New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11596 for NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex – NEMO

Ignore:
Timestamp:
2019-09-25T19:06:37+02:00 (5 years ago)
Author:
nicolasmartin
Message:

Application of some coding rules

  • Replace comments before sectioning cmds by a single line of 100 characters long to display when every line should break
  • Replace multi blank lines by one single blank line
  • For list environment, put \item, label and content on the same line
  • Remove \newpage and comments line around figure envs
File:
1 edited

Legend:

Unmodified
Added
Removed
  • NEMO/trunk/doc/latex/NEMO/subfiles/chap_model_basics.tex

    r11584 r11596  
    44\begin{document} 
    55 
    6 % ================================================================ 
    7 % Chapter 1  Model Basics 
    8 % ================================================================ 
    96\chapter{Model Basics} 
    107\label{chap:MB} 
     
    129\chaptertoc 
    1310 
    14 \newpage 
    15  
    16 % ================================================================ 
    17 % Primitive Equations 
    18 % ================================================================ 
     11%% ================================================================================================= 
    1912\section{Primitive equations} 
    2013\label{sec:MB_PE} 
    2114 
    22 % ------------------------------------------------------------------------------------------------------------- 
    23 %        Vector Invariant Formulation 
    24 % ------------------------------------------------------------------------------------------------------------- 
    25  
     15%% ================================================================================================= 
    2616\subsection{Vector invariant formulation} 
    2717\label{subsec:MB_PE_vector} 
     
    3323 
    3424\begin{enumerate} 
    35 \item 
    36   \textit{spherical Earth approximation}: the geopotential surfaces are assumed to be oblate spheriods 
     25\item \textit{spherical Earth approximation}: the geopotential surfaces are assumed to be oblate spheriods 
    3726  that follow the Earth's bulge; these spheroids are approximated by spheres with 
    3827  gravity locally vertical (parallel to the Earth's radius) and independent of latitude 
    3928  \citep[][section 2]{white.hoskins.ea_QJRMS05}. 
    40 \item 
    41   \textit{thin-shell approximation}: the ocean depth is neglected compared to the earth's radius 
    42 \item 
    43   \textit{turbulent closure hypothesis}: the turbulent fluxes 
     29\item \textit{thin-shell approximation}: the ocean depth is neglected compared to the earth's radius 
     30\item \textit{turbulent closure hypothesis}: the turbulent fluxes 
    4431  (which represent the effect of small scale processes on the large-scale) 
    4532  are expressed in terms of large-scale features 
    46 \item 
    47   \textit{Boussinesq hypothesis}: density variations are neglected except in their contribution to 
     33\item \textit{Boussinesq hypothesis}: density variations are neglected except in their contribution to 
    4834  the buoyancy force 
    4935  \begin{equation} 
     
    5137    \rho = \rho \ (T,S,p) 
    5238  \end{equation} 
    53 \item 
    54   \textit{Hydrostatic hypothesis}: the vertical momentum equation is reduced to a balance between 
     39\item \textit{Hydrostatic hypothesis}: the vertical momentum equation is reduced to a balance between 
    5540  the vertical pressure gradient and the buoyancy force 
    5641  (this removes convective processes from the initial Navier-Stokes equations and so 
     
    6045    \pd[p]{z} = - \rho \ g 
    6146  \end{equation} 
    62 \item 
    63   \textit{Incompressibility hypothesis}: the three dimensional divergence of the velocity vector $\vect U$ 
     47\item \textit{Incompressibility hypothesis}: the three dimensional divergence of the velocity vector $\vect U$ 
    6448  is assumed to be zero. 
    6549  \begin{equation} 
     
    6751    \nabla \cdot \vect U = 0 
    6852  \end{equation} 
    69  \item 
    70   \textit{Neglect of additional Coriolis terms}: the Coriolis terms that vary with the cosine of latitude are neglected. 
     53\item \textit{Neglect of additional Coriolis terms}: the Coriolis terms that vary with the cosine of latitude are neglected. 
    7154  These terms may be non-negligible where the Brunt-Vaisala frequency $N$ is small, either in the deep ocean or 
    7255  in the sub-mesoscale motions of the mixed layer, or near the equator \citep[][section 1]{white.hoskins.ea_QJRMS05}. 
     
    10891Their nature and formulation are discussed in \autoref{sec:MB_zdf_ldf} and \autoref{subsec:MB_boundary_condition}. 
    10992 
    110 % ------------------------------------------------------------------------------------------------------------- 
    111 % Boundary condition 
    112 % ------------------------------------------------------------------------------------------------------------- 
     93%% ================================================================================================= 
    11394\subsection{Boundary conditions} 
    11495\label{subsec:MB_boundary_condition} 
     
    128109the other components of the earth system. 
    129110 
    130 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    131111\begin{figure}[!ht] 
    132112  \centering 
     
