New URL for NEMO forge!   http://forge.nemo-ocean.eu

Since March 2022 along with NEMO 4.2 release, the code development moved to a self-hosted GitLab.
This present forge is now archived and remained online for history.
Changeset 11831 for NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex/NEMO/subfiles/chap_LDF.tex – NEMO

Ignore:
Timestamp:
2019-10-29T18:14:49+01:00 (4 years ago)
Author:
laurent
Message:

Update the branch to r11830 of the trunk!

Location:
NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc
Files:
5 edited

Legend:

Unmodified
Added
Removed
  • NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc

    • Property svn:ignore deleted
    • Property svn:externals set to
      ^/utils/badges badges
      ^/utils/logos logos
  • NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex

    • Property svn:ignore deleted
  • NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex/NEMO

    • Property svn:ignore deleted
    • Property svn:externals set to
      ^/utils/figures/NEMO figures
  • NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex/NEMO/subfiles

    • Property svn:ignore
      •  

        old new  
        1 *.aux 
        2 *.bbl 
        3 *.blg 
        4 *.dvi 
        5 *.fdb* 
        6 *.fls 
        7 *.idx 
         1*.ind 
        82*.ilg 
        9 *.ind 
        10 *.log 
        11 *.maf 
        12 *.mtc* 
        13 *.out 
        14 *.pdf 
        15 *.toc 
        16 _minted-* 
  • NEMO/branches/2019/dev_r11085_ASINTER-05_Brodeau_Advanced_Bulk/doc/latex/NEMO/subfiles/chap_LDF.tex

    r10442 r11831  
    33\begin{document} 
    44 
    5 % ================================================================ 
    6 % Chapter Lateral Ocean Physics (LDF) 
    7 % ================================================================ 
    85\chapter{Lateral Ocean Physics (LDF)} 
    96\label{chap:LDF} 
    107 
    11 \minitoc 
    12  
    13 \newpage 
    14  
    15 The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:PE_zdf} and 
     8\thispagestyle{plain} 
     9 
     10\chaptertoc 
     11 
     12\paragraph{Changes record} ~\\ 
     13 
     14{\footnotesize 
     15  \begin{tabularx}{\textwidth}{l||X|X} 
     16    Release & Author(s) & Modifications \\ 
     17    \hline 
     18    {\em   4.0} & {\em ...} & {\em ...} \\ 
     19    {\em   3.6} & {\em ...} & {\em ...} \\ 
     20    {\em   3.4} & {\em ...} & {\em ...} \\ 
     21    {\em <=3.4} & {\em ...} & {\em ...} 
     22  \end{tabularx} 
     23} 
     24 
     25\clearpage 
     26 
     27The lateral physics terms in the momentum and tracer equations have been described in \autoref{eq:MB_zdf} and 
    1628their discrete formulation in \autoref{sec:TRA_ldf} and \autoref{sec:DYN_ldf}). 
    1729In this section we further discuss each lateral physics option. 
     
