 Timestamp:
 20191018T11:05:50+02:00 (14 months ago)
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

NEMO/branches/UKMO/NEMO_4.0.1_GO8_package/src/OCE/ZDF/zdfmxl.F90
r11715 r11717 15 15 USE trc_oce , ONLY: l_offline ! ocean space and time domain variables 16 16 USE zdf_oce ! ocean vertical physics 17 USE eosbn2 ! for zdf_mxl_zint 17 18 ! 18 19 USE in_out_manager ! I/O manager … … 31 32 REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmlp !: mixed layer depth (rho=rho0+zdcrit) [m] (used by LDF) 32 33 REAL(wp), PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: hmlpt !: depth of the last Tpoint inside the mixed layer [m] (used by LDF) 34 REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: hmld_zint !: verticallyinterpolated mixed layer depth [m] 35 REAL(wp), PUBLIC, ALLOCATABLE, DIMENSION(:,:) :: htc_mld ! Heat content of hmld_zint 36 LOGICAL, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:) :: ll_found ! Is T_b to be found by interpolation ? 37 LOGICAL, PUBLIC, ALLOCATABLE, SAVE, DIMENSION(:,:,:) :: ll_belowml ! Flag points below mixed layer when ll_found=F 33 38 34 39 REAL(wp), PUBLIC :: rho_c = 0.01_wp !: density criterion for mixed layer depth 35 40 REAL(wp), PUBLIC :: avt_c = 5.e4_wp ! Kz criterion for the turbocline depth 41 42 TYPE, PUBLIC :: MXL_ZINT !: Structure for MLD defs 43 INTEGER :: mld_type ! mixed layer type 44 REAL(wp) :: zref ! depth of initial T_ref 45 REAL(wp) :: dT_crit ! Critical temp diff 46 REAL(wp) :: iso_frac ! Fraction of rn_dT_crit 47 END TYPE MXL_ZINT 36 48 37 49 !! … … 48 60 zdf_mxl_alloc = 0 ! set to zero if no array to be allocated 49 61 IF( .NOT. ALLOCATED( nmln ) ) THEN 50 ALLOCATE( nmln(jpi,jpj), hmld(jpi,jpj), hmlp(jpi,jpj), hmlpt(jpi,jpj), STAT= zdf_mxl_alloc ) 62 ALLOCATE( nmln(jpi,jpj), hmld(jpi,jpj), hmlp(jpi,jpj), hmlpt(jpi,jpj), hmld_zint(jpi,jpj), & 63 & htc_mld(jpi,jpj), ll_found(jpi,jpj), ll_belowml(jpi,jpj,jpk), STAT= zdf_mxl_alloc ) 51 64 ! 52 65 CALL mpp_sum ( 'zdfmxl', zdf_mxl_alloc ) … … 137 150 ENDIF 138 151 ! 152 ! Verticallyinterpolated mixedlayer depth diagnostic 153 CALL zdf_mxl_zint( kt ) 154 ! 139 155 IF(ln_ctl) CALL prt_ctl( tab2d_1=REAL(nmln,wp), clinfo1=' nmln : ', tab2d_2=hmlp, clinfo2=' hmlp : ' ) 140 156 ! 141 157 END SUBROUTINE zdf_mxl 158 159 SUBROUTINE zdf_mxl_zint_mld( sf ) 160 !! 161 !! *** ROUTINE zdf_mxl_zint_mld *** 162 ! 163 ! Calculate verticallyinterpolated mixed layer depth diagnostic. 164 ! 165 ! This routine can calculate the mixed layer depth diagnostic suggested by 166 ! Kara et al, 2000, JGR, 105, 16803, but is more general and can calculate 167 ! verticallyinterpolated mixedlayer depth diagnostics with other parameter 168 ! settings set in the namzdf_mldzint namelist. 