New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11830 for NEMO/branches/2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps/doc/latex/NEMO/subfiles/chap_DIU.tex – NEMO

Ignore:
Timestamp:
2019-10-29T17:51:07+01:00 (4 years ago)
Author:
acc
Message:

Branch 2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps. Merge changes to doc from trunk r10740 through r11740

Location:
NEMO/branches/2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps/doc
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps/doc

    • Property svn:ignore deleted
    • Property svn:mergeinfo deleted
    • Property svn:externals set to
      ^/utils/badges badges
      ^/utils/logos logos
  • NEMO/branches/2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps/doc/latex

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps/doc/latex/NEMO

    • Property svn:ignore deleted
    • Property svn:externals set to
      ^/utils/figures/NEMO figures
  • NEMO/branches/2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps/doc/latex/NEMO/subfiles

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
         1*.ind 
        82*.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
  • NEMO/branches/2019/dev_r10721_KERNEL-02_Storkey_Coward_IMMERSE_first_steps/doc/latex/NEMO/subfiles/chap_DIU.tex

    r10442 r11830  
    22 
    33\begin{document} 
    4 % ================================================================ 
    5 % Diurnal SST models (DIU) 
    6 % Edited by James While 
    7 % ================================================================ 
     4 
    85\chapter{Diurnal SST Models (DIU)} 
    96\label{chap:DIU} 
    107 
    11 \minitoc 
     8\thispagestyle{plain} 
    129 
     10\chaptertoc 
    1311 
    14 \newpage 
    15 $\ $\newline % force a new line 
     12\paragraph{Changes record} ~\\ 
     13 
     14{\footnotesize 
     15  \begin{tabularx}{\textwidth}{l||X|X} 
     16    Release & Author(s) & Modifications \\ 
     17    \hline 
     18    {\em   4.0} & {\em ...} & {\em ...} \\ 
     19    {\em   3.6} & {\em ...} & {\em ...} \\ 
     20    {\em   3.4} & {\em ...} & {\em ...} \\ 
     21    {\em <=3.4} & {\em ...} & {\em ...} 
     22  \end{tabularx} 
     23} 
     24 
     25\clearpage 
    1626 
    1727Code to produce an estimate of the diurnal warming and cooling of the sea surface skin 
    18 temperature (skin SST) is found in the DIU directory.   
     28temperature (skin SST) is found in the DIU directory. 
    1929The skin temperature can be split into three parts: 
    2030\begin{itemize} 
    21 \item 
    22   A foundation SST which is free from diurnal warming. 
    23 \item 
    24   A warm layer, typically ~3\,m thick, 
     31\item A foundation SST which is free from diurnal warming. 
     32\item A warm layer, typically ~3\,m thick, 
    2533  where heating from solar radiation can cause a warm stably stratified layer during the daytime 
    26 \item 
    27   A cool skin, a thin layer, approximately ~1\, mm thick, 
     34\item A cool skin, a thin layer, approximately ~1\, mm thick, 
    2835  where long wave cooling is dominant and cools the immediate ocean surface. 
    2936\end{itemize} 
    3037 
    3138Models are provided for both the warm layer, \mdl{diurnal\_bulk}, and the cool skin, \mdl{cool\_skin}. 
    32 Foundation SST is not considered as it can be obtained either from the main NEMO model 
    33 (\ie from the temperature of the top few model levels) or from some other source.   
     39Foundation SST is not considered as it can be obtained either from the main \NEMO\ model 
     40(\ie\ from the temperature of the top few model levels) or from some other source. 
    3441It must be noted that both the cool skin and warm layer models produce estimates of the change in temperature 
    35 ($\Delta T_{\rm{cs}}$ and $\Delta T_{\rm{wl}}$) and 
     42($\Delta T_{\mathrm{cs}}$ and $\Delta T_{\mathrm{wl}}$) and 
    3643both must be added to a foundation SST to obtain the true skin temperature. 
    3744 
    38 Both the cool skin and warm layer models are controlled through the namelist \ngn{namdiu}: 
     45Both the cool skin and warm layer models are controlled through the namelist \nam{diu}{diu}: 
    3946 
    40 \nlst{namdiu} 
     47\begin{listing} 
     48  \nlst{namdiu} 
     49  \caption{\forcode{&namdiu}} 
     50  \label{lst:namdiu} 
     51\end{listing} 
     52 
    4153This namelist contains only two variables: 
    4254\begin{description} 
    43 \item[\np{ln\_diurnal}] 
    44   A logical switch for turning on/off both the cool skin and warm layer. 
    45 \item[\np{ln\_diurnal\_only}] 
    46   A logical switch which if \forcode{.true.} will run the diurnal model without the other dynamical parts of NEMO. 
    47   \np{ln\_diurnal\_only} must be \forcode{.false.} if \np{ln\_diurnal} is \forcode{.false.}. 
     55\item [{\np{ln_diurnal}{ln\_diurnal}}] A logical switch for turning on/off both the cool skin and warm layer. 
     56\item [{\np{ln_diurnal_only}{ln\_diurnal\_only}}] A logical switch which if \forcode{.true.} will run the diurnal model without the other dynamical parts of \NEMO. 
     57  \np{ln_diurnal_only}{ln\_diurnal\_only} must be \forcode{.false.} if \np{ln_diurnal}{ln\_diurnal} is \forcode{.false.}. 
    4858\end{description} 
    4959 
     
