New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11596 for NEMO/trunk/doc/latex/NEMO/subfiles/apdx_triads.tex – NEMO

Ignore:
Timestamp:
2019-09-25T19:06:37+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/apdx_triads.tex

    r11584 r11596  
    1212 
    1313\begin{document} 
    14 % ================================================================ 
    15 % Iso-neutral diffusion : 
    16 % ================================================================ 
    1714\chapter{Iso-Neutral Diffusion and Eddy Advection using Triads} 
    1815\label{apdx:TRIADS} 
    1916 
    2017\chaptertoc 
    21  
    22 \newpage 
    2318 
    2419\section[Choice of \forcode{namtra\_ldf} namelist parameters]{Choice of \protect\nam{tra_ldf}{tra\_ldf} namelist parameters} 
     
    4237The options specific to the Griffies scheme include: 
    4338\begin{description} 
    44 \item[{\np{ln_triad_iso}{ln\_triad\_iso}}] 
     39\item [{\np{ln_triad_iso}{ln\_triad\_iso}}] 
    4540  See \autoref{sec:TRIADS_taper}. 
    4641  If this is set false (the default), 
     
    5348  giving an almost pure horizontal diffusive tracer flux within the mixed layer. 
    5449  This is similar to the tapering suggested by \citet{gerdes.koberle.ea_CD91}. See \autoref{subsec:TRIADS_Gerdes-taper} 
    55 \item[{\np{ln_botmix_triad}{ln\_botmix\_triad}}] 
     50\item [{\np{ln_botmix_triad}{ln\_botmix\_triad}}] 
    5651  See \autoref{sec:TRIADS_iso_bdry}. 
    5752  If this is set false (the default) then the lateral diffusive fluxes 
     
    5954  If it is set true, however, then these lateral diffusive fluxes are applied, 
    6055  giving smoother bottom tracer fields at the cost of introducing diapycnal mixing. 
    61 \item[{\np{rn_sw_triad}{rn\_sw\_triad}}] 
     56\item [{\np{rn_sw_triad}{rn\_sw\_triad}}] 
    6257  blah blah to be added.... 
    6358\end{description} 
    6459The options shared with the Standard scheme include: 
    6560\begin{description} 
    66 \item[{\np{ln_traldf_msc}{ln\_traldf\_msc}}]   blah blah to be added 
    67 \item[{\np{rn_slpmax}{rn\_slpmax}}]  blah blah to be added 
     61\item [{\np{ln_traldf_msc}{ln\_traldf\_msc}}]   blah blah to be added 
     62\item [{\np{rn_slpmax}{rn\_slpmax}}]  blah blah to be added 
    6863\end{description} 
    6964 
     
    548543The diffusion scheme satisfies the following six properties: 
    549544\begin{description} 
    550 \item[$\bullet$ horizontal diffusion] 
     545\item [$\bullet$ horizontal diffusion] 
    551546  The discretization of the diffusion operator recovers the traditional five-point Laplacian 
    552547  \autoref{eq:TRIADS_lat-normal} in the limit of flat iso-neutral direction: 
     
    559554  \] 
    560555 
    561 \item[$\bullet$ implicit treatment in the vertical] 
     556\item [$\bullet$ implicit treatment in the vertical] 
    562557  Only tracer values associated with a single water column appear in the expression \autoref{eq:TRIADS_i33} for 
    563558  the $_{33}$ fluxes, vertical fluxes driven by vertical gradients. 
     
    575570  (where $b_w= e_{1w}\,e_{2w}\,e_{3w}$ is the volume of $w$-cells) can be quite large. 
    576571 
    577 \item[$\bullet$ pure iso-neutral operator] 
     572\item [$\bullet$ pure iso-neutral operator] 
    578573  The iso-neutral flux of locally referenced potential density is zero. 
    579574  See \autoref{eq:TRIADS_latflux-rho} and \autoref{eq:TRIADS_vertflux-triad2}. 
    580575 
    581 \item[$\bullet$ conservation of tracer] 
     576\item [$\bullet$ conservation of tracer] 
    582577  The iso-neutral diffusion conserves tracer content, \ie 
    583578  \[ 
     
    587582  This property is trivially satisfied since the iso-neutral diffusive operator is written in flux form. 
    588583 
    589 \item[$\bullet$ no increase of tracer variance] 
     584\item [$\bullet$ no increase of tracer variance] 
    590585  The iso-neutral diffusion does not increase the tracer variance, \ie 
    591586  \[ 
     
    600595  the field on which it is applied becomes free of grid-point noise. 
    601596 
    602 \item[$\bullet$ self-adjoint operator] 
     597\item [$\bullet$ self-adjoint operator] 
    603598  The iso-neutral diffusion operator is self-adjoint, \ie 
    604599  \begin{equation} 
     
    753748described above by \autoref{eq:TRIADS_Rtilde}. 
    754749\begin{enumerate} 
    755 \item 
    756   Mixed-layer depth is defined so as to avoid including regions of weak vertical stratification in 
     750\item Mixed-layer depth is defined so as to avoid including regions of weak vertical stratification in 
    757751  the slope definition. 
    758752  At each $i,j$ (simplified to $i$ in \autoref{fig:TRIADS_MLB_triad}), 
     
    766760  output the diagnosed mixed-layer depth $h_{\mathrm{ML}}=|z_{W}|_{k_{\mathrm{ML}}+1/2}$, 
    767761  the depth of the $w$-point above the $i,k_{\mathrm{ML}}$ tracer point. 
    768 \item 
    769   We define `basal' triad slopes ${\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}$ as 
     762\item We define `basal' triad slopes ${\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}$ as 
    770763  the slopes of those triads whose vertical `arms' go down from the $i,k_{\mathrm{ML}}$ tracer point to 
    771764  the $i,k_{\mathrm{ML}}-1$ tracer point below. 
     
    790783one gridbox deeper than the diagnosed ML depth $z_{\mathrm{ML}})$ that sets the $h$ used to taper the slopes in 
    791784\autoref{eq:TRIADS_rmtilde}. 
    792 \item 
    793   Finally, we calculate the adjusted triads ${\:}_i^k{\mathbb{R}_{\mathrm{ML}}}_{\,i_p}^{k_p}$ within 
     785\item Finally, we calculate the adjusted triads ${\:}_i^k{\mathbb{R}_{\mathrm{ML}}}_{\,i_p}^{k_p}$ within 
    794786  the mixed layer, by multiplying the appropriate ${\:}_i{\mathbb{R}_{\mathrm{base}}}_{\,i_p}^{k_p}$ by 
    795787  the ratio of the depth of the $w$-point ${z_w}_{k+k_p}$ to ${z_{\mathrm{base}}}_{\,i}$. 
     
    872864% This may give strange looking results, 
    873865% particularly where the mixed-layer depth varies strongly laterally. 
    874 % ================================================================ 
    875 % Skew flux formulation for Eddy Induced Velocity : 
    876 % ================================================================ 
    877866\section{Eddy induced advection formulated as a skew flux} 
    878867\label{sec:TRIADS_skew-flux} 
Note: See TracChangeset for help on using the changeset viewer.