    2234(3) the space and time variations of the eddy coefficients. 
    2335These three aspects of the lateral diffusion are set through namelist parameters 
    24 (see the \ngn{nam\_traldf} and \ngn{nam\_dynldf} below). 
    25 Note that this chapter describes the standard implementation of iso-neutral tracer mixing, 
    26 and Griffies's implementation, which is used if \np{traldf\_grif}\forcode{ = .true.}, 
    27 is described in Appdx\autoref{apdx:triad} 
    28  
    29 %-----------------------------------nam_traldf - nam_dynldf-------------------------------------------- 
    30  
    31 \nlst{namtra_ldf}  
    32  
    33 \nlst{namdyn_ldf}  
    34 %-------------------------------------------------------------------------------------------------------------- 
    35  
    36  
    37 % ================================================================ 
    38 % Direction of lateral Mixing 
    39 % ================================================================ 
    40 \section{Direction of lateral mixing (\protect\mdl{ldfslp})} 
     36(see the \nam{tra_ldf}{tra\_ldf} and \nam{dyn_ldf}{dyn\_ldf} below). 
     37Note that this chapter describes the standard implementation of iso-neutral tracer mixing. 
     38Griffies's implementation, which is used if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, 
     39is described in \autoref{apdx:TRIADS} 
     40 
     41%% ================================================================================================= 
     42\section[Lateral mixing operators]{Lateral mixing operators} 
     43\label{sec:LDF_op} 
     44We remind here the different lateral mixing operators that can be used. Further details can be found in \autoref{subsec:TRA_ldf_op} and  \autoref{sec:DYN_ldf}. 
     45 
     46%% ================================================================================================= 
     47\subsection[No lateral mixing (\forcode{ln_traldf_OFF} \& \forcode{ln_dynldf_OFF})]{No lateral mixing (\protect\np{ln_traldf_OFF}{ln\_traldf\_OFF} \& \protect\np{ln_dynldf_OFF}{ln\_dynldf\_OFF})} 
     48 
     49It is possible to run without explicit lateral diffusion on tracers (\protect\np[=.true.]{ln_traldf_OFF}{ln\_traldf\_OFF}) and/or 
     50momentum (\protect\np[=.true.]{ln_dynldf_OFF}{ln\_dynldf\_OFF}). The latter option is even recommended if using the 
     51UBS advection scheme on momentum (\np[=.true.]{ln_dynadv_ubs}{ln\_dynadv\_ubs}, 
     52see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 
     53 
     54%% ================================================================================================= 
     55\subsection[Laplacian mixing (\forcode{ln_traldf_lap} \& \forcode{ln_dynldf_lap})]{Laplacian mixing (\protect\np{ln_traldf_lap}{ln\_traldf\_lap} \& \protect\np{ln_dynldf_lap}{ln\_dynldf\_lap})} 
     56Setting \protect\np[=.true.]{ln_traldf_lap}{ln\_traldf\_lap} and/or \protect\np[=.true.]{ln_dynldf_lap}{ln\_dynldf\_lap} enables 
     57a second order diffusion on tracers and momentum respectively. Note that in \NEMO\ 4, one can not combine 
     58Laplacian and Bilaplacian operators for the same variable. 
     59 
     60%% ================================================================================================= 
     61\subsection[Bilaplacian mixing (\forcode{ln_traldf_blp} \& \forcode{ln_dynldf_blp})]{Bilaplacian mixing (\protect\np{ln_traldf_blp}{ln\_traldf\_blp} \& \protect\np{ln_dynldf_blp}{ln\_dynldf\_blp})} 
     62Setting \protect\np[=.true.]{ln_traldf_blp}{ln\_traldf\_blp} and/or \protect\np[=.true.]{ln_dynldf_blp}{ln\_dynldf\_blp} enables 
     63a fourth order diffusion on tracers and momentum respectively. It is implemented by calling the above Laplacian operator twice. 
     64We stress again that from \NEMO\ 4, the simultaneous use Laplacian and Bilaplacian operators is not allowed. 
     65 
     66%% ================================================================================================= 
     67\section[Direction of lateral mixing (\textit{ldfslp.F90})]{Direction of lateral mixing (\protect\mdl{ldfslp})} 
    4168\label{sec:LDF_slp} 
    4269 
    43 %%% 
    44 \gmcomment{ 
     70\cmtgm{ 
    4571  we should emphasize here that the implementation is a rather old one. 
    46   Better work can be achieved by using \citet{Griffies_al_JPO98, Griffies_Bk04} iso-neutral scheme. 
     72  Better work can be achieved by using \citet{griffies.gnanadesikan.ea_JPO98, griffies_bk04} iso-neutral scheme. 
    4773} 
    4874 
    4975A direction for lateral mixing has to be defined when the desired operator does not act along the model levels. 
    5076This occurs when $(a)$ horizontal mixing is required on tracer or momentum 
    51 (\np{ln\_traldf\_hor} or \np{ln\_dynldf\_hor}) in $s$- or mixed $s$-$z$- coordinates, 
     77(\np{ln_traldf_hor}{ln\_traldf\_hor} or \np{ln_dynldf_hor}{ln\_dynldf\_hor}) in $s$- or mixed $s$-$z$- coordinates, 
    5278and $(b)$ isoneutral mixing is required whatever the vertical coordinate is. 
    5379This direction of mixing is defined by its slopes in the \textbf{i}- and \textbf{j}-directions at the face of 
    5480the cell of the quantity to be diffused. 
    5581For a tracer, this leads to the following four slopes: 
    56 $r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:tra_ldf_iso}), 
     82$r_{1u}$, $r_{1w}$, $r_{2v}$, $r_{2w}$ (see \autoref{eq:TRA_ldf_iso}), 
    5783while for momentum the slopes are  $r_{1t}$, $r_{1uw}$, $r_{2f}$, $r_{2uw}$ for $u$ and 
    58 $r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$.  
    59  
    60 %gm% add here afigure of the slope in i-direction 
    61  
     84$r_{1f}$, $r_{1vw}$, $r_{2t}$, $r_{2vw}$ for $v$. 
     85 
     86\cmtgm{Add here afigure of the slope in i-direction} 
     87 
     88%% ================================================================================================= 
    6289\subsection{Slopes for tracer geopotential mixing in the $s$-coordinate} 
    6390 
    64 In $s$-coordinates, geopotential mixing (\ie horizontal mixing) $r_1$ and $r_2$ are the slopes between 
     91In $s$-coordinates, geopotential mixing (\ie\ horizontal mixing) $r_1$ and $r_2$ are the slopes between 
    6592the geopotential and computational surfaces. 
    66 Their discrete formulation is found by locally solving \autoref{eq:tra_ldf_iso} when 
     93Their discrete formulation is found by locally solving \autoref{eq:TRA_ldf_iso} when 
    6794the diffusive fluxes in the three directions are set to zero and $T$ is assumed to be horizontally uniform, 
    68 \ie a linear function of $z_T$, the depth of a $T$-point.  
    69 %gm { Steven : My version is obviously wrong since I'm left with an arbitrary constant which is the local vertical temperature gradient} 
    70  
    71 \begin{equation} 
    72   \label{eq:ldfslp_geo} 
     95\ie\ a linear function of $z_T$, the depth of a $T$-point. 
     96\cmtgm{Steven : My version is obviously wrong since 
     97  I'm left with an arbitrary constant which is the local vertical temperature gradient} 
     98 
     99\begin{equation} 
     100  \label{eq:LDF_slp_geo} 
    73101  \begin{aligned} 
    74102    r_{1u} &= \frac{e_{3u}}{ \left( e_{1u}\;\overline{\overline{e_{3w}}}^{\,i+1/2,\,k} \right)} 
     
    85113\end{equation} 
    86114 
    87 %gm%  caution I'm not sure the simplification was a good idea!  
    88  
    89 These slopes are computed once in \rou{ldfslp\_init} when \np{ln\_sco}\forcode{ = .true.}rue, 
    90 and either \np{ln\_traldf\_hor}\forcode{ = .true.} or \np{ln\_dynldf\_hor}\forcode{ = .true.}.  
    91  
     115\cmtgm{Caution I'm not sure the simplification was a good idea!} 
     116 
     117These slopes are computed once in \rou{ldf\_slp\_init} when \np[=.true.]{ln_sco}{ln\_sco}, 
     118and either \np[=.true.]{ln_traldf_hor}{ln\_traldf\_hor} or \np[=.true.]{ln_dynldf_hor}{ln\_dynldf\_hor}. 
     119 
     120%% ================================================================================================= 
    92121\subsection{Slopes for tracer iso-neutral mixing} 
    93122\label{subsec:LDF_slp_iso} 
     
    96125Their formulation does not depend on the vertical coordinate used. 
    97126Their discrete formulation is found using the fact that the diffusive fluxes of 
    98 locally referenced potential density (\ie $in situ$ density) vanish. 
    99 So, substituting $T$ by $\rho$ in \autoref{eq:tra_ldf_iso} and setting the diffusive fluxes in 
     127locally referenced potential density (\ie\ $in situ$ density) vanish. 
     128So, substituting $T$ by $\rho$ in \autoref{eq:TRA_ldf_iso} and setting the diffusive fluxes in 
    100129the three directions to zero leads to the following definition for the neutral slopes: 
    101130 
    102131\begin{equation} 
    103   \label{eq:ldfslp_iso} 
     132  \label{eq:LDF_slp_iso} 
    104133  \begin{split} 
    105134    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac{\delta_{i+1/2}[\rho]} 
     