169 ! 170 ! If mld_type=1 the mixed layer depth is calculated as the depth at which the 171 ! density has increased by an amount equivalent to a temperature difference of 172 ! 0.8C at the surface. 173 ! 174 ! For other values of mld_type the mixed layer is calculated as the depth at 175 ! which the temperature differs by 0.8C from the surface temperature. 176 ! 177 ! David Acreman, Daley Calvert 178 ! 179 !! 180 181 TYPE(MXL_ZINT), INTENT(in) :: sf 182 183 ! Diagnostic criteria 184 INTEGER :: nn_mld_type ! mixed layer type 185 REAL(wp) :: rn_zref ! depth of initial T_ref 186 REAL(wp) :: rn_dT_crit ! Critical temp diff 187 REAL(wp) :: rn_iso_frac ! Fraction of rn_dT_crit used 188 189 ! Local variables 190 REAL(wp), PARAMETER :: zepsilon = 1.e30 ! local small value 191 INTEGER, DIMENSION(jpi,jpj) :: ikmt ! number of active tracer levels 192 INTEGER, DIMENSION(jpi,jpj) :: ik_ref ! index of reference level 193 INTEGER, DIMENSION(jpi,jpj) :: ik_iso ! index of last uniform temp level 194 REAL, DIMENSION(jpi,jpj,jpk) :: zT ! Temperature or density 195 REAL, DIMENSION(jpi,jpj) :: ppzdep ! depth for use in calculating d(rho) 196 REAL, DIMENSION(jpi,jpj) :: zT_ref ! reference temperature 197 REAL :: zT_b ! base temperature 198 REAL, DIMENSION(jpi,jpj,jpk) :: zdTdz ! gradient of zT 199 REAL, DIMENSION(jpi,jpj,jpk) :: zmoddT ! Absolute temperature difference 200 REAL :: zdz ! depth difference 201 REAL :: zdT ! temperature difference 202 REAL, DIMENSION(jpi,jpj) :: zdelta_T ! difference critereon 203 REAL, DIMENSION(jpi,jpj) :: zRHO1, zRHO2 ! Densities 204 INTEGER :: ji, jj, jk ! loop counter 205 206 !! 207 ! 208 ! Unpack structure 209 nn_mld_type = sf%mld_type 210 rn_zref = sf%zref 211 rn_dT_crit = sf%dT_crit 212 rn_iso_frac = sf%iso_frac 213 214 ! Set the mixed layer depth criterion at each grid point 215 IF( nn_mld_type == 0 ) THEN 216 zdelta_T(:,:) = rn_dT_crit 217 zT(:,:,:) = rhop(:,:,:) 218 ELSE IF( nn_mld_type == 1 ) THEN 219 ppzdep(:,:)=0.0 220 call eos ( tsn(:,:,1,:), ppzdep(:,:), zRHO1(:,:) ) 221 ! Use zT temporarily as a copy of tsn with rn_dT_crit added to SST 222 ! [assumes number of tracers less than number of vertical levels] 223 zT(:,:,1:jpts)=tsn(:,:,1,1:jpts) 224 zT(:,:,jp_tem)=zT(:,:,1)+rn_dT_crit 225 CALL eos( zT(:,:,1:jpts), ppzdep(:,:), zRHO2(:,:) ) 226 zdelta_T(:,:) = abs( zRHO1(:,:)  zRHO2(:,:) ) * rau0 227 ! RHO from eos (2d version) doesn't calculate north or east halo: 228 CALL lbc_lnk( 'zdfmxl', zdelta_T, 'T', 1. ) 229 zT(:,:,:) = rhop(:,:,:) 230 ELSE 231 zdelta_T(:,:) = rn_dT_crit 232 zT(:,:,:) = tsn(:,:,:,jp_tem) 233 END IF 234 235 ! Calculate the gradient of zT and absolute difference for use later 236 DO jk = 1 ,jpk2 237 zdTdz(:,:,jk) = ( zT(:,:,jk+1)  zT(:,:,jk) ) / e3w_n(:,:,jk+1) 238 zmoddT(:,:,jk) = abs( zT(:,:,jk+1)  zT(:,:,jk) ) 239 END DO 240 241 ! Find density/temperature at the reference level (Kara et al use 10m). 