    138118  \label{fig:MB_ocean_bc} 
    139119\end{figure} 
    140 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    141120 
    142121\begin{description} 
    143 \item[Land - ocean interface:] 
    144   the major flux between continental margins and the ocean is a mass exchange of fresh water through river runoff. 
     122\item [Land - ocean interface:]  the major flux between continental margins and the ocean is a mass exchange of fresh water through river runoff. 
    145123  Such an exchange modifies the sea surface salinity especially in the vicinity of major river mouths. 
    146124  It can be neglected for short range integrations but has to be taken into account for long term integrations as 
     
    148126  It is required in order to close the water cycle of the climate system. 
    149127  It is usually specified as a fresh water flux at the air-sea interface in the vicinity of river mouths. 
    150 \item[Solid earth - ocean interface:] 
    151   heat and salt fluxes through the sea floor are small, except in special areas of little extent. 
     128\item [Solid earth - ocean interface:]  heat and salt fluxes through the sea floor are small, except in special areas of little extent. 
    152129  They are usually neglected in the model 
    153130  \footnote{ 
     
    171148  $\vect D^{\vect U}$ in \autoref{eq:MB_PE_dyn}. 
    172149  It is discussed in \autoref{eq:MB_zdf}.% and Chap. III.6 to 9. 
    173 \item[Atmosphere - ocean interface:] 
    174   the kinematic surface condition plus the mass flux of fresh water PE (the precipitation minus evaporation budget) 
     150\item [Atmosphere - ocean interface:]  the kinematic surface condition plus the mass flux of fresh water PE (the precipitation minus evaporation budget) 
    175151  leads to: 
    176152  \[ 
     
    181157  leads to the continuity of pressure across the interface $z = \eta$. 
    182158  The atmosphere and ocean also exchange horizontal momentum (wind stress), and heat. 
    183 \item[Sea ice - ocean interface:] 
    184   the ocean and sea ice exchange heat, salt, fresh water and momentum. 
     159\item [Sea ice - ocean interface:]  the ocean and sea ice exchange heat, salt, fresh water and momentum. 
    185160  The sea surface temperature is constrained to be at the freezing point at the interface. 
    186161  Sea ice salinity is very low ($\sim4-6 \, psu$) compared to those of the ocean ($\sim34 \, psu$). 
     
    188163\end{description} 
    189164 
    190 % ================================================================ 
    191 % The Horizontal Pressure Gradient 
    192 % ================================================================ 
     165%% ================================================================================================= 
    193166\section{Horizontal pressure gradient} 
    194167\label{sec:MB_hor_pg} 
    195168 
    196 % ------------------------------------------------------------------------------------------------------------- 
    197 % Pressure Formulation 
    198 % ------------------------------------------------------------------------------------------------------------- 
     169%% ================================================================================================= 
    199170\subsection{Pressure formulation} 
    200171\label{subsec:MB_p_formulation} 
     
    228199Only the free surface formulation is now described in this document (see the next sub-section). 
    229200 
    230 % ------------------------------------------------------------------------------------------------------------- 
    231 % Free Surface Formulation 
    232 % ------------------------------------------------------------------------------------------------------------- 
     201%% ================================================================================================= 
    233202\subsection{Free surface formulation} 
    234203\label{subsec:MB_free_surface} 
     
    280249(see \autoref{subsec:DYN_spg_ts}). 
    281250 
    282 % ================================================================ 
    283 % Curvilinear z-coordinate System 
    284 % ================================================================ 
     251%% ================================================================================================= 
    285252\section{Curvilinear \textit{z-}coordinate system} 
    286253\label{sec:MB_zco} 
    287254 
    288 % ------------------------------------------------------------------------------------------------------------- 
    289 % Tensorial Formalism 
    290 % ------------------------------------------------------------------------------------------------------------- 
     255%% ================================================================================================= 
    291256\subsection{Tensorial formalism} 
    292257\label{subsec:MB_tensorial} 
     
    338303  \label{fig:MB_referential} 
    339304\end{figure} 
    340 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    341305 
    342306Since the ocean depth is far smaller than the earth's radius, $a + z$, can be replaced by $a$ in 
     
    373337where $q$ is a scalar quantity and $\vect A = (a_1,a_2,a_3)$ a vector in the $(i,j,k)$ coordinates system. 
    374338 
    375 % ------------------------------------------------------------------------------------------------------------- 
    376 % Continuous Model Equations 
    377 % ------------------------------------------------------------------------------------------------------------- 
     339%% ================================================================================================= 
    378340\subsection{Continuous model equations} 
    379341\label{subsec:MB_zco_Eq} 
     
    496458 
    497459\begin{itemize} 
    498 \item 
    499   \textbf{Vector invariant form of the momentum equations}: 
     460\item \textbf{Vector invariant form of the momentum equations}: 
    500461  \begin{equation} 
    501462    \label{eq:MB_dyn_vect} 
     
    510471    \end{split} 
    511472  \end{equation} 
    512 \item 
    513   \textbf{flux form of the momentum equations}: 
     473\item \textbf{flux form of the momentum equations}: 
    514474  % \label{eq:MB_dyn_flux} 
    515475  \begin{multline*} 
     
    544504  where the divergence of the horizontal velocity, $\chi$ is given by \autoref{eq:MB_div_Uh}. 
    545505 
    546 \item 
    547   \textbf{tracer equations}: 
     506\item \textbf{tracer equations}: 
    548507  \begin{equation} 
    549508  \begin{split} 
     