    116145\end{equation} 
    117146 
    118 %gm% rewrite this as the explanation is not very clear !!! 
    119 %In practice, \autoref{eq:ldfslp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:ldfslp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth.  
    120  
    121 %By definition, neutral surfaces are tangent to the local $in situ$ density \citep{McDougall1987}, therefore in \autoref{eq:ldfslp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters). 
    122  
    123 %In the $z$-coordinate, the derivative of the  \autoref{eq:ldfslp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation.  
    124  
    125 As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:ldfslp_iso} has to 
     147\cmtgm{rewrite this as the explanation is not very clear !!!} 
     148%In practice, \autoref{eq:LDF_slp_iso} is of little help in evaluating the neutral surface slopes. Indeed, for an unsimplified equation of state, the density has a strong dependancy on pressure (here approximated as the depth), therefore applying \autoref{eq:LDF_slp_iso} using the $in situ$ density, $\rho$, computed at T-points leads to a flattening of slopes as the depth increases. This is due to the strong increase of the $in situ$ density with depth. 
     149 
     150%By definition, neutral surfaces are tangent to the local $in situ$ density \citep{mcdougall_JPO87}, therefore in \autoref{eq:LDF_slp_iso}, all the derivatives have to be evaluated at the same local pressure (which in decibars is approximated by the depth in meters). 
     151 
     152%In the $z$-coordinate, the derivative of the  \autoref{eq:LDF_slp_iso} numerator is evaluated at the same depth \nocite{as what?} ($T$-level, which is the same as the $u$- and $v$-levels), so  the $in situ$ density can be used for its evaluation. 
     153 
     154As the mixing is performed along neutral surfaces, the gradient of $\rho$ in \autoref{eq:LDF_slp_iso} has to 
    126155be evaluated at the same local pressure 
    127156(which, in decibars, is approximated by the depth in meters in the model). 
    128 Therefore \autoref{eq:ldfslp_iso} cannot be used as such, 
     157Therefore \autoref{eq:LDF_slp_iso} cannot be used as such, 
    129158but further transformation is needed depending on the vertical coordinate used: 
    130159 
    131160\begin{description} 
    132  
    133 \item[$z$-coordinate with full step: ] 
    134   in \autoref{eq:ldfslp_iso} the densities appearing in the $i$ and $j$ derivatives  are taken at the same depth, 
     161\item [$z$-coordinate with full step:] in \autoref{eq:LDF_slp_iso} the densities appearing in the $i$ and $j$ derivatives  are taken at the same depth, 
    135162  thus the $in situ$ density can be used. 
    136163  This is not the case for the vertical derivatives: $\delta_{k+1/2}[\rho]$ is replaced by $-\rho N^2/g$, 
    137   where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{McDougall1987} 
    138   (see \autoref{subsec:TRA_bn2}).  
    139  
    140 \item[$z$-coordinate with partial step: ] 
    141   this case is identical to the full step case except that at partial step level, 
     164  where $N^2$ is the local Brunt-Vais\"{a}l\"{a} frequency evaluated following \citet{mcdougall_JPO87} 
     165  (see \autoref{subsec:TRA_bn2}). 
     166\item [$z$-coordinate with partial step:] this case is identical to the full step case except that at partial step level, 
    142167  the \emph{horizontal} density gradient is evaluated as described in \autoref{sec:TRA_zpshde}. 
    143  
    144 \item[$s$- or hybrid $s$-$z$- coordinate: ] 
    145   in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if 
    146   the Griffies scheme is used (\np{traldf\_grif}\forcode{ = .true.}; 
    147   see Appdx \autoref{apdx:triad}). 
     168\item [$s$- or hybrid $s$-$z$- coordinate:] in the current release of \NEMO, iso-neutral mixing is only employed for $s$-coordinates if 
     169  the Griffies scheme is used (\np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}; 
     170  see \autoref{apdx:TRIADS}). 
    148171  In other words, iso-neutral mixing will only be accurately represented with a linear equation of state 
    149   (\np{nn\_eos}\forcode{ = 1..2}). 
    150   In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:ldfslp_iso} 
     172  (\np[=.true.]{ln_seos}{ln\_seos}). 
     173  In the case of a "true" equation of state, the evaluation of $i$ and $j$ derivatives in \autoref{eq:LDF_slp_iso} 
    151174  will include a pressure dependent part, leading to the wrong evaluation of the neutral slopes. 
    152175 
    153 %gm%  
    154176  Note: The solution for $s$-coordinate passes trough the use of different (and better) expression for 
    155177  the constraint on iso-neutral fluxes. 
    156   Following \citet{Griffies_Bk04}, instead of specifying directly that there is a zero neutral diffusive flux of 
     178  Following \citet{griffies_bk04}, instead of specifying directly that there is a zero neutral diffusive flux of 
    157179  locally referenced potential density, we stay in the $T$-$S$ plane and consider the balance between 
    158180  the neutral direction diffusive fluxes of potential temperature and salinity: 
     
    160182    \alpha \ \textbf{F}(T) = \beta \ \textbf{F}(S) 
    161183  \] 
    162   % gm{  where vector F is ....} 
     184  \cmtgm{where vector F is ....} 
    163185 
    164186This constraint leads to the following definition for the slopes: 
    165187 
    166188\[ 
    167   % \label{eq:ldfslp_iso2} 
     189  % \label{eq:LDF_slp_iso2} 
    168190  \begin{split} 
    169191    r_{1u} &= \frac{e_{3u}}{e_{1u}}\; \frac 
     