    5363Initialisation is through the restart file. 
    5464Specifically the code will expect the presence of the 2-D variable ``Dsst'' to initialise the warm layer. 
    55 The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable.   
     65The cool skin model, which is determined purely by the instantaneous fluxes, has no initialisation variable. 
    5666 
    57 %=============================================================== 
     67%% ================================================================================================= 
    5868\section{Warm layer model} 
    59 \label{sec:warm_layer_sec} 
    60 %=============================================================== 
     69\label{sec:DIU_warm_layer_sec} 
    6170 
    62 The warm layer is calculated using the model of \citet{Takaya_al_JGR10} (TAKAYA10 model hereafter). 
     71The warm layer is calculated using the model of \citet{takaya.bidlot.ea_JGR10} (TAKAYA10 model hereafter). 
    6372This is a simple flux based model that is defined by the equations 
    6473\begin{align} 
    65 \frac{\partial{\Delta T_{\rm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p 
     74\frac{\partial{\Delta T_{\mathrm{wl}}}}{\partial{t}}&=&\frac{Q(\nu+1)}{D_T\rho_w c_p 
    6675\nu}-\frac{(\nu+1)ku^*_{w}f(L_a)\Delta T}{D_T\Phi\!\left(\frac{D_T}{L}\right)} \mbox{,} 
    67 \label{eq:ecmwf1} \\ 
    68 L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:ecmwf2} 
     76\label{eq:DIU_ecmwf1} \\ 
     77L&=&\frac{\rho_w c_p u^{*^3}_{w}}{\kappa g \alpha_w Q }\mbox{,}\label{eq:DIU_ecmwf2} 
    6978\end{align} 
    70 where $\Delta T_{\rm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal. 
    71 In equation (\autoref{eq:ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water, 
     79where $\Delta T_{\mathrm{wl}}$ is the temperature difference between the top of the warm layer and the depth $D_T=3$\,m at which there is assumed to be no diurnal signal. 
     80In equation (\autoref{eq:DIU_ecmwf1}) $\alpha_w=2\times10^{-4}$ is the thermal expansion coefficient of water, 
    7281$\kappa=0.4$ is von K\'{a}rm\'{a}n's constant, $c_p$ is the heat capacity at constant pressure of sea water, 
    7382$\rho_w$ is the water density, and $L$ is the Monin-Obukhov length. 
    7483The tunable variable $\nu$ is a shape parameter that defines the expected subskin temperature profile via 
    75 $T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\rm{wl}}$, 
     84$T(z) = T(0) - \left( \frac{z}{D_T} \right)^\nu \Delta T_{\mathrm{wl}}$, 
    7685where $T$ is the absolute temperature and $z\le D_T$ is the depth below the top of the warm layer. 
    7786The influence of wind on TAKAYA10 comes through the magnitude of the friction velocity of the water $u^*_{w}$, 
     