242 ! ik_ref is the index of the box centre immediately above or at the reference level 243 ! Find rn_zref in the array of model level depths and find the ref 244 ! density/temperature by linear interpolation. 245 DO jk = jpkm1, 2, 1 246 WHERE ( gdept_n(:,:,jk) > rn_zref ) 247 ik_ref(:,:) = jk  1 248 zT_ref(:,:) = zT(:,:,jk1) + zdTdz(:,:,jk1) * ( rn_zref  gdept_n(:,:,jk1) ) 249 END WHERE 250 END DO 251 252 ! If the first grid box centre is below the reference level then use the 253 ! top model level to get zT_ref 254 WHERE ( gdept_n(:,:,1) > rn_zref ) 255 zT_ref = zT(:,:,1) 256 ik_ref = 1 257 END WHERE 258 259 ! The number of active tracer levels is 1 less than the number of active w levels 260 ikmt(:,:) = mbkt(:,:)  1 261 262 ! Initialize / reset 263 ll_found(:,:) = .false. 264 265 IF ( rn_iso_frac  zepsilon > 0. ) THEN 266 ! Search for a uniform density/temperature region where adjacent levels 267 ! differ by less than rn_iso_frac * deltaT. 268 ! ik_iso is the index of the last level in the uniform layer 269 ! ll_found indicates whether the mixed layer depth can be found by interpolation 270 ik_iso(:,:) = ik_ref(:,:) 271 DO jj = 1, nlcj 272 DO ji = 1, nlci 273 !CDIR NOVECTOR 274 DO jk = ik_ref(ji,jj), ikmt(ji,jj)1 275 IF ( zmoddT(ji,jj,jk) > ( rn_iso_frac * zdelta_T(ji,jj) ) ) THEN 276 ik_iso(ji,jj) = jk 277 ll_found(ji,jj) = ( zmoddT(ji,jj,jk) > zdelta_T(ji,jj) ) 278 EXIT 279 END IF 280 END DO 281 END DO 282 END DO 283 284 ! Use linear interpolation to find depth of mixed layer base where possible 285 hmld_zint(:,:) = rn_zref 286 DO jj = 1, jpj 287 DO ji = 1, jpi 288 IF (ll_found(ji,jj) .and. tmask(ji,jj,1) == 1.0) THEN 289 zdz = abs( zdelta_T(ji,jj) / zdTdz(ji,jj,ik_iso(ji,jj)) ) 290 hmld_zint(ji,jj) = gdept_n(ji,jj,ik_iso(ji,jj)) + zdz 291 END IF 292 END DO 293 END DO 294 END IF 295 296 ! If ll_found = .false. then calculate MLD using difference of zdelta_T 297 ! from the reference density/temperature 298 299 ! Prevent this section from working on land points 300 WHERE ( tmask(:,:,1) /= 1.0 ) 301 ll_found = .true. 302 END WHERE 303 304 DO jk=1, jpk 305 ll_belowml(:,:,jk) = abs( zT(:,:,jk)  zT_ref(:,:) ) >= zdelta_T(:,:) 306 END DO 307 308 ! Set default value where interpolation cannot be used (ll_found=false) 309 DO jj = 1, jpj 310 DO ji = 1, jpi 311 IF ( .not. ll_found(ji,jj) ) hmld_zint(ji,jj) = gdept_n(ji,jj,ikmt(ji,jj)) 312 END DO 313 END DO 314 315 DO jj = 1, jpj 316 DO ji = 1, jpi 317 !CDIR NOVECTOR 318 DO jk = ik_ref(ji,jj)+1, ikmt(ji,jj) 319 IF ( ll_found(ji,jj) ) EXIT 320 IF ( ll_belowml(ji,jj,jk) ) THEN 321 zT_b = zT_ref(ji,jj) + zdelta_T(ji,jj) * SIGN(1.0, zdTdz(ji,jj,jk1) ) 322 zdT = zT_b  zT(ji,jj,jk1) 323 zdz = zdT / zdTdz(ji,jj,jk1) 324 hmld_zint(ji,jj) = gdept_n(ji,jj,jk1) + zdz 325 EXIT 326 END IF 327 END DO 328 END DO 329 END DO 330 331 hmld_zint(:,:) = hmld_zint(:,:)*tmask(:,:,1) 332 ! 