    193215 
    194216Note that such a formulation could be also used in the $z$-coordinate and $z$-coordinate with partial steps cases. 
    195  
    196217\end{description} 
    197218 
    198219This implementation is a rather old one. 
    199 It is similar to the one proposed by Cox [1987], except for the background horizontal diffusion. 
    200 Indeed, the Cox implementation of isopycnal diffusion in GFDL-type models requires 
     220It is similar to the one proposed by \citet{cox_OM87}, except for the background horizontal diffusion. 
     221Indeed, the \citet{cox_OM87} implementation of isopycnal diffusion in GFDL-type models requires 
    201222a minimum background horizontal diffusion for numerical stability reasons. 
    202223To overcome this problem, several techniques have been proposed in which the numerical schemes of 
    203 the ocean model are modified \citep{Weaver_Eby_JPO97, Griffies_al_JPO98}. 
    204 Griffies's scheme is now available in \NEMO if \np{traldf\_grif\_iso} is set true; see Appdx \autoref{apdx:triad}. 
    205 Here, another strategy is presented \citep{Lazar_PhD97}: 
     224the ocean model are modified \citep{weaver.eby_JPO97, griffies.gnanadesikan.ea_JPO98}. 
     225Griffies's scheme is now available in \NEMO\ if \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}; see \autoref{apdx:TRIADS}. 
     226Here, another strategy is presented \citep{lazar_phd97}: 
    206227a local filtering of the iso-neutral slopes (made on 9 grid-points) prevents the development of 
    207228grid point noise generated by the iso-neutral diffusion operator (\autoref{fig:LDF_ZDF1}). 
    208229This allows an iso-neutral diffusion scheme without additional background horizontal mixing. 
    209230This technique can be viewed as a diffusion operator that acts along large-scale 
    210 (2~$\Delta$x) \gmcomment{2deltax doesnt seem very large scale} iso-neutral surfaces. 
     231(2~$\Delta$x) \cmtgm{2deltax doesnt seem very large scale} iso-neutral surfaces. 
    211232The diapycnal diffusion required for numerical stability is thus minimized and its net effect on the flow is quite small when compared to the effect of an horizontal background mixing. 
    212233 
    213234Nevertheless, this iso-neutral operator does not ensure that variance cannot increase, 
    214 contrary to the \citet{Griffies_al_JPO98} operator which has that property.  
    215  
    216 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     235contrary to the \citet{griffies.gnanadesikan.ea_JPO98} operator which has that property. 
     236 
    217237\begin{figure}[!ht] 
    218   \begin{center} 
    219     \includegraphics[width=0.70\textwidth]{Fig_LDF_ZDF1} 
    220     \caption { 
    221       \protect\label{fig:LDF_ZDF1} 
    222       averaging procedure for isopycnal slope computation. 
    223     } 
    224   \end{center} 
     238  \centering 
     239  \includegraphics[width=0.66\textwidth]{LDF_ZDF1} 
     240  \caption{Averaging procedure for isopycnal slope computation} 
     241  \label{fig:LDF_ZDF1} 
    225242\end{figure} 
    226 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    227  
    228 %There are three additional questions about the slope calculation.  
    229 %First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes.  
    230 %Second, numerical stability issues also require a bound on slopes.  
     243 
     244%There are three additional questions about the slope calculation. 
     245%First the expression for the rotation tensor has been obtain assuming the "small slope" approximation, so a bound has to be imposed on slopes. 
     246%Second, numerical stability issues also require a bound on slopes. 
    231247%Third, the question of boundary condition specified on slopes... 
    232248 
    233249%from griffies: chapter 13.1.... 
    234250 
    235  
    236  
    237 % In addition and also for numerical stability reasons \citep{Cox1987, Griffies_Bk04},  
    238 % the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly  
    239 % to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the  
     251% In addition and also for numerical stability reasons \citep{cox_OM87, griffies_bk04}, 
     252% the slopes are bounded by $1/100$ everywhere. This limit is decreasing linearly 
     253% to zero fom $70$ meters depth and the surface (the fact that the eddies "feel" the 
    240254% surface motivates this flattening of isopycnals near the surface). 
    241255 
    242 For numerical stability reasons \citep{Cox1987, Griffies_Bk04}, the slopes must also be bounded by 
    243 $1/100$ everywhere. 
     256For numerical stability reasons \citep{cox_OM87, griffies_bk04}, the slopes must also be bounded by 
     257the namelist scalar \np{rn_slpmax}{rn\_slpmax} (usually $1/100$) everywhere. 
    244258This constraint is applied in a piecewise linear fashion, increasing from zero at the surface to 
    245259$1/100$ at $70$ metres and thereafter decreasing to zero at the bottom of the ocean 
    246260(the fact that the eddies "feel" the surface motivates this flattening of isopycnals near the surface). 
    247  
    248 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
     261\colorbox{yellow}{The way slopes are tapered has be checked. Not sure that this is still what is actually done.} 
     262 
    249263\begin{figure}[!ht] 
    250   \begin{center} 
    251     \includegraphics[width=0.70\textwidth]{Fig_eiv_slp} 
    252     \caption{ 
    253       \protect\label{fig:eiv_slp} 
    254       Vertical profile of the slope used for lateral mixing in the mixed layer: 
    255       \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, 
    256       which has to be adjusted at the surface boundary 
    257       \ie it must tend to zero at the surface since there is no mixing across the air-sea interface: 
    258       wall boundary condition). 
    259       Nevertheless, the profile between the surface zero value and the interior iso-neutral one is unknown, 
    260       and especially the value at the base of the mixed layer; 
    261       \textit{(b)} profile of slope using a linear tapering of the slope near the surface and 
    262       imposing a maximum slope of 1/100; 
    263       \textit{(c)} profile of slope actually used in \NEMO: a linear decrease of the slope from 
    264       zero at the surface to its ocean interior value computed just below the mixed layer. 
    265       Note the huge change in the slope at the base of the mixed layer between \textit{(b)} and \textit{(c)}. 
    266     } 
    267   \end{center} 
     264  \centering 
     265  \includegraphics[width=0.66\textwidth]{LDF_eiv_slp} 
     266  \caption[Vertical profile of the slope used for lateral mixing in the mixed layer]{ 
     267    Vertical profile of the slope used for lateral mixing in the mixed layer: 
     268    \textit{(a)} in the real ocean the slope is the iso-neutral slope in the ocean interior, 
     269    which has to be adjusted at the surface boundary 
     270    \ie\ it must tend to zero at the surface since there is no mixing across the air-sea interface: 
     271    wall boundary condition). 
     272    Nevertheless, 
     273    the profile between the surface zero value and the interior iso-neutral one is unknown, 
     274    and especially the value at the base of the mixed layer; 
     275    \textit{(b)} profile of slope using a linear tapering of the slope near the surface and 
     276    imposing a maximum slope of 1/100; 
     277    \textit{(c)} profile of slope actually used in \NEMO: 
     278    a linear decrease of the slope from zero at the surface to 
     279    its ocean interior value computed just below the mixed layer. 
     280    Note the huge change in the slope at the base of the mixed layer between 
     281    \textit{(b)} and \textit{(c)}.} 
     282  \label{fig:LDF_eiv_slp} 
    268283\end{figure} 
    269 %>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
    270284 
    271285\colorbox{yellow}{add here a discussion about the flattening of the slopes, vs tapering the coefficient.} 
    272286 
     287%% ================================================================================================= 
    273288\subsection{Slopes for momentum iso-neutral mixing} 
    274289 
    275290The iso-neutral diffusion operator on momentum is the same as the one used on tracers but 
    276291applied to each component of the velocity separately 
    277 (see \autoref{eq:dyn_ldf_iso} in section~\autoref{subsec:DYN_ldf_iso}). 
     292(see \autoref{eq:DYN_ldf_iso} in section~\autoref{subsec:DYN_ldf_iso}). 
    278293The slopes between the surface along which the diffusion operator acts and the surface of computation 
    279294($z$- or $s$-surfaces) are defined at $T$-, $f$-, and \textit{uw}- points for the $u$-component, and $T$-, $f$- and 
    280295\textit{vw}- points for the $v$-component. 
    281296They are computed from the slopes used for tracer diffusion, 
    282 \ie \autoref{eq:ldfslp_geo} and \autoref{eq:ldfslp_iso}: 
     297\ie\ \autoref{eq:LDF_slp_geo} and \autoref{eq:LDF_slp_iso}: 
    283298 
    284299\[ 
    285   % \label{eq:ldfslp_dyn} 
     300  % \label{eq:LDF_slp_dyn} 
    286301  \begin{aligned} 
    287302    &r_{1t}\ \ = \overline{r_{1u}}^{\,i}       &&&    r_{1f}\ \ &= \overline{r_{1u}}^{\,i+1/2} \\ 
     