    7988the relationship $u^*_{w} = u_{10}\sqrt{\frac{C_d\rho_a}{\rho_w}}$, where $C_d$ is the drag coefficient, 
    8089and $\rho_a$ is the density of air. 
    81 The symbol $Q$ in equation (\autoref{eq:ecmwf1}) is the instantaneous total thermal energy flux into 
     90The symbol $Q$ in equation (\autoref{eq:DIU_ecmwf1}) is the instantaneous total thermal energy flux into 
    8291the diurnal layer, \ie 
    8392\[ 
    84   Q = Q_{\rm{sol}} + Q_{\rm{lw}} + Q_{\rm{h}}\mbox{,} 
    85   % \label{eq:e_flux_eqn} 
     93  Q = Q_{\mathrm{sol}} + Q_{\mathrm{lw}} + Q_{\mathrm{h}}\mbox{,} 
     94  % \label{eq:DIU_e_flux_eqn} 
    8695\] 
    87 where $Q_{\rm{h}}$ is the sensible and latent heat flux, $Q_{\rm{lw}}$ is the long wave flux, 
    88 and $Q_{\rm{sol}}$ is the solar flux absorbed within the diurnal warm layer. 
    89 For $Q_{\rm{sol}}$ the 9 term representation of \citet{Gentemann_al_JGR09} is used. 
    90 In equation \autoref{eq:ecmwf1} the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$, 
     96where $Q_{\mathrm{h}}$ is the sensible and latent heat flux, $Q_{\mathrm{lw}}$ is the long wave flux, 
     97and $Q_{\mathrm{sol}}$ is the solar flux absorbed within the diurnal warm layer. 
     98For $Q_{\mathrm{sol}}$ the 9 term representation of \citet{gentemann.minnett.ea_JGR09} is used. 
     99In equation \autoref{eq:DIU_ecmwf1} the function $f(L_a)=\max(1,L_a^{\frac{2}{3}})$, 
    91100where $L_a=0.3$\footnote{ 
    92101  This is a global average value, more accurately $L_a$ could be computed as $L_a=(u^*_{w}/u_s)^{\frac{1}{2}}$, 
     
    991084\zeta^2}{1+3\zeta+0.25\zeta^2} &(\zeta \ge 0) \\ 
    100109                                    (1 - 16\zeta)^{-\frac{1}{2}} & (\zeta < 0) \mbox{,} 
    101                                     \end{array} \right. \label{eq:stab_func_eqn} 
     110                                    \end{array} \right. \label{eq:DIU_stab_func_eqn} 
    102111\end{equation} 
    103 where $\zeta=\frac{D_T}{L}$.  It is clear that the first derivative of (\autoref{eq:stab_func_eqn}), 
    104 and thus of (\autoref{eq:ecmwf1}), is discontinuous at $\zeta=0$ (\ie $Q\rightarrow0$ in 
    105 equation (\autoref{eq:ecmwf2})). 
     112where $\zeta=\frac{D_T}{L}$.  It is clear that the first derivative of (\autoref{eq:DIU_stab_func_eqn}), 
     113and thus of (\autoref{eq:DIU_ecmwf1}), is discontinuous at $\zeta=0$ (\ie\ $Q\rightarrow0$ in 
     114equation (\autoref{eq:DIU_ecmwf2})). 
    106115 
    107 The two terms on the right hand side of (\autoref{eq:ecmwf1}) represent different processes. 
     116The two terms on the right hand side of (\autoref{eq:DIU_ecmwf1}) represent different processes. 
    108117The first term is simply the diabatic heating or cooling of the diurnal warm layer due to 
    109118thermal energy fluxes into and out of the layer. 
     