333 END SUBROUTINE zdf_mxl_zint_mld 334 335 SUBROUTINE zdf_mxl_zint_htc( kt ) 336 !! 337 !! *** ROUTINE zdf_mxl_zint_htc *** 338 !! 339 !! ** Purpose : 340 !! 341 !! ** Method : 342 !! 343 344 INTEGER, INTENT(in) :: kt ! ocean timestep index 345 346 INTEGER :: ji, jj, jk 347 INTEGER :: ikmax 348 REAL(wp) :: zc, zcoef 349 ! 350 INTEGER, ALLOCATABLE, DIMENSION(:,:) :: ilevel 351 REAL(wp), ALLOCATABLE, DIMENSION(:,:) :: zthick_0, zthick 352 353 !! 354 355 IF( .NOT. ALLOCATED(ilevel) ) THEN 356 ALLOCATE( ilevel(jpi,jpj), zthick_0(jpi,jpj), & 357 & zthick(jpi,jpj), STAT=ji ) 358 IF( lk_mpp ) CALL mpp_sum( 'zdfmxl', ji ) 359 IF( ji /= 0 ) CALL ctl_stop( 'STOP', 'zdf_mxl_zint_htc : unable to allocate arrays' ) 360 ENDIF 361 362 ! Find last whole model T level above the MLD 363 ilevel(:,:) = 0 364 zthick_0(:,:) = 0._wp 365 366 DO jk = 1, jpkm1 367 DO jj = 1, jpj 368 DO ji = 1, jpi 369 zthick_0(ji,jj) = zthick_0(ji,jj) + e3t_n(ji,jj,jk) 370 IF( zthick_0(ji,jj) < hmld_zint(ji,jj) ) ilevel(ji,jj) = jk 371 END DO 372 END DO 373 WRITE(numout,*) 'zthick_0(jk =',jk,') =',zthick_0(2,2) 374 WRITE(numout,*) 'gdepw_n(jk+1 =',jk+1,') =',gdepw_n(2,2,jk+1) 375 END DO 376 377 ! Surface boundary condition 378 IF( ln_linssh ) THEN ; zthick(:,:) = sshn(:,:) ; htc_mld(:,:) = tsn(:,:,1,jp_tem) * sshn(:,:) * tmask(:,:,1) 379 ELSE ; zthick(:,:) = 0._wp ; htc_mld(:,:) = 0._wp 380 ENDIF 381 382 ! Deepest whole T level above the MLD 383 ikmax = MIN( MAXVAL( ilevel(:,:) ), jpkm1 ) 384 385 ! Integration down to last whole model T level 386 DO jk = 1, ikmax 387 DO jj = 1, jpj 388 DO ji = 1, jpi 389 zc = e3t_n(ji,jj,jk) * REAL( MIN( MAX( 0, ilevel(ji,jj)  jk + 1 ) , 1 ) ) ! 0 below ilevel 390 zthick(ji,jj) = zthick(ji,jj) + zc 391 htc_mld(ji,jj) = htc_mld(ji,jj) + zc * tsn(ji,jj,jk,jp_tem) * tmask(ji,jj,jk) 392 END DO 393 END DO 394 END DO 395 396 ! Subsequent partial T level 397 zthick(:,:) = hmld_zint(:,:)  zthick(:,:) ! remaining thickness to reach MLD 398 399 DO jj = 1, jpj 400 DO ji = 1, jpi 401 htc_mld(ji,jj) = htc_mld(ji,jj) + tsn(ji,jj,ilevel(ji,jj)+1,jp_tem) & 402 & * MIN( e3t_n(ji,jj,ilevel(ji,jj)+1), zthick(ji,jj) ) * tmask(ji,jj,ilevel(ji,jj)+1) 403 END DO 404 END DO 405 406 WRITE(numout,*) 'htc_mld(after) =',htc_mld(2,2) 407 408 ! Convert to heat content 409 zcoef = rau0 * rcp 410 htc_mld(:,:) = zcoef * htc_mld(:,:) 411 412 END SUBROUTINE zdf_mxl_zint_htc 413 414 SUBROUTINE zdf_mxl_zint( kt ) 415 !! 