    294309The major issue remaining is in the specification of the boundary conditions. 
    295310The same boundary conditions are chosen as those used for lateral diffusion along model level surfaces, 
    296 \ie using the shear computed along the model levels and with no additional friction at the ocean bottom 
     311\ie\ using the shear computed along the model levels and with no additional friction at the ocean bottom 
    297312(see \autoref{sec:LBC_coast}). 
    298313 
    299  
    300 % ================================================================ 
    301 % Lateral Mixing Operator 
    302 % ================================================================ 
    303 \section{Lateral mixing operators (\protect\mdl{traldf}, \protect\mdl{traldf}) } 
    304 \label{sec:LDF_op} 
    305  
    306  
    307     
    308 % ================================================================ 
    309 % Lateral Mixing Coefficients 
    310 % ================================================================ 
    311 \section{Lateral mixing coefficient (\protect\mdl{ldftra}, \protect\mdl{ldfdyn}) } 
     314%% ================================================================================================= 
     315\section[Lateral mixing coefficient (\forcode{nn_aht_ijk_t} \& \forcode{nn_ahm_ijk_t})]{Lateral mixing coefficient (\protect\np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
    312316\label{sec:LDF_coef} 
    313317 
    314 Introducing a space variation in the lateral eddy mixing coefficients changes the model core memory requirement, 
    315 adding up to four extra three-dimensional arrays for the geopotential or isopycnal second order operator applied to  
    316 momentum. 
    317 Six CPP keys control the space variation of eddy coefficients: three for momentum and three for tracer. 
    318 The three choices allow: 
    319 a space variation in the three space directions (\key{traldf\_c3d},  \key{dynldf\_c3d}), 
    320 in the horizontal plane (\key{traldf\_c2d},  \key{dynldf\_c2d}), 
    321 or in the vertical only (\key{traldf\_c1d},  \key{dynldf\_c1d}). 
    322 The default option is a constant value over the whole ocean on both momentum and tracers.  
    323     
    324 The number of additional arrays that have to be defined and the gridpoint position at which 
    325 they are defined depend on both the space variation chosen and the type of operator used. 
    326 The resulting eddy viscosity and diffusivity coefficients can be a function of more than one variable. 
    327 Changes in the computer code when switching from one option to another have been minimized by 
    328 introducing the eddy coefficients as statement functions 
    329 (include file \textit{ldftra\_substitute.h90} and \textit{ldfdyn\_substitute.h90}). 
    330 The functions are replaced by their actual meaning during the preprocessing step (CPP). 
    331 The specification of the space variation of the coefficient is made in \mdl{ldftra} and \mdl{ldfdyn}, 
    332 or more precisely in include files \textit{traldf\_cNd.h90} and \textit{dynldf\_cNd.h90}, with N=1, 2 or 3. 
    333 The user can modify these include files as he/she wishes. 
    334 The way the mixing coefficient are set in the reference version can be briefly described as follows: 
    335  
    336 \subsubsection{Constant mixing coefficients (default option)} 
    337 When none of the \key{dynldf\_...} and \key{traldf\_...} keys are defined, 
    338 a constant value is used over the whole ocean for momentum and tracers, 
    339 which is specified through the \np{rn\_ahm0} and \np{rn\_aht0} namelist parameters. 
    340  
    341 \subsubsection{Vertically varying mixing coefficients (\protect\key{traldf\_c1d} and \key{dynldf\_c1d})}  
    342 The 1D option is only available when using the $z$-coordinate with full step. 
    343 Indeed in all the other types of vertical coordinate, 
    344 the depth is a 3D function of (\textbf{i},\textbf{j},\textbf{k}) and therefore, 
    345 introducing depth-dependent mixing coefficients will require 3D arrays. 
    346 In the 1D option, a hyperbolic variation of the lateral mixing coefficient is introduced in which 
    347 the surface value is \np{rn\_aht0} (\np{rn\_ahm0}), the bottom value is 1/4 of the surface value, 
    348 and the transition takes place around z=300~m with a width of 300~m 
    349 (\ie both the depth and the width of the inflection point are set to 300~m). 
    350 This profile is hard coded in file \textit{traldf\_c1d.h90}, but can be easily modified by users. 
    351  
    352 \subsubsection{Horizontally varying mixing coefficients (\protect\key{traldf\_c2d} and \protect\key{dynldf\_c2d})} 
    353 By default the horizontal variation of the eddy coefficient depends on the local mesh size and 
     318The specification of the space variation of the coefficient is made in modules \mdl{ldftra} and \mdl{ldfdyn}. 
     319The way the mixing coefficients are set in the reference version can be described as follows: 
     320 
     321%% ================================================================================================= 
     322\subsection[Mixing coefficients read from file (\forcode{=-20, -30})]{ Mixing coefficients read from file (\protect\np[=-20, -30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=-20, -30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
     323 
     324Mixing coefficients can be read from file if a particular geographical variation is needed. For example, in the ORCA2 global ocean model, 
     325the laplacian viscosity operator uses $A^l$~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and 
     326decreases linearly to $A^l$~= 2.10$^3$ m$^2$/s at the equator \citep{madec.delecluse.ea_JPO96, delecluse.madec_icol99}. 
     327Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of ORCA2 and ORCA05. 
     328The provided fields can either be 2d (\np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}, \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}) or 3d (\np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t},  \np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}). They must be given at U, V points for tracers and T, F points for momentum (see \autoref{tab:LDF_files}). 
     329 
     330\begin{table}[htb] 
     331  \centering 
     332  \begin{tabular}{|l|l|l|l|} 
     333    \hline 
     334    Namelist parameter                       & Input filename                               & dimensions & variable names                      \\  \hline 
     335    \np[=-20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}     & \forcode{eddy_viscosity_2D.nc }            &     $(i,j)$         & \forcode{ahmt_2d, ahmf_2d}  \\  \hline 
     336    \np[=-20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}           & \forcode{eddy_diffusivity_2D.nc }           &     $(i,j)$           & \forcode{ahtu_2d, ahtv_2d}    \\   \hline 
     337    \np[=-30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t}        & \forcode{eddy_viscosity_3D.nc }            &     $(i,j,k)$          & \forcode{ahmt_3d, ahmf_3d}  \\  \hline 
     338    \np[=-30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t}     & \forcode{eddy_diffusivity_3D.nc }           &     $(i,j,k)$         & \forcode{ahtu_3d, ahtv_3d}    \\   \hline 
     339  \end{tabular} 
     340  \caption{Description of expected input files if mixing coefficients are read from NetCDF files} 
     341  \label{tab:LDF_files} 
     342\end{table} 
     343 
     344%% ================================================================================================= 
     345\subsection[Constant mixing coefficients (\forcode{=0})]{ Constant mixing coefficients (\protect\np[=0]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=0]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
     346 
     347If constant, mixing coefficients are set thanks to a velocity and a length scales ($U_{scl}$, $L_{scl}$) such that: 
     348 
     349\begin{equation} 
     350  \label{eq:LDF_constantah} 
     351  A_o^l = \left\{ 
     352    \begin{aligned} 
     353      & \frac{1}{2} U_{scl} L_{scl}            & \text{for laplacian operator } \\ 
     354      & \frac{1}{12} U_{scl} L_{scl}^3                    & \text{for bilaplacian operator } 
     355    \end{aligned} 
     356  \right. 
     357\end{equation} 
     358 
     359 $U_{scl}$ and $L_{scl}$ are given by the namelist parameters \np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}, \np{rn_Ld}{rn\_Ld} and \np{rn_Lv}{rn\_Lv}. 
     360 
     361%% ================================================================================================= 
     362\subsection[Vertically varying mixing coefficients (\forcode{=10})]{Vertically varying mixing coefficients (\protect\np[=10]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=10]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
     363 
     364In the vertically varying case, a hyperbolic variation of the lateral mixing coefficient is introduced in which 
     365the surface value is given by \autoref{eq:LDF_constantah}, the bottom value is 1/4 of the surface value, 
     366and the transition takes place around z=500~m with a width of 200~m. 
     367This profile is hard coded in module \mdl{ldfc1d\_c2d}, but can be easily modified by users. 
     368 
     369%% ================================================================================================= 
     370\subsection[Mesh size dependent mixing coefficients (\forcode{=20})]{Mesh size dependent mixing coefficients (\protect\np[=20]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=20]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
     371 
     372In that case, the horizontal variation of the eddy coefficient depends on the local mesh size and 
    354373the type of operator used: 
    355374\begin{equation} 
    356   \label{eq:title} 
     375  \label{eq:LDF_title} 
    357376  A_l = \left\{ 
    358377    \begin{aligned} 
    359       & \frac{\max(e_1,e_2)}{e_{max}} A_o^l           & \text{for laplacian operator } \\ 
    360       & \frac{\max(e_1,e_2)^{3}}{e_{max}^{3}} A_o^l          & \text{for bilaplacian operator } 
     378      & \frac{1}{2} U_{scl}  \max(e_1,e_2)         & \text{for laplacian operator } \\ 
     379      & \frac{1}{12} U_{scl}  \max(e_1,e_2)^{3}             & \text{for bilaplacian operator } 
    361380    \end{aligned} 
    362381  \right. 
    363382\end{equation} 
    364 where $e_{max}$ is the maximum of $e_1$ and $e_2$ taken over the whole masked ocean domain, 
    365 and $A_o^l$ is the \np{rn\_ahm0} (momentum) or \np{rn\_aht0} (tracer) namelist parameter. 
     383where $U_{scl}$ is a user defined velocity scale (\np{rn_Ud}{rn\_Ud}, \np{rn_Uv}{rn\_Uv}). 
    366384This variation is intended to reflect the lesser need for subgrid scale eddy mixing where 
