
     1169\subsubsection{Lateral bilaplacian momentum diffusive operator} 
    11671170 
    11681171As for tracers, the bilaplacian order momentum diffusive operator is a re-entering Laplacian operator with 
Note: See TracChangeset for help on using the changeset viewer.