    111120In practice the second term acts as a relaxation on the temperature. 
    112121 
    113 %=============================================================== 
     122%% ================================================================================================= 
     123\section{Cool skin model} 
     124\label{sec:DIU_cool_skin_sec} 
    114125 
    115 \section{Cool skin model} 
    116 \label{sec:cool_skin_sec} 
    117  
    118 %=============================================================== 
    119  
    120 The cool skin is modelled using the framework of \citet{Saunders_JAS82} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. 
    121 As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\rm{cs}}$ becomes 
     126The cool skin is modelled using the framework of \citet{saunders_JAS67} who used a formulation of the near surface temperature difference based upon the heat flux and the friction velocity $u^*_{w}$. 
     127As the cool skin is so thin (~1\,mm) we ignore the solar flux component to the heat flux and the Saunders equation for the cool skin temperature difference $\Delta T_{\mathrm{cs}}$ becomes 
    122128\[ 
    123   % \label{eq:sunders_eqn} 
    124   \Delta T_{\rm{cs}}=\frac{Q_{\rm{ns}}\delta}{k_t} \mbox{,} 
     129  % \label{eq:DIU_sunders_eqn} 
     130  \Delta T_{\mathrm{cs}}=\frac{Q_{\mathrm{ns}}\delta}{k_t} \mbox{,} 
    125131\] 
    126 where $Q_{\rm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and 
     132where $Q_{\mathrm{ns}}$ is the, usually negative, non-solar heat flux into the ocean and 
    127133$k_t$ is the thermal conductivity of sea water. 
    128134$\delta$ is the thickness of the skin layer and is given by 
    129135\begin{equation} 
    130 \label{eq:sunders_thick_eqn} 
     136\label{eq:DIU_sunders_thick_eqn} 
    131137\delta=\frac{\lambda \mu}{u^*_{w}} \mbox{,} 
    132138\end{equation} 
    133139where $\mu$ is the kinematic viscosity of sea water and $\lambda$ is a constant of proportionality which 
    134 \citet{Saunders_JAS82} suggested varied between 5 and 10. 
     140\citet{saunders_JAS67} suggested varied between 5 and 10. 
    135141 
    136 The value of $\lambda$ used in equation (\autoref{eq:sunders_thick_eqn}) is that of \citet{Artale_al_JGR02}, 
    137 which is shown in \citet{Tu_Tsuang_GRL05} to outperform a number of other parametrisations at 
     142The value of $\lambda$ used in equation (\autoref{eq:DIU_sunders_thick_eqn}) is that of \citet{artale.iudicone.ea_JGR02}, 
     143which is shown in \citet{tu.tsuang_GRL05} to outperform a number of other parametrisations at 
    138144both low and high wind speeds. 
    139145Specifically, 
    140146\[ 
    141   % \label{eq:artale_lambda_eqn} 
     147  % \label{eq:DIU_artale_lambda_eqn} 
    142148  \lambda = \frac{ 8.64\times10^4 u^*_{w} k_t }{ \rho c_p h \mu \gamma }\mbox{,} 
    143149\] 
     
    145151$\gamma$ is a dimensionless function of wind speed $u$: 
    146152\[ 
    147   % \label{eq:artale_gamma_eqn} 
     153  % \label{eq:DIU_artale_gamma_eqn} 
    148154  \gamma = 
    149155  \begin{cases} 
     
    154160\] 
    155161 
    156 \biblio 
    157  
    158 \pindex 
     162\subinc{\input{../../global/epilogue}} 
    159163 
    160164\end{document} 
Note: See TracChangeset for help on using the changeset viewer.