    367385the grid size is smaller in the domain. 
    368 It was introduced in the context of the DYNAMO modelling project \citep{Willebrand_al_PO01}. 
    369 Note that such a grid scale dependance of mixing coefficients significantly increase the range of stability of 
    370 model configurations presenting large changes in grid pacing such as global ocean models. 
     386It was introduced in the context of the DYNAMO modelling project \citep{willebrand.barnier.ea_PO01}. 
     387Note that such a grid scale dependance of mixing coefficients significantly increases the range of stability of 
     388model configurations presenting large changes in grid spacing such as global ocean models. 
    371389Indeed, in such a case, a constant mixing coefficient can lead to a blow up of the model due to 
    372 large coefficient compare to the smallest grid size (see \autoref{sec:STP_forward_imp}), 
     390large coefficient compare to the smallest grid size (see \autoref{sec:TD_forward_imp}), 
    373391especially when using a bilaplacian operator. 
    374392 
    375 Other formulations can be introduced by the user for a given configuration. 
    376 For example, in the ORCA2 global ocean model (see Configurations), 
    377 the laplacian viscosity operator uses \np{rn\_ahm0}~= 4.10$^4$ m$^2$/s poleward of 20$^{\circ}$ north and south and 
    378 decreases linearly to \np{rn\_aht0}~= 2.10$^3$ m$^2$/s at the equator \citep{Madec_al_JPO96, Delecluse_Madec_Bk00}. 
    379 This modification can be found in routine \rou{ldf\_dyn\_c2d\_orca} defined in \mdl{ldfdyn\_c2d}. 
    380 Similar modified horizontal variations can be found with the Antarctic or Arctic sub-domain options of 
    381 ORCA2 and ORCA05 (see \&namcfg namelist). 
    382  
    383 \subsubsection{Space varying mixing coefficients (\protect\key{traldf\_c3d} and \key{dynldf\_c3d})} 
    384  
    385 The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases, 
    386 \ie a hyperbolic tangent variation with depth associated with a grid size dependence of 
    387 the magnitude of the coefficient.  
    388  
    389 \subsubsection{Space and time varying mixing coefficients} 
    390  
    391 There is no default specification of space and time varying mixing coefficient.  
    392 The only case available is specific to the ORCA2 and ORCA05 global ocean configurations. 
    393 It provides only a tracer mixing coefficient for eddy induced velocity (ORCA2) or both iso-neutral and 
    394 eddy induced velocity (ORCA05) that depends on the local growth rate of baroclinic instability. 
    395 This specification is actually used when an ORCA key and both \key{traldf\_eiv} and \key{traldf\_c2d} are defined. 
     393\colorbox{yellow}{CASE \np{nn_aht_ijk_t}{nn\_aht\_ijk\_t} = 21 to be added} 
     394 
     395%% ================================================================================================= 
     396\subsection[Mesh size and depth dependent mixing coefficients (\forcode{=30})]{Mesh size and depth dependent mixing coefficients (\protect\np[=30]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=30]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
     397 
     398The 3D space variation of the mixing coefficient is simply the combination of the 1D and 2D cases above, 
     399\ie\ a hyperbolic tangent variation with depth associated with a grid size dependence of 
     400the magnitude of the coefficient. 
     401 
     402%% ================================================================================================= 
     403\subsection[Velocity dependent mixing coefficients (\forcode{=31})]{Flow dependent mixing coefficients (\protect\np[=31]{nn_aht_ijk_t}{nn\_aht\_ijk\_t} \& \protect\np[=31]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
     404In that case, the eddy coefficient is proportional to the local velocity magnitude so that the Reynolds number $Re =  \lvert U \rvert  e / A_l$ is constant (and here hardcoded to $12$): 
     405\colorbox{yellow}{JC comment: The Reynolds is effectively set to 12 in the code for both operators but shouldn't it be 2 for Laplacian ?} 
     406 
     407\begin{equation} 
     408  \label{eq:LDF_flowah} 
     409  A_l = \left\{ 
     410    \begin{aligned} 
     411      & \frac{1}{12} \lvert U \rvert e          & \text{for laplacian operator } \\ 
     412      & \frac{1}{12} \lvert U \rvert e^3             & \text{for bilaplacian operator } 
     413    \end{aligned} 
     414  \right. 
     415\end{equation} 
     416 
     417%% ================================================================================================= 
     418\subsection[Deformation rate dependent viscosities (\forcode{nn_ahm_ijk_t=32})]{Deformation rate dependent viscosities (\protect\np[=32]{nn_ahm_ijk_t}{nn\_ahm\_ijk\_t})} 
     419 
     420This option refers to the \citep{smagorinsky_MW63} scheme which is here implemented for momentum only. Smagorinsky chose as a 
     421characteristic time scale $T_{smag}$ the deformation rate and for the lengthscale $L_{smag}$ the maximum wavenumber possible on the horizontal grid, e.g.: 
     422 
     423\begin{equation} 
     424  \label{eq:LDF_smag1} 
     425  \begin{split} 
     426    T_{smag}^{-1} & = \sqrt{\left( \partial_x u - \partial_y v\right)^2 + \left( \partial_y u + \partial_x v\right)^2  } \\ 
     427    L_{smag} & = \frac{1}{\pi}\frac{e_1 e_2}{e_1 + e_2} 
     428  \end{split} 
     429\end{equation} 
     430 
     431Introducing a user defined constant $C$ (given in the namelist as \np{rn_csmc}{rn\_csmc}), one can deduce the mixing coefficients as follows: 
     432 
     433\begin{equation} 
     434  \label{eq:LDF_smag2} 
     435  A_{smag} = \left\{ 
     436    \begin{aligned} 
     437      & C^2  T_{smag}^{-1}  L_{smag}^2       & \text{for laplacian operator } \\ 
     438      & \frac{C^2}{8} T_{smag}^{-1} L_{smag}^4        & \text{for bilaplacian operator } 
     439    \end{aligned} 
     440  \right. 
     441\end{equation} 
     442 
     443For stability reasons, upper and lower limits are applied on the resulting coefficient (see \autoref{sec:TD_forward_imp}) so that: 
     444\begin{equation} 
     445  \label{eq:LDF_smag3} 
     446    \begin{aligned} 
     447      & C_{min} \frac{1}{2}   \lvert U \rvert  e    < A_{smag} < C_{max} \frac{e^2}{   8\rdt}                 & \text{for laplacian operator } \\ 
     448      & C_{min} \frac{1}{12} \lvert U \rvert  e^3 < A_{smag} < C_{max} \frac{e^4}{64 \rdt}                 & \text{for bilaplacian operator } 
     449    \end{aligned} 
     450\end{equation} 
     451 
     452where $C_{min}$ and $C_{max}$ are adimensional namelist parameters given by \np{rn_minfac}{rn\_minfac} and \np{rn_maxfac}{rn\_maxfac} respectively. 
     453 
     454%% ================================================================================================= 
     455\subsection{About space and time varying mixing coefficients} 
    396456 
    397457The following points are relevant when the eddy coefficient varies spatially: 
    398458 
    399459(1) the momentum diffusion operator acting along model level surfaces is written in terms of curl and 
    400 divergent components of the horizontal current (see \autoref{subsec:PE_ldf}). 
     460divergent components of the horizontal current (see \autoref{subsec:MB_ldf}). 
    401461Although the eddy coefficient could be set to different values in these two terms, 
    402 this option is not currently available.  
     462this option is not currently available. 
    403463 
    404464(2) with an horizontally varying viscosity, the quadratic integral constraints on enstrophy and on the square of 
    405465the horizontal divergence for operators acting along model-surfaces are no longer satisfied 
    406 (\autoref{sec:dynldf_properties}). 
    407  
    408 (3) for isopycnal diffusion on momentum or tracers, an additional purely horizontal background diffusion with 
    409 uniform coefficient can be added by setting a non zero value of \np{rn\_ahmb0} or \np{rn\_ahtb0}, 
    410 a background horizontal eddy viscosity or diffusivity coefficient 
    411 (namelist parameters whose default values are $0$). 
    412 However, the technique used to compute the isopycnal slopes is intended to get rid of such a background diffusion, 
    413 since it introduces spurious diapycnal diffusion (see \autoref{sec:LDF_slp}). 
    414  
    415 (4) when an eddy induced advection term is used (\key{traldf\_eiv}), 
    416 $A^{eiv}$, the eddy induced coefficient has to be defined. 
    417 Its space variations are controlled by the same CPP variable as for the eddy diffusivity coefficient 
    418 (\ie \key{traldf\_cNd}).  
    419  
    420 (5) the eddy coefficient associated with a biharmonic operator must be set to a \emph{negative} value. 
    421  
    422 (6) it is possible to use both the laplacian and biharmonic operators concurrently. 
    423  
    424 (7) it is possible to run without explicit lateral diffusion on momentum 
    425 (\np{ln\_dynldf\_lap}\forcode{ = .?.}\np{ln\_dynldf\_bilap}\forcode{ = .false.}). 
    426 This is recommended when using the UBS advection scheme on momentum (\np{ln\_dynadv\_ubs}\forcode{ = .true.}, 
    427 see \autoref{subsec:DYN_adv_ubs}) and can be useful for testing purposes. 
    428  
    429 % ================================================================ 
    430 % Eddy Induced Mixing 
    431 % ================================================================ 
    432 \section{Eddy induced velocity (\protect\mdl{traadv\_eiv}, \protect\mdl{ldfeiv})} 
     466(\autoref{sec:INVARIANTS_dynldf_properties}). 
     467 
     468%% ================================================================================================= 
     469\section[Eddy induced velocity (\forcode{ln_ldfeiv})]{Eddy induced velocity (\protect\np{ln_ldfeiv}{ln\_ldfeiv})} 
     470 
    433471\label{sec:LDF_eiv} 
    434472 
     473\begin{listing} 
     474  \nlst{namtra_eiv} 
     475  \caption{\forcode{&namtra_eiv}} 
     476  \label{lst:namtra_eiv} 
     477\end{listing} 
     478 
    435479%%gm  from Triad appendix  : to be incorporated.... 
    436 \gmcomment{ 
     480\cmtgm{ 
    437481  Values of iso-neutral diffusivity and GM coefficient are set as described in \autoref{sec:LDF_coef}. 
    438482  If none of the keys \key{traldf\_cNd}, N=1,2,3 is set (the default), spatially constant iso-neutral $A_l$ and 
    439   GM diffusivity $A_e$ are directly set by \np{rn\_aeih\_0} and \np{rn\_aeiv\_0}. 
     483  GM diffusivity $A_e$ are directly set by \np{rn_aeih_0}{rn\_aeih\_0} and \np{rn_aeiv_0}{rn\_aeiv\_0}. 
    440484  If 2D-varying coefficients are set with \key{traldf\_c2d} then $A_l$ is reduced in proportion with horizontal 
    441485  scale factor according to \autoref{eq:title} 
     