416 !! *** ROUTINE zdf_mxl_zint *** 417 !! 418 !! ** Purpose : 419 !! 420 !! ** Method : 421 !! 422 423 INTEGER, INTENT(in) :: kt ! ocean timestep index 424 425 INTEGER :: ios 426 INTEGER :: jn 427 428 INTEGER :: nn_mld_diag = 0 ! number of diagnostics 429 430 CHARACTER(len=1) :: cmld 431 432 TYPE(MXL_ZINT) :: sn_mld1, sn_mld2, sn_mld3, sn_mld4, sn_mld5 433 TYPE(MXL_ZINT), SAVE, DIMENSION(5) :: mld_diags 434 435 NAMELIST/namzdf_mldzint/ nn_mld_diag, sn_mld1, sn_mld2, sn_mld3, sn_mld4, sn_mld5 436 437 !! 438 439 IF( kt == nit000 ) THEN 440 REWIND( numnam_ref ) ! Namelist namzdf_mldzint in reference namelist 441 READ ( numnam_ref, namzdf_mldzint, IOSTAT = ios, ERR = 901) 442 901 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_mldzint in reference namelist', lwp ) 443 444 REWIND( numnam_cfg ) ! Namelist namzdf_mldzint in configuration namelist 445 READ ( numnam_cfg, namzdf_mldzint, IOSTAT = ios, ERR = 902 ) 446 902 IF( ios /= 0 ) CALL ctl_nam ( ios , 'namzdf_mldzint in configuration namelist', lwp ) 447 IF(lwm) WRITE ( numond, namzdf_mldzint ) 448 449 IF( nn_mld_diag > 5 ) CALL ctl_stop( 'STOP', 'zdf_mxl_ini: Specify no more than 5 MLD definitions' ) 450 451 mld_diags(1) = sn_mld1 452 mld_diags(2) = sn_mld2 453 mld_diags(3) = sn_mld3 454 mld_diags(4) = sn_mld4 455 mld_diags(5) = sn_mld5 456 457 IF( lwp .AND. (nn_mld_diag > 0) ) THEN 458 WRITE(numout,*) '=============== Verticallyinterpolated mixed layer ================' 459 WRITE(numout,*) '(Diagnostic number, nn_mld_type, rn_zref, rn_dT_crit, rn_iso_frac)' 460 DO jn = 1, nn_mld_diag 461 WRITE(numout,*) 'MLD criterion',jn,':' 462 WRITE(numout,*) ' nn_mld_type =', mld_diags(jn)%mld_type 463 WRITE(numout,*) ' rn_zref =' , mld_diags(jn)%zref 464 WRITE(numout,*) ' rn_dT_crit =' , mld_diags(jn)%dT_crit 465 WRITE(numout,*) ' rn_iso_frac =', mld_diags(jn)%iso_frac 466 END DO 467 WRITE(numout,*) '====================================================================' 468 ENDIF 469 ENDIF 470 471 IF( nn_mld_diag > 0 ) THEN 472 DO jn = 1, nn_mld_diag 473 WRITE(cmld,'(I1)') jn 474 IF( iom_use( "mldzint_"//cmld ) .OR. iom_use( "mldhtc_"//cmld ) ) THEN 475 CALL zdf_mxl_zint_mld( mld_diags(jn) ) 476 477 IF( iom_use( "mldzint_"//cmld ) ) THEN 478 CALL iom_put( "mldzint_"//cmld, hmld_zint(:,:) ) 479 ENDIF 480 481 IF( iom_use( "mldhtc_"//cmld ) ) THEN 482 CALL zdf_mxl_zint_htc( kt ) 483 CALL iom_put( "mldhtc_"//cmld , htc_mld(:,:) ) 484 ENDIF 485 ENDIF 486 END DO 487 ENDIF 488 489 END SUBROUTINE zdf_mxl_zint 142 490 143 491 !!======================================================================
Note: See TracChangeset
for help on using the changeset viewer.