    562521are discussed in \autoref{chap:SBC}. 
    563522 
    564 \newpage 
    565  
    566 % ================================================================ 
    567 % Curvilinear generalised vertical coordinate System 
    568 % ================================================================ 
     523%% ================================================================================================= 
    569524\section{Curvilinear generalised vertical coordinate system} 
    570525\label{sec:MB_gco} 
     
    647602%} 
    648603 
    649 % ------------------------------------------------------------------------------------------------------------- 
    650 % The s-coordinate Formulation 
    651 % ------------------------------------------------------------------------------------------------------------- 
     604%% ================================================================================================= 
    652605\subsection{\textit{S}-coordinate formulation} 
    653606 
     
    737690} 
    738691 
    739 % ------------------------------------------------------------------------------------------------------------- 
    740 % Curvilinear \zstar-coordinate System 
    741 % ------------------------------------------------------------------------------------------------------------- 
     692%% ================================================================================================= 
    742693\subsection{Curvilinear \zstar-coordinate system} 
    743694\label{subsec:MB_zco_star} 
    744695 
    745 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    746696\begin{figure}[!b] 
    747697  \centering 
     
    754704  \label{fig:MB_z_zstar} 
    755705\end{figure} 
    756 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    757706 
    758707In this case, the free surface equation is nonlinear, and the variations of volume are fully taken into account. 
     
    827776%end MOM doc %%% 
    828777 
    829 \newpage 
    830  
    831 % ------------------------------------------------------------------------------------------------------------- 
    832 % Terrain following  coordinate System 
    833 % ------------------------------------------------------------------------------------------------------------- 
     778%% ================================================================================================= 
    834779\subsection{Curvilinear terrain-following \textit{s}--coordinate} 
    835780\label{subsec:MB_sco} 
    836781 
    837 % ------------------------------------------------------------------------------------------------------------- 
    838 % Introduction 
    839 % ------------------------------------------------------------------------------------------------------------- 
     782%% ================================================================================================= 
    840783\subsubsection{Introduction} 
    841784 
     
    918861It also offers a completely general transformation, $s=s(i,j,z)$ for the vertical coordinate. 
    919862 
    920 % ------------------------------------------------------------------------------------------------------------- 
    921 % Curvilinear z-tilde coordinate System 
    922 % ------------------------------------------------------------------------------------------------------------- 
     863%% ================================================================================================= 
    923864\subsection{\texorpdfstring{Curvilinear \ztilde-coordinate}{}} 
    924865\label{subsec:MB_zco_tilde} 
     
    929870Its use is therefore not recommended. 
    930871 
    931 \newpage 
    932  
    933 % ================================================================ 
    934 % Subgrid Scale Physics 
    935 % ================================================================ 
     872%% ================================================================================================= 
    936873\section{Subgrid scale physics} 
    937874\label{sec:MB_zdf_ldf} 
     
    957894The formulation of these terms and their underlying physics are briefly discussed in the next two subsections. 
    958895 
    959 % ------------------------------------------------------------------------------------------------------------- 
    960 % Vertical Subgrid Scale Physics 
    961 % ------------------------------------------------------------------------------------------------------------- 
     896%% ================================================================================================= 
    962897\subsection{Vertical subgrid scale physics} 
    963898\label{subsec:MB_zdf} 
     
    991926The choices available in \NEMO\ are discussed in \autoref{chap:ZDF}). 
    992927 
    993 % ------------------------------------------------------------------------------------------------------------- 
    994 % Lateral Diffusive and Viscous Operators Formulation 
    995 % ------------------------------------------------------------------------------------------------------------- 
     928%% ================================================================================================= 
    996929\subsection{Formulation of the lateral diffusive and viscous operators} 
    997930\label{subsec:MB_ldf} 
     
    1047980and UBS advection schemes when flux form is chosen for the momentum advection. 
    1048981 
     982%% ================================================================================================= 
    1049983\subsubsection{Lateral laplacian tracer diffusive operator} 
    1050984 
     
    10881022while in $s$-coordinates $\pd[]{k}$ is replaced by $\pd[]{s}$. 
    10891023 
     1024%% ================================================================================================= 
    10901025\subsubsection{Eddy induced velocity} 
    10911026 
     
    11241059The latter strategy is used in \NEMO\ (cf. \autoref{chap:LDF}). 
    11251060 
     1061%% ================================================================================================= 
    11261062\subsubsection{Lateral bilaplacian tracer diffusive operator} 
    11271063 
     
    11351071the harmonic eddy diffusion coefficient set to the square root of the biharmonic one. 
    11361072 
     1073%% ================================================================================================= 
    11371074\subsubsection{Lateral Laplacian momentum diffusive operator} 
    11381075 
     
    11671104a geographical coordinate system \citep{lengaigne.madec.ea_JGR03}. 
    11681105 
     1106%% ================================================================================================= 
    11691107\subsubsection{Lateral bilaplacian momentum diffusive operator} 
    11701108 
Note: See TracChangeset for help on using the changeset viewer.