    450494    In this case, $A_e$ at low latitudes $|\theta|<20^{\circ}$ is further reduced by a factor $|f/f_{20}|$, 
    451495    where $f_{20}$ is the value of $f$ at $20^{\circ}$~N 
    452   } (\mdl{ldfeiv}) and \np{rn\_aeiv\_0} is ignored unless it is zero. 
     496  } (\mdl{ldfeiv}) and \np{rn_aeiv_0}{rn\_aeiv\_0} is ignored unless it is zero. 
    453497} 
    454498 
    455 When Gent and McWilliams [1990] diffusion is used (\key{traldf\_eiv} defined), 
     499When  \citet{gent.mcwilliams_JPO90} diffusion is used (\np[=.true.]{ln_ldfeiv}{ln\_ldfeiv}), 
    456500an eddy induced tracer advection term is added, 
    457501the formulation of which depends on the slopes of iso-neutral surfaces. 
    458502Contrary to the case of iso-neutral mixing, the slopes used here are referenced to the geopotential surfaces, 
    459 \ie \autoref{eq:ldfslp_geo} is used in $z$-coordinates, 
    460 and the sum \autoref{eq:ldfslp_geo} + \autoref{eq:ldfslp_iso} in $s$-coordinates. 
    461 The eddy induced velocity is given by:  
    462 \begin{equation} 
    463   \label{eq:ldfeiv} 
     503\ie\ \autoref{eq:LDF_slp_geo} is used in $z$-coordinates, 
     504and the sum \autoref{eq:LDF_slp_geo} + \autoref{eq:LDF_slp_iso} in $s$-coordinates. 
     505 
     506If isopycnal mixing is used in the standard way, \ie\ \np[=.false.]{ln_traldf_triad}{ln\_traldf\_triad}, the eddy induced velocity is given by: 
     507\begin{equation} 
     508  \label{eq:LDF_eiv} 
    464509  \begin{split} 
    465510    u^* & = \frac{1}{e_{2u}e_{3u}}\; \delta_k \left[e_{2u} \, A_{uw}^{eiv} \; \overline{r_{1w}}^{\,i+1/2} \right]\\ 
     
    468513  \end{split} 
    469514\end{equation} 
    470 where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{rn\_aeiv}, 
    471 a \textit{nam\_traldf} namelist parameter. 
    472 The three components of the eddy induced velocity are computed and 
    473 add to the eulerian velocity in \mdl{traadv\_eiv}. 
     515where $A^{eiv}$ is the eddy induced velocity coefficient whose value is set through \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} \nam{tra_eiv}{tra\_eiv} namelist parameter. 
     516The three components of the eddy induced velocity are computed in \rou{ldf\_eiv\_trp} and 
     517added to the eulerian velocity in \rou{tra\_adv} where tracer advection is performed. 
    474518This has been preferred to a separate computation of the advective trends associated with the eiv velocity, 
    475519since it allows us to take advantage of all the advection schemes offered for the tracers 
    476520(see \autoref{sec:TRA_adv}) and not just the $2^{nd}$ order advection scheme as in 
    477 previous releases of OPA \citep{Madec1998}. 
     521previous releases of OPA \citep{madec.delecluse.ea_NPM98}. 
    478522This is particularly useful for passive tracers where \emph{positivity} of the advection scheme is of 
    479 paramount importance.  
     523paramount importance. 
    480524 
    481525At the surface, lateral and bottom boundaries, the eddy induced velocity, 
    482 and thus the advective eddy fluxes of heat and salt, are set to zero.  
    483  
    484 \biblio 
    485  
    486 \pindex 
     526and thus the advective eddy fluxes of heat and salt, are set to zero. 
     527The value of the eddy induced mixing coefficient and its space variation is controlled in a similar way as for lateral mixing coefficient described in the preceding subsection (\np{nn_aei_ijk_t}{nn\_aei\_ijk\_t}, \np{rn_Ue}{rn\_Ue}, \np{rn_Le}{rn\_Le} namelist parameters). 
     528\colorbox{yellow}{CASE \np{nn_aei_ijk_t}{nn\_aei\_ijk\_t} = 21 to be added} 
     529 
     530In case of setting \np[=.true.]{ln_traldf_triad}{ln\_traldf\_triad}, a skew form of the eddy induced advective fluxes is used, which is described in \autoref{apdx:TRIADS}. 
     531 
     532%% ================================================================================================= 
     533\section[Mixed layer eddies (\forcode{ln_mle})]{Mixed layer eddies (\protect\np{ln_mle}{ln\_mle})} 
     534\label{sec:LDF_mle} 
     535 
     536\begin{listing} 
     537  \nlst{namtra_mle} 
     538  \caption{\forcode{&namtra_mle}} 
     539  \label{lst:namtra_mle} 
     540\end{listing} 
     541 
     542If  \np[=.true.]{ln_mle}{ln\_mle} in \nam{tra_mle}{tra\_mle} namelist, a parameterization of the mixing due to unresolved mixed layer instabilities is activated (\citet{foxkemper.ferrari_JPO08}). Additional transport is computed in \rou{ldf\_mle\_trp} and added to the eulerian transport in \rou{tra\_adv} as done for eddy induced advection. 
     543 
     544\colorbox{yellow}{TBC} 
     545 
     546\subinc{\input{../../global/epilogue}} 
    487547 
    488548\end{document} 
Note: See TracChangeset for help on using